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LINEAR ISOMETRIES OF SOME NORMED SPACES 
OF ANALYTIC FUNCTIONS 

W. P. NOVINGER AND D. M. OBERLIN 

1. Introduction. For 1 ^ p < oo let If denote the familiar Hardy space 
of analytic functions on the open unit disc D and let || • || denote the If 
norm. Let Sp denote the space of analytic functions f on D such that 
/ ' e Hp. In this paper we will describe the linear isometries of Sp into 
itself when Sp is equipped with either of two norms. The first norm we 
consider is given by 

(1) 11/11 = 1/(0)1 + 11/11, 

and the second by 

(2) 11/11 = ll/lloo + \\f%. 

(It is well known [1, Theorem 3.11] t h a t / ' e If implies continuity for 
f on D, the closure of D. Thus (2) actually defines a norm on Sp.) In the 
former case, with the norm defined by (1), we will show that an isometry 
of Sp induces, in a sense to be made precise in Section 2, an isometry of Hp 

and that Forelli's characterization [2] of the isometries of If can thus be 
used to describe the isometries of Sp. In the latter case, with the norm 
defined by (2), the approach begins similarly. But here the material is 
essentially self-contained and we obtain a very simple description of the 
isometries. 

2. The isometries of Sp with | | / | | = | / (0) | + \\f\. 

THEOREM 2.1. Let T be a linear isometry of Sp into Sp. Then there is a 
linear isometry T of if into if and a unimodular complex number X such 
that 

TRz) = À[/(0) + fi T / ' G > # ] if e ST,z G D). 

Proof. Let n be a positive integer, / be a real number and consider the 
function/ = 1 + tZn. This polynomial is in Sp and hence 

1 + n\t\ = Il/H = H7/II 

= |T1(0) + tTZn(0) | + || (Tl)' + t(TZ"y\\p 
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Si 171(0) I + kl |TZ"(0) | + || (71)% + \t\ || (TZ")'\\p 

= |n(0)| + lunyii, + kl(|rz"(0)| + ||(rz")%) 
= | | n | | + kl | |rZ"| | = | |1 | | + k|||Z"|| = 1 +n\t\. 

Thus it follows that 

(3) |71(0) + tTZn(0) | = |71(0) I + 1*1 \TZn(0) \ 

and 

(4) || (71)' + t(TZnY \\p = || (71)% + |;| \\(TZn)\. 

Now choose a value for n such that TZn is a non-constant function. (There 
is at most one value for n for which this is not the case.) Consider the 
function 

p(t) = || (71)' + t(TZn)%. 

Since \\(TZn)'\\p ¥= 0, it follows from (4) that p is not a differentiable 
function of / at t = 0. That is, in the terminology of [3], the If norm is not 
weakly differentiable at (71)'. Consequently (cf. [3, p. 350] ) 

(71)V) = 0 

on a set of positive measure if p = 1, and 

(T\)\elt) = 0 a.e. if p > 1. 

But since (71)' G If, (71)' = 0 in either case [1, Theorem 2.2]. Thus 71 is 
a constant function X, necessarily of modulus one, and (3) now implies 
that 

TZn(0) = 0 for w = 1, 2 , . . . . 

Multiplying the operator T by the unimodular complex number À, we 
assume that 71 = 1. Now for a n y / e 5^, the equations 

i + klll/% = m + /(/-/(<>)) II 
= || H + / 7 X / - / ( 0 ) ) | | = ||1 + / ( 7 / - / ( 0 ) ) | | 

= |1 + /(7/(0) - / ( 0 ) ) | + kl || (7/) ' | |p 

imply that 

1 + kl ( l l / % - II (Tf)%) = |1 + r(7/(0) - / (0 ) ) |. 

Since the left hand side of the preceding equation depends only on |/|, it 
follows that 

(5) ' 7/(0) = / ( 0 ) , | | ( 7 / ) ' | | , = | | / % . 

Now we complete the proof of the theorem. Let SQ denote the subspace 
of Sp of functions which are zero at 0. The differentiation operator D maps 
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SQ isometrically onto if, and its inverse /, given by 

Ig(z) = / Q g(£W, (g e H") 

maps If isometrically onto Sp
0. Since T maps Sp

0 into Sp
0 (this follows 

from the first equation in (5) ), we see that r = DoToIisa linear 
isometry from Hp into if\ Finally, if / G SP then 

/ - / ( ( > ) = / ( / ' ) 

and thus 

D(T(f - / (0 ) ) ) = T/ ' . 

This says that (Tfy = T(/" ') , and so 

7T(*) = / ( 0 ) + / * T/ ' (f)C (z G />). 

This completes the proof. 

Remark. The converse of the preceding result is easily verified. 

In [2] Forelli characterized the isometries of if. If we apply his 
theorems, then we obtain the following results. 

COROLLARY 2.2. Let T be as in 2.1 and assume that p ¥= 2. Then there is a 
non-constant inner function <j> and a function F in if such that 

Tf(z) = X[f(0) + Jl i W ( * t f ) )dS\ (ze D,fe Sp). 

Proof This follows immediately from Theorem 2.1 and [2, Theorem 1] 
as applied to the isometry T. 

If we assume that the isometry T maps Sp onto Sp, then much more can 
be said about the functions F and $ that appear in the above corollary. 
Specifically, we get the following result. 

THEOREM 2.3. Let T be a linear isometry of Sp onto Sp, p ¥^ 2. Then there 
are unimodular complex numbers X, fx and a conformai map <#> of the unit disc 
D such that 

Tf(z) = X[/(0) + / i / o MO ff'im )<#] ( / e Sp, z G D). 

Conversely, this equation defines an isometry T of Sp onto Sp. 

Proof This is a consequence of 2.1 and [2, Theorem 2]. For if T maps Sp 

onto itself, then the If isometry T is also onto and Forelli's Theorem 2 
says that 

rg = l*[<t>i/pgo<t> (g e / /O, 
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where |/x| = 1 and <j> is a conformai map of D. By substituting this for T/ ' in 
2.1 we obtain the formula for T. The converse is readily verified and we 
omit the details. 

The isometries of H onto itself were first found by de Leeuw, Rudin, 
and Wermer in [4] and it is interesting to look at Theorem 2.3 in the case 
p = 1. The conclusion is that an isometry T of Sl has the form 

Tf=X[f(0) + rt/o*-/(#0)))]. 

Now the work in the present paper was in large part motivated by a result 
due to R. Roan [5, Theorem 11] contained in a paper concerned with 
composition operators of various types on Sp. By a composition operator 
on Sp we mean an operator 

T:SP -> Sp 

for which there is a function \^:D —> D such that 

Tf = foxP for a l l / e Sp. 

Roan shows [5, Theorem 11] that if T is a composition operator and if T is 
an isometry (not necessarily onto) of Sp with respect to the norm used in 
this section, then \\J is a conformai map of D onto itself such that \p(0) = 0, 
i.e., a rotation. The point in our looking at the conclusion of Theorem 2.3 
in the case;? = 1 is that it suggests, at least for surjective isometries, that 
they are necessarily "close" to being composition operators. In fact, as we 
will now show, if we do assume that an arbitrary isometry T of Sp is a 
composition operator and is induced by some \p, then Roan's result can be 
obtained as an immediate consequence of Corollary 2.2 as follows. For we 
have an If function F, an inner function <J> and a map \p\D —> D such that 
Tf = f o i// and (by differentiation) 

( / ' o W = Ff'04, ( / e SP). 

Taking / = Z we get i// = F so \p G SP and 

( / ' o W = ( / ' o M ' ( / G SP). 

Next tak ing/ = Z yields i//t// = <Jn// and since ^ ¥= 0 a.e. on \z\ = 1, it 
follows that i// = <j>. Consequently, ^ is an inner function in S^ and 

0 = Z(0) - rZ(0) = i/<0). 

Also, since ^ is continuous on Z>, \p must be a finite Blaschke product and 
consequently, maps the unit circle onto itself. It follows that 

i s ii^n, =§ H ^ = \\(Tzy\\p = l, 

hence equality holds throughout and so 
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2 7 7 = / r M*") \dt 

Jo 
it\ 

ie"dt 

= I f ^ d i 
I ho m 

= 277 (number of zeros of \p in D). 

Thus \\J has exactly one zero in D and since ^/(0) = 0, \p is necessarily a 
rotation of Z). 

In the next section we will consider the isometries of Sp when the norm 
is given by (2) and will show that these are all composition operators 
induced by conformai maps of D. In fact when p > 1 these conformai 
maps must actually be rotations of D. 

3. The isometries of Sp with | | / | | = H/IL + | | / % . 

THEOREM 3.1. Let T be an isometry of Sp into Sp. Then T has the form 

Tf= \fo<S> 

where X is a unimodular complex number and <j> is a conformai map of D. If 
p > 1, <j> is necessarily a rotation of D. 

Proof The argument is rather lengthy and will be given by establishing 
several claims and lemmas. 

CLAIM (i) T\ is a constant function of modulus one. 

Proof. As in 2.1, let n be a positive integer, t be a complex number, and 
/ = 1 + tZn. Then, as before, we obtain 

1 + |/| + n\t\ = H/ll = | | r / | | 

= | | n + tTTWn + 11(71)' + t(TZn)\ 

^ l in iu + \t\ Hrz lL + || (riyii, + \t\ \\ (Tz"y\\p 

= II7ÏH + |/| \\TZ"\\ = Hill + kl \\Zn\\ 

= / + |/| + n\t\. 

Thus we have 

(6) yn + I T Z " ^ = imiioo + kl Iirz-'IL 

and 

(7) || (71)' + t(TZ")'\\p = || (71)'||p + kl || (TZn)\. 
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Again (7) implies that (71)' = 0, hence 71 is a constant function of 
modulus one. Thus we can assume that 71 = 1. 

CLAIM (ii) WTZ"^ è 1. 

Proof. Let m be a positive integer with m ¥= n. Then for any real 
number /, 

\\TZm + tTZ"\\m + \\(TZmy + t(TZ")'\\p 

= \\Zm + fZloo + | |wZ m " ' + « / Z " - ' ^ 

= ||1 + tZ"-m\\00 + \\mZm-' + ntZ"~\ 

= 1 + \t\ + \\mZm~] + ntZn'\ 

Thus 

(8) \\TZm + /7-Zloo - k| 

= 1 + \\mZm~] + ntZn~X - \\(TZmY + t{TZ")\. 

Since (TZm)' ¥* 0 a.e., the right hand side of (8) is a differentiable function 
of t at t = 0, with derivative equal to, say, c. Thus we can write the left 
hand side as 

(9) HrzHL + ct + o(t). 
Also, 

\\Tzm + tTZTWv, ^ lirzlco + |/| lirziu 
so it follows from (8) and (9) that 

\t\ II7Z1L ^ kl + ct + o(0-

Hence 

II7-Z-IL S • + c- + ^ . 

From this inequality we get that 

U7Z1L ^ 1 + |c|, 

so that llrz^loo ^ 1 as claimed. 

CLAIM (iii). TZ is a conformai map of D onto D which is a rotation if 
p>\. 

In order to establish (iii) we will need the following elementary lemma 
and remark. 

LEMMA 3.2. Suppose that the range of a function f [a, b] —» C contains a 
circular arc {Melt:0 ^ t ^ 6}. Then the variation off on [a, b] is = M6, the 
length of the arc. 
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Proof. Let e > 0 and choose consecutive and equally spaced points 
z0, z b . . . , zn along with the arc with z0 = M, zn = Me1 , and such that 

n 

2 \ZJ - z - J > MO - e. 
7 = 1 

Since/maps [a, b] onto the arc, there are points t0, th . . . , tn in [a, b] such 
that 

f(tj) = zj, y = 0, 1, . . . , w. 

Let s0, su . . ., sn be the increasing rearrangement of t0, tu . . . , /„. Then 

\f(sj) - / (* , •_ , ) I ^ k y - z , . _ , | , 

SO 

/? 

7 = 1 

Remark 3.3. For « = 1 , 2 , . . . the function TZ" maps the unit circle 
\z\ = 1 onto a set that contains the circle with center at the origin and 
radius equal to HTZ^H^. (This follows from the equation 

m + trzrWv, = i + ki \\Tzn\\m, (t G o , 
which is just (6) with T\ = 1.) 

Proof of (iii). We are going to apply the preceding lemma to 

f(t) = TZ(elt\ 0 ë / ^ 2TT. 

Now the function TZ maps the unit circle onto a set that contains the 
circle 

\z\ = iirziloo ^ l. 
Thus by Lemma 3.2 (since TZ is absolutely continuous) 

IvWTZWn^ ) l \(TZ)\elt)\dt. 

Hence, 

i ^ IIT-ZIL ^ mrzyii, ^ iKrzyii, = 2 - y rz iu ^ l. 

In particular, 

i = Hrziu = lurzyih = | | ( rz)%. 
But from || (TZ)f\\l = 1 and the fact that TZ maps \z\ = 1 onto a set 
containing the unit circle, we can conclude that \TZ\ = 1. Thus TZ must 
be a finite Blaschke product. Then the equation 
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II {TZ)% = 1 

implies as before that TZ is a conformai map of D onto itself. And if 
p > 1, then the equality 

\\(Tzy\\p = lurzyy, 
implies that | (TZ)'\ = 1, so that the conformai map TZ must actually be a 
rotation of D in this case. This completes the proof of (iii). 

Set <j> = TZ. We know now that <j> is a conformai map of D and we are 
first going to prove the theorem in the special case <j> = Z. We will then 
derive the general result from this special case. Thus our next step is to 
establish the following. 

CLAIM (iv). If Tl = 1 and TZ = Z, then TZn = Zn for all n. 

To prove this we will need two additional lemmas. 

LEMMA 3.4. Given 0 < € < 1, there exists S > 0 such that if \w\ ^ 1, 
\w - 1| ^ e and \z\ ê 1, |1 - z| ^ 8, then 

\w + rz\ ^ 1 + r(l - 8 ) , 0 < r < 1. 

Proof The inequality to be established is equivalent to 

(10) \w\2 + r2|z|2 + 2rRe(wz) 

^ 1 4- r2(l - 8)2 + 2r(l - 8), 0 < r < 1. 

The inequalities |w| ê 1, |H> — 1| = c imply the existence of some small 
j] = 7)(e) > 0 such that 

(11) Re(wz) ^ 1 - Tj 

whenever 8 > 0 is suitably small and \z — 1| < 8. (In fact, if S ^ e/2, then 
we can take T] = e2/8.) With (11), (10) will hold whenever 

1 4- r2 + 2r(l - TJ) S 1 + r2(l - 8)2 + 2r(l - 8), 0 < r < 1. 

But this latter inequality holds if 8 < TJ/2. 

LEMMA 3.5. 

||a + (rz")'!!,, = 1 - HrZ^U + || |«| + nZn~% + o(\a\) 

provided the argument of a assumes only finitely many values as a —» 0. 

Proof We are assuming now that Tl = 1 and TZ = Z. Then for 
complex a and n > 1, 

|«| + 1 + ||a + nZ"-% 

= \\aZ + Z-IL + ||a + nZ"-% 

= \\aZ + TZTWn + ||a + (TZn)\. 
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Thus 

(12) \\a + (TZn)\ = \a\ + 1 4- \\a + nZP-% - \\aZ + TZ"^. 

Consider 

l«l - \\az + rzHloo + lirz l̂oo-
This expression is 0 if a = 0 and by the triangle inequality is non-negative 
for all a. Furthermore, by (12), 

(13) \a\ - \\aZ + r Z " | L = \\a + (TZn)\ - \\a + nZ"-\ ~ 1. 

So if a is restricted to a line through the origin, say a = tez , then the 
right-hand side of (13) is a differentiable function of / at / = 0. Thus the 
same is true of 

l«l - \\«z + rz"||œ + yrz'-iu. 

Consequently, 

\a\ - ||«Z+ TZHL + I I^IL = o( \a\ ) 

provided that the argument of a assumes only finitely many values as 
a —> 0. If we substitute 

o( \a\ ) - iirz-iu 
for 

l«j -\\aZ+ TZTWn 

in (12) and note that 

||a + nZ"-% = || |«| + nZ"~%, 

we obtain the lemma. 

Now we can prove claim (iv) which is that 

TZn(eld) = ein0 for all 6. 

First choose 0X such that 

TZn(ei0<) = IIT-Z"^. 

(Such a dx exists because TZn maps \z\ = 1 onto the circle \z\ = ||7Zw|loo-) 
We will show that 

(14) TZn(ei0]eW) = e^WTZ"^ 

for all 0 from which it will follow that 

(15) TZn = e'^WTZ^Z". 

But once (15) is obtained, the equation 
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|z"||00 + ||«zfl-1|L = ||rzB||00 + \\(TZ"y\ 

implies that 

i + n = lirz^iuo + AI). 

Thus llrz^loo = 1 and so 

(16) rz" = e-'^z". 

Finally, from (16) and the equation 

111 + z + z^L 
= ||1 + Z + e _ / 

we find, since 

that 

|1 + nZ"~% = ||1 

3 = ||1 + Z + Z" 

H + nZT-\ 
"IL + m + mr'^z"-1 H,, 

ne XZ 

= 111 + Z + e~in^r\\ 

-in6] Hence e~~inU] = 1. So the proof of claim (iv) will be complete when we 
establish (14). Now suppose (14) did fail for some 0, say 00. Then by 
continuity there exist €j > 0 and 8X > 0 such that if 

\eld - ei6°\ <SU 

then 

(17) i r z V V ' ) - em0o\\TZn\\J ^ Cl. 

Now apply Lemma 3.4 with 

=
 €i 

€ " lirzHL 
to obtain a positive number S such that the conclusion of that lemma 
holds. By choosing a smaller ôj we can have 

,1 + e'V'«° 
(18) | - 1 

along with (17) if 

\eie - eW°\ < Ô,. 

Now suppose that 

Then (17) implies that 

< S 
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e °IZ (e le ) 

\Tzr 
- l 

and so Lemma 3.4, with 

e 
w = 

m^TZn{ew'ew) 1 + ele~w° 
— , z = , 

\TZn\\ 

yields by (18), 

e ~ ' " V z V ' O 1 + ewe~w« 
— + r -

l l ^ l o o 2 

^ \ + r(l - 8) forO < /• < 1. 

Equivalently, 

i + je -i90 

TZ (e 'e ) + re " 
2 

g | | rZ" | | œ + r{\ -8) for 0 < r < WTZ"^. 

But there is a small 62 > 0 such that if 
\ei« _ e'«o| g 5 i ) 

then 

1 + e"e w -wQ 

^ 1 - So. 

Thus if we replace 1 — S with the larger of 1 — 8 and 1 — ô2, we have 
that 

TZ (e xe ) + re ° 
v y 2 

^ lirzHL + r(i - 8) 

for 0 < r < llrz^loo and all». 

After the change of variable z ^ ze~l \ this is 

1 + Ze 
-1(6, 

(19) \\TZn + re*1'0 

^ l l r zHL + r(l - 8), 0 < r < WTZTW^ 

Now we will deduce a contradiction from (19) and Lemma 3.5. Since 6l 

was chosen so that TZn(ei6') = \\TZ?\\m 

\TZn\\ \TZn + r 
1 + Ze 
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= \\Z" + r IL + \\nZ"~] +Te-

r - / « \\(TZ"Y +-e' Hp 
2 

(by change of variable z —» e~' °z) 

1 + Ze~i(t'+to) 

\Z" + re' '«Co . 
/ c 2 i loo 

+ \\nZn~X + 
2 

-0o)| | 
"P 

- \\(TZny + 
r 
- e 
2 " " ' H , 

= \\TZn + re in0o 1 + Ze 

2 

*o) 

+ II (Tzny + 
2 

("00-01 - 0 o ) | | 
11/7 

- II (Tzny + 
r 
- e 
2 

" " • i l , . 

From (19) and Lemma 3.5 we conclude that the preceding expression is 
dominated by 

Hal loo + r(l - 8) + o ( 0 a s r - > 0 . 

That is, we have shown that for 0 < r < HTZ"!^ 

IITZ^L + r ^ WTZTWn + r(l -S) + o(Ç). 

This contradiction establishes (14) and consequently claim (iv). 

It is easy now to complete the proof of Theorem 3.1: Let T be an 
arbitrary isometry of Sp into Sp. By claim (i) T\ is a constant X of modulus 
one so that XT = Tx is an isometry of Sp such that Tx\ = 1. Next by claim 
(hi), T{Z is a conformai map <j> of D onto Z) which is a rotation if p > 1. 
Let 

T ^ -> Sp 

be defined by 

T1f = fo*-\ 
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Then T2 is an isometry of Sp. (If p > 1 this follows from the fact that <> is 
then a rotation, while if p = 1, one can verify it directly.) Now consider 
T3 = r 2 o Tl. T3 is an isometry of Sp such that T31 = 1 and such that 

7 3 Z = T2<j> = Z. 

Thus by claim (iv), 

T3Z" = Zfl for all natural numbers n. 

Since the polynomials are dense in Sp, we have 

T3f = f for a l l / e S^. 

But from this it follows that 

/ = T2(TJ) = Tjo<t>-] 

so that Txf = f o <f), hence 

Tf=\Tj=\fo<t> for a l l /G tf. 
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