Some remarks on stable graphs

H.P. Yap

We introduce some methods of constructing stable graphs and characterize a few classes of stable graphs. We also give a counter example to disprove Holton's conjecture.

1. Introduction

A graph G is a strict graph in the sense of Tutte. Let $G_{v_1}v_2\cdots v_k$ be the graph obtained by removing the vertices v_1, v_2, \ldots, v_k and all the edges incident with these vertices, from G. Let A(G) be the automorphism group of G and $A(G)_{v_1}v_2\cdots v_k$ be the stabilizer of $\{v_1, v_2, \ldots, v_k\}$ such that each element in $A(G)_{v_1}v_2\cdots v_k$ fixes v_i individually for all $i = 1, 2, \ldots, k$. Let |V(G)| be the cardinality of the vertex set V(G) of G. If there exists a sequence $S = \{v_1, v_2, \ldots, v_n\}$, n = |V(G)|, of distinct vertices of G such that $A\left[G_{v_1}v_2\cdots v_k\right] = A(G)_{v_1}v_2\cdots v_k$ for each $k = 1, 2, \ldots, n$, then G is said to be stable (otherwise unstable - perhaps an alternative term is recommended as some other writers have used this term in a different sense) and S is called a stabilising sequence of G. In [1], Holton proves, among other results, that

- (1) if G_v is stable for some $v \in A(G)$, and $A(G_v) = A(G)_v$, then G is stable;
- (2) the union of m graphs G_i is stable if and only if each

Received 4 January 1974.

351

G; is stable;

(3) if A(G) is a subgroup of the dihedral group D_n ,

 $n = |V(G)| \ge 5$, then G is unstable.

We now extend some of Holton's results.

2. Construction problems

It is well known that the complement \overline{G} of a disconnected graph G is connected. Also, it is clear that G is stable if and only if \overline{G} is stable. Hence, we can restrict ourselves to the construction of connected stable graphs.

Let G be a stable graph (connected or disconnected) with stabilising sequence $\{v_1, v_2, \ldots, v_n\}$. Let V_1, V_2, \ldots, V_n be the orbits of V(G)under A(G). We define G^* to be the graph obtained from G by adding a new vertex v_0 to G and adding edges joining v_0 to all the vertices in V_i for some i (one or more) or all $i = 1, 2, \ldots, r$.

THEOREM 1. G* is stable.

Proof. We shall prove that $\{v_0, v_1, \ldots, v_n\}$ is a stabilising sequence of G^* .

We know from the definition that $G_{v_0}^{\star} = G$. Hence $A \begin{pmatrix} G_{v_0}^{\star} \end{pmatrix} = A(G)$.

It is clear that $A(G^*)_{v_0} \leq A(G)$.

We now prove that $A(G) \leq A(G^*)_{U_0}$.

Suppose $\phi \in A(G)$. We define a mapping ϕ^* of $V(G^*)$ onto $V(G^*)$ as follows:

$$v_0 \phi^* = v_0$$
, $v_i \phi^* = v_i \phi$ for every $i = 1, 2, ..., n$.

Then $(v_i, v_j) \in E(G^*)$ $((v_i, v_j)$ is an edge of G^*), $i, j \neq 0$, implies that $(v_i, v_j)\phi^* = (v_i\phi, v_j\phi) \in E(G^*)$ and $(v_i, v_0) \in E(G^*)$ implies that $(v_i, v_0)\phi^* = (v_i\phi, v_0) \in E(G^*)$ because $v_i, v_i\phi$ belong to the same orbit

 V_j for some j. Hence $\phi^* \in A(G^*)_{v_0}$. If we identify ϕ with ϕ^* , then $A(G) \leq A(G^*)_{v_0}$ and so $A\left(G_{v_0}^*\right) = A(G^*)_{v_0}$. The rest of the proof is immediate.

As a special case of Theorem 1, we have

COROLLARY. If G is a stable graph and G^* is the graph obtained from G by adding a new vertex v_0 to G and adding all the edges joining v_0 to each vertex of G, then G^* is stable.

Let *H* be an induced subgraph of *G*. Let $v_i \in V(H)$; we define

$$D_1(v_i, H) = \{v_j \in V(H); (v_i, v_j) \in E(H)\}$$

Let *H* and *K* be two connected stable graphs. Let $\{u_1, u_2, \ldots, u_m\}$ be a stabilising sequence of *H*, $\{v_1, v_2, \ldots, v_n\}$ be a stabilising sequence of *K*, and $m \leq n$. We define $G = H \div K$ to be the graph obtained from *H* and *K* by identifying u_1 with v_1 and putting the two graphs *H* and *K* side by side. In other words, *G* is obtained from the union of *H* and *K* by identifying u_1 with v_1 .

THEOREM 2. Let G = H + K. Suppose K_{v_1} is connected. If H_{u_1} is not isomorphic with K_{v_1} or if H_{u_1} is isomorphic with K_{v_1} such that

 $D_1(u_1, H)\phi = D_1(v_1, K)$

for every isomorphism ϕ of H_{u_1} to K_{v_1} , then $\{u_1, u_2, \ldots, u_m, v_2, v_3, \ldots, v_n\}$ is a stabilising sequence of G.

Proof. $G_{u_1} = H_{u_1} \cup K_{v_1}$, union of the two disjoint induced subgraphs H_{u_1} and K_{v_1} of G.

If H_{u_1} is not isomorphic with K_{v_1} then, since K_{v_1} is connected,

$$A\left(G_{u_{1}}\right) = A\left(H_{u_{1}}\right) \times A\left(K_{v_{1}}\right) ,$$

the direct product of $A\begin{pmatrix} H_{u_1} \end{pmatrix}$ and $A\begin{pmatrix} K_{v_1} \end{pmatrix}$. Hence $A\begin{pmatrix} G_{u_1} \end{pmatrix} = A(G)_{u_1}$.

If H_{u_1} is isomorphic with K_{v_1} such that $D_1(u_1, H)\phi = \{u.\phi; u. \in D_1(u_1, H)\} = D_1(v_1, K)$

$$D_{1}(u_{1}, H)\phi = \{u_{i}\phi; u_{i} \in D_{1}(u_{1}, H)\} = D_{1}(v_{1}, H)$$

for every isomorphism ϕ of H_{u_1} to K_{v_1} , then

$$A\left(G_{u_{1}}\right) = A\left(H_{u_{1}}\right) \sim S_{2}$$

the wreath product of $A \begin{pmatrix} H \\ u_1 \end{pmatrix}$ and S_2 , symmetric group of $\{1, 2\}$. Hence $A \begin{pmatrix} G \\ u_1 \end{pmatrix} \approx A(G)_{u_1}$.

The rest of the proof is clear.

REMARKS. If m > n, but none of $A \begin{pmatrix} H \\ u_1 u_2 \cdots u_k \end{pmatrix}$, $k = 1, 2, \ldots, m$, is isomorphic with $A \begin{pmatrix} K \\ v_1 \end{pmatrix}$, then by similar methods, we can show that G = H + K is stable.

It is not difficult to see that the complete bipartite graphs $K_{m,n}$ and in particular, the star graphs $K_{l,t}$ are stable. Hence, we have, with appropriate order of composition and a few restrictions, the following corollaries to Theorem 2.

COROLLARY 1. $K_{m,n} + K_{r,s}$ is stable. COROLLARY 2. $K_{m,n} + K_{r}$ is stable. COROLLARY 3. $K_{m} + K_{n}$ is stable. Let G be a connected, stable graph with stabilising sequence

354

 $\{u_1, u_2, \ldots, u_m\}$. We define $G' = G + K_2$ to be the graph obtained from G and K_2 by putting G and K_2 side by side and adding a new edge E joining u_1 to a vertex v_1 of K_2 .

THEOREM 3. If $u_1 \phi = u_1$ for each $\phi \in A(G)$ or there are no monovalent vertices in G then G' is stable.

Proof. Suppose $V(K_2) = \{v_1, v_2\}$.

If $u_1 \phi = u_1$ for each $\phi \in A(G)$, we can verify that $\{v_1, v_2, u_1, u_2, \dots, u_m\}$ is a stabilising sequence of G'.

If there are no monovalent vertices in G, we can verify that $\{v_2, u_1, v_1, u_2, \ldots, u_m\}$ is a stabilising sequence of G'.

Applying Theorems 1, 2, and 3, together with Holton's result (2), we can construct all stable graphs with 3, 4, 5 and 6 vertices from the basic graph K_2 . It is unknown to the author whether we may or may not be able to obtain all the stable graphs G with $|V(G)| \ge 7$ by applying only these methods and accepting that $K_{1,t}$ is stable.

3. Characterization problems

Let G be a stable graph with stabilising sequence $\{v_1, v_2, \ldots, v_n\}$. Suppose $\phi \in A(G)$. Then $\{v_1\phi, v_2\phi, \ldots, v_n\phi\}$ is also a stabilising sequence of G. It would be interesting to investigate the role that stabilising sequences will play in the characterization problems of stable graphs. For instance, it is not difficult to show that if G is connected and stable, then any sequence of the vertex set of G is a stabilising sequence of G if and only if G is the complete graph. We now use this fact to prove

THEOREM 4. Let G be connected and stable. If $\{v_1, v_{2\alpha}, v_{3\alpha}, \dots, v_{n\alpha}\}$ is a stabilising sequence for each permutation α of $\{2, 3, \dots, n\}$, then G is either K_n or $K_{1,n-1}$.

Proof. If G_{v_1} is connected, then by the previous remark,

$$G_{v_1} = K_{n-1}$$
 and so $G = K_n$.

Suppose G_{v_1} is disconnected. Let

$$G_{v_1} = H_1 \cup H_2 \cup \cdots \cup H_r$$
,

where each H_i is a connected component of G_{v_1} . We can verify without much difficulty that $|V(H_j)| \ge 2$ for some j is impossible. Hence G_{v_1} is the trivial graph with n-1 vertices and 0 edges. Hence $A\left(G_{v_1}\right) = S_{n-1}$ and this implies that $G = K_{1,n-1}$.

The following is another characterization with respect to the automorphism group.

THEOREM 5. Let F be a group such that for every nontrivial subgroup F_1 of F, any graph whose automorphism group is isomorphic with F_1 has vertex number greater than the order of F_1 , then any graph G with A(G) = F is unstable.

Proof. The smallest order of F with the above property is 3. The only group whose order is 3 is the cyclic group C_3 . Any graph G with $A(G) = C_3$ has vertex number greater than 3 and G is easily seen to be unstable.

Let F be any group with order greater than 3 and G be any graph with A(G) = F. Then for any vertex v of G, $A(G_v) = F_1$ is a subgroup of F. If F_1 is the identity group, then by Holton's result (3), G_v is unstable. If F_1 is nontrivial, then by induction hypothesis, G_v , is unstable and so G is unstable.

COROLLARY. If $A(G) = C_n$, the cyclic group of order n, and n is

https://doi.org/10.1017/S0004972700041034 Published online by Cambridge University Press

356

odd, then G is unstable.

4. A counter example to Holton's conjecture

In [1], Holton conjectured that if two graphs G_1 and G_2 are such that $A(G_1) = A(G_2)$ where all G_1 , \overline{G}_1 , G_2 , \overline{G}_2 are connected, then G_1 is stable if and only if G_2 is stable.

We now give a counter example to show that Holton's conjecture is not true. The two graphs G_1 , G_2 given below satisfy all the conditions in Holton's conjecture. But G_1 is unstable whereas G_2 is stable.

Reference

 [1] D.A. Holton, "A report on stable graphs", J. Austral. Math. Soc. 15 (1973), 163-171.

Department	of	Mathematics,	Department	of	Combinatorics	and	Optimization,
University	of	Singapore,	University	of	Waterloo,		
Singapore.			Waterloo, (Dnta	ario, Canada.		