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Superparamagnetic iron oxide nanoparticle (SPION) nanostructures by themselves suffer from 

aggregation after reaction, poor capacity retention and low electronic conductivity [1]. Graphene, a 2D 

material wherein carbon atoms are in a hexagonal arrangement, has high surface area, high conductivity, 

excellent chemical and thermodynamic stability, unique light-weight characteristic and superior optical, 

thermal and mechanical properties [2]. Aggregation or restacking of graphene reduces specific surface 

area of electrodes and negatively affects electrode and device performance [2], whereas, SPION-

graphene nanocomposites (SPION-GNCs) minimize graphene aggregation and restacking and exhibit 

synergistic effects, and enhanced electrode and device performance [3].  
 

Herein, we report preparation of SPION-GNCs by thermal treatment of SPIONs stabilized with 

methoxy-polyethylene glycol-carboxylic acids (mPEG-COOHs). mPEG-OHs (0.5-5 kDa) were oxidized 

to mPEG-COOHs [4] by following methods: i) sulfuric acid/chromium trioxide; ii) Copper (I) Chloride 

and 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) under ambient/aerobic conditions; iii) aerobic 

oxidation with TEMPO and ceric ammonium nitrate; and iv) TEMPO and oxygen (O2) under very high 

pressure at 20 to 40 °C. TEMPO/O2 at >10 atmospheres and room temperature produced clean mPEG-

COOHs after 48 to 72 h without any detectable degradation products. TEMPO can be removed by 

washing the final product with saturated sodium thiosulfate solution acidified with hydrochloric acid. 

This method is suitable for large-scale production of mPEG-COOHs; however, an expensive high-

pressure reactor and appropriate engineering controls for safe O2 venting are required.  

 

mPEG-COOH stabilized SPIONs were prepared by heating a mixture of Fe(III)-organometallic complex 

and mPEG-COOH in 2-pyrrolidone at 200-300 °C for 1.5 to 5 h. The average size of the SPIONs can be 

manipulated (4 to 10 nm diameter) by adjusting Fe(III)-complex-to-mPEG-COOH molar ratio and 

mPEG-COOH molecular weight. 

 

SPION-GNCs were prepared by heating mPEG-COOH stabilized SPIONs at 125°C to 175°C for 2h – 

72h.   Fig. 1 shows STEM and HRTEM of SPION-GNC that was prepared by heating mPEG-2k-COOH 

stabilized SPIONs at 135 °C for 4h {The mPEG-2k-COOH stabilized SPIONs were prepared heating a 

mixture of mPEG-2k-COOH and Fe(III)- organometallic complex (1:4 molar ratio) at 200 °C for 0.5 h, 

followed by heating at 300 °C for 4h; all the results presented here are for this SPION-GNC sample}. 

The SPION particle sizes range from 2 to 20 nm with an average size of ~10 nm (Fig. 1A) and have a 

crystalline structure (Fig 1. B-D). HRTEM also shows the presence of graphene nanoparticles (GNPs) as 

judged from contrast and lattice parameters (Fig 1B). The STEM-EDS shows that the SPIONs are 

dispersed in graphene; the copper signal in EDS is from the grid and silicon signal is likely from 

glassware used for synthesis (data not shown). 

 

The saturation magnetization (Ms = 1.99 x 10-4 emu), remanent magnetization (Mr = 1.39 x 10-5 emu), 

and squareness (Ms/ Mr = 0.07) values (295.15 K; thin film) indicate that superparamagnetism of the 

SPIONs is retained following SPION-GNC synthesis (Fig. 2A).  XPS data further confirms that the 
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hybrid nature of SPION-graphene composite (Fig. 2B). SEM/EDX analysis shows higher composition 

of carbon than iron suggesting that the SPIONs are dispersed in graphene matrix (data not shown). The 

current-voltage curves for SPION-GNC are not linear suggesting their non-conducting/semiconducting 

nature at room temperature, while thermogravimetric analysis indicates ~37.4% graphene/organic 

contents. Further, the specific capacity of SPION-GNC drops from ~935 mA h g-1 for the first cycle to 

~320 mA h g-1 for the 50th cycle at 100 mA g-1 charge/discharge rate (data not shown).  
 

Efforts are underway to produce SPION-GNCs with improved performance for electrochemical energy 

storage and conversion devices, e.g., electrodes for rechargeable lithium ion batteries and 

supercapacitors for portable electronic devices and hybrid electric vehicles.   
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