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Background. )e most common site of prostate cancer metastasis is bone tissue with many recent studies having conducted
genomic and clinical research regarding bone metastatic prostate cancer. However, further work is needed to better define those
patients that are at an elevated risk of suchmetastasis.Methods. SEER and TCGA databases were searched to develop a nomogram
for predicting prostate cancer bone metastasis. Results. Herein, we leveraged the Surveillance, Epidemiology, and End Results
(SEER) database to construct a predictive nomogram capable of readily and accurately predicted the odds of bone metastasis in
prostate cancer patients. )is nomogram was utilized to assign patients with prostate cancer included in )e Cancer Genome
Atlas (TCGA) to cohorts at a high or low risk of bone metastasis (HRBM and LRBM, respectively). Comparisons of these LRBM
and HRBM cohorts revealed marked differences in mutational landscapes between these patient cohorts, with increased fre-
quencies of gene fusions, somatic copy number variations (CNVs), and single nucleotide variations (SNVs), particularly in the P53
gene, being evident in the HRBM cohort. We additionally identified lncRNAs, miRNAs, and mRNAs that were differentially
expressed between these two patient cohorts and used them to construct a competing endogenous RNA (ceRNA) network.
Moreover, three weighted gene co-expression network analysis (WGCNA) modules were constructed from the results of these
analyses, with KIF14, MYH7, and COL10A1 being identified as hub genes within these modules. We further found immune
response activity levels in the HRBM cohort to be elevated relative to that in the LRBM cohort, with single sample gene enrichment
analysis (ssGSEA) scores for the immune checkpoint signature being increased in HRBM patient samples relative to those from
LRBM patients. Conclusion.We successfully developed a nomogram capable of readily detecting patients with prostate cancer at
an elevated risk of bone metastasis.

1. Introduction

Prostate cancer is the second most common form of cancer
affecting males, with approximately 1.275 million new cases
and 0.35 million deaths worldwide each year [1]. Prostate
tumors most frequently metastasize to the bone, which is the
site of metastasis in roughly 70% of cases [2]. )rough the
development of the large-scale clinical SEER database
(https://seer.cancer.gov/) and the next-generation se-
quencing-based TCGA database (https://portal.gdc.cancer.
gov/), important advances have been made in the current

understanding of the genetic and clinical nature of prostate
cancer.

To date, most studies regarding prostate cancer bone
metastasis have focused on cases that have already pro-
gressed to this phase of disease [3, 4], whereas in clinical
settings urologists primarily seek a reliable means of iden-
tifying patients likely to progress to bone metastatic disease.
Most patients with prostate cancer do not harbor bone
metastases when initially diagnosed, and it is thus critical to
determine who is at an elevated risk of such metastases in
order to guide appropriate preventative treatment where
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possible. In one prior multivariate logistic regression anal-
ysis-based model, patients who were married, lived in urban
areas, exhibited lower levels of prostate-specific antigen
(PSA), had undergone surgery, and had undergone radiation
treatment exhibited lower odds ratios (ORs) for bone me-
tastasis when analyzing SEER database data [5]. However,
owing to uniform evaluative standards, some of these var-
iables may be classified differently across datasets, particu-
larly socioeconomic variables, thus constraining the overall
utility of this model. As such, there is a clear need for the
development of a simple, graphical nomogram capable of
enabling precise clinical predictions based on relevant risk
factors [6], with such nomograms having been used as
predictive tools in prostate cancer and other diseases [7]. An
appropriately constructed and calibrated nomogram would
enable urologists to more reliably identify prostate cancer
patients at an elevated risk of bone metastases and would be
applicable to multiple different datasets, thus enabling in-
tegrated analyses of prostate cancer bone metastasis.

)e Cancer Genome Atlas Research Network has lev-
eraged data from the TCGA database to identify a range of
genomic changes including gene fusions, mutations, and
copy number variations (CNVs) associated with the inci-
dence of primary prostate cancer [3]. One recent report
utilized transcriptomic data from prostate cancer patients in
the TCGA database to develop prognosis-related ceRNA
networks [8]. Such networks incorporate miRNAs, target
mRNAs, and lncRNAs that can competitively bind to spe-
cific miRNAs in a sequence-specific manner, thus modu-
lating their ability to regulate downstream target gene
expression [8]. )e R WGCNA package allows users to
conduct weighted correlation network analyses, enabling the
identification of modules of genes that are highly correlated
with one another and related to TCGA prostate cancer
patient Gleason scores [9]. Moreover, ssGSEAs allow for
analyses of gene set scores in a given sample, and they have
previously been employed to demonstrate that immune
environments differ between samples based on intratumoral
infiltration by CD8+ T cells, regulatory T cells (Tregs), and
helper T ()) cells [10]. To date, no studies to our knowledge
have conducted a comprehensive analysis of diverse sets of
omics data via a bioinformatic approach to identify novel
targets with potential therapeutic relevance in the context of
preventing prostate cancer bone metastasis.

Herein, we leveraged the SEER database to develop a
multivariate logistic regression-based nomogram capable of
predicting the odds of bone metastasis in prostate cancer
patients, with an optimal cutoff value being identified
through receiver operating characteristic (ROC) curve an-
alyses. )is nomogram was then employed to stratify pa-
tients in the TCGA cohort into LRBM and HRBM groups,
after which we compared the somatic mutational landscape
between these two patient subsets. We additionally devel-
oped a competing endogenous RNA (ceRNA) network
based on lncRNAs, miRNAs, and mRNAs that were dif-
ferentially expressed between LRBM and HRBM samples,
and we employed a WGCNA approach to construct three
co-expression modules in which KIF14, MYH7, and
COL10A1 were identified as central hub genes. Lastly, we

found immune response activity levels to be elevated in the
HRBM cohort as compared to the LRBM cohort. As such, we
herein developed a nomogram amenable to broad clinical
utilization as a tool for defining prostate cancer patients at a
high risk of bone metastasis in clinical settings. Moreover,
these results will serve as a foundation for future research
efforts aimed at understanding the mechanisms governing
prostate cancer bone metastasis and aiding in the identifi-
cation of biomarkers or therapeutic targets associated with
these destructive metastatic processes in prostate cancer
patients.

2. Methods

2.1. Sample Selection. )e SEER-18 Regs Research
Data (release date: November 2019) were retrieved
with SEER∗ Stat v8.3.6 (https://seer.cancer.gov/seerstat/
software/) (NCI, NIH, USA). Samples included in the
present analysis were those meeting the following criteria:
primary site� “Prostate,” with codes including ICD-O-3
Hist/behave, malignant� “8140/3: Adenocarcinoma,” and
“NOS.” Patients were excluded if they exhibited unclear
TNM staging according to the 6th edition AJCC criteria,
unclear ages, PSA levels, or Gleason score. Overall, 281,550
SEER samples were included in the present analysis, with all
prostate cancer patients being randomly assigned to a
training and a validation cohort containing 70% and 30% of
cases, respectively.

2.2. Study Variables. Patient clinicopathological character-
istics including PSA levels, Gleason score, and TNM stage at
the time of diagnosis were extracted from the SEER database.
According to the 6th edition of AJCC criteria, patients with
M1b stage disease were affected by bone metastases.

2.3. Nomogram Construction and Validation. Training data
from the SEER database were utilized in univariate and
multivariate analyses for nomogram construction using the
R “glm” function. Univariate logistic model development
was conducted by analyzing variables including age, T
stage, N stage, PSA levels, primary Gleason scores, and
secondary Gleason scores. )ose variables that were sig-
nificant in univariate analyses were then included in a
multivariate logistic regression analysis, the results of
which were utilized to construct a nomogram using the R
“nomogram” function. Nomogram calibration was
assessed with the “val.prob” function in the R “rms”
package [11], with P> 0.05 being indicative of goodness of
fit. )e area under the ROC curve (AUC) was used to assess
the ability of this nomogram to discriminate between
patients with and without bone metastases using the R
“pROC” package, with AUC values of 0.5 and 1.0, re-
spectively, corresponding to an absence of discrimination
and perfect discrimination. Youden’s index was utilized to
calculate the optimal cutoff threshold. )is nomogram was
also used to assess the odds of bone metastasis in the
validation cohort, with both calibration and ROC curves
for data in the validation group being utilized to assess
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nomogram predictive efficacy. )e “roc.test” function in
the “pROC” package was used for comparing ROC curves
from the training and validation groups.

2.4. SNV Analysis. Prostate cancer SNV data, aggregated
and masked with VarScan2, were obtained from the Ge-
nomic Data Commons (GDC) data portal and the TCGA
(https://tcga-data.nci.nih.gov/tcga/) database. SNV in the
VCF format was analyzed using the R “maftools” package
[12]. )e “mafcompare” function was utilized to compare
SNVs between the LRBM and HRBM cohorts. Tumor
mutational burden (TMB) was calculated for each TCGA
sample, with TMB scores being defined as the total number
of coding errors in somatic genes, insertions, deletions, and
substitutions per million bases as follows: TMB score-
� number of variants/the length of exons (38 million). Perl
scripts were utilized for TMB score calculation with the Java
8 platform.

2.5. CNV Analysis. )e GDC portal was employed to
download “Masked Copy Number Segment” data, with CNB
segment means being transformed to gene copy numbers as
follows: (copy number� 2 (1 + segment)). CNVs were
transformed to yield discrete values as follows copy number
<0.5 and ≥ 0: −2 (loss of two copies), copy number <1.5 and
≥ 0.5: −1 (loss of one copy), copy number ≤ 2.5 and ≥ 1.5 :
0 (no copy changes), copy number ≤ 3.5 and >2.5 :1 (single
copy amplification), and copy number>3.5 : 2 (high-level
copy number amplification). CNV frequencies were com-
pared between cohorts using Pearson’s chi-squared test, with
P values being corrected using the Bonferroni approach. An
adjusted P< 0.05 was the significance threshold.

2.6. Functional Enrichment Analyses. )e R “ClusterPro-
filer” package was utilized to conduct GO and KEGG en-
richment analyses, with an adjusted P< 0.05 as the
significance threshold.

2.7. ceRNANetworkConstruction. )eGDC data portal was
utilized to download raw lncRNA, miRNA, and mRNA
read data, after which genes that were differentially
expressed between the HRBM and LRBM groups were
identified with the R “DESeq2” package. DElncRNAs and
DEmRNAs were selected based on an adjusted P< 0.05 and
|FC|> 2, while DEmiRNAS were selected based on an
adjusted P< 0.05 and |FC| > 1.5. )e miRcode database (v
11: https://www.mircode.org/) was used to identify inter-
actions between miRNAs and lncRNAs, with this predic-
tive database including the complete Encyclopedia of DNA
Elements (ENCODE)-annotated transcriptome [13].
DEmRNA targets of DEmiRNAs were identified using
miRDB (v 5.0; https://mirdb.org), miRTarBase (v 7.0;
https://mirtarbase.mbc.nctu.edu.tw/), and TargetScan (v
7.2; https://www.targetscan.org/vert_72/) [14–16]. )ose
interactions predicted by at least 2 databases were retained
for analysis.

2.8.WGCNA. )eR “WGCNA” package was utilized for co-
expression network development based on mRNAs that
were differentially expressed when comparing the LRBM
and HRBM cohorts [17]. Adjacency matrices were trans-
formed into a topological overlap matrix (TOM), with genes
being separated into different modules based on TOM-based
dissimilarity measures. )e “pick Soft )reshold” function
in this package was used to select a soft power threshold of 18
(scale-free R2� 0.85), with a cut height of 0.8 and a mini-
mum module size of 5 being utilized for key module
identification. )ese co-expression modules were then
prepared for visualization with the “exportNetworkToCy-
toscape” function and were visualized with a threshold of 0.2
using Cytoscape, which facilitates integrated biomolecular
interaction network visualization [18]. Within these net-
works, mRNAs were visualized, and hub genes were iden-
tified based on the maximal clique centrality (MCC) using
the cytoHubba plugin [19]. )e functional roles of genes
within each module were identified via GO and KEGG
enrichment analyses, and protein-protein interaction (PPI)
networks were developed using the online STRING database
(https://string-db.org/).

2.9. Immune Signature Enrichment Analyses. To evaluate
immune signature enrichment in different samples, 29
immune-related signatures were selected based on three
published studies [20–22]. )e “ssGSEA” function in the R
“GSVA” package was then utilized for the calculation of
ssGSEA value(xi) for each prostate cancer sample in the
TCGA cohort, with final ssGSEA results being normalized as
follows: (xi� (xi-xmin)/(xmax-xmin)), where xmin and
xmax correspond, respectively, to the lowest and highest
ssGSEA values for the analyzed prostate cancer samples.
)ese scores were then compared between the HRBM and
LRBM cohorts via the Mann–Whitney U tests.

2.10. Immune, Stromal, ESTIMATE, and Tumor Purity Score
Calculation. )e “estimateScore” function in the R “esti-
mate” package was employed for the calculation of tumor
purity, immune, stromal, and ESTIMATE scores in the
LRBM and HRBM cohorts, with these scores then being
compared via the Mann–Whitney U tests.

2.11. Statistical Analysis. R 3.5.0 was used for all statistical
analyses, with a two-tailed P< 0.05 as the significance
threshold.

3. Results

3.1. Bone Metastasis-Related Nomogram Construction. To
construct a nomogram capable of assessing the risk of bone
metastasis in prostate cancer patients, we selected seven
clinical variables including age, T stage, N stage, M stage,
PSA, primary Gleason score, and secondary Gleason score
that were shared in the SEER and TCGA databases. In total,
the SEER database included 1,307,625 prostate cancer pa-
tients of which 102,675 were excluded due to an absence of
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Figure 1: Continued.
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necessary data or a failure to meet with study inclusion
criteria, while 281,550 patients were incorporated into this
analysis and randomly separated into a training set
(n� 197,090) and a validation set (n� 84,460). Patient
characteristics are summarized in Supplementary Data 1-1.
In logistic regression analyses of the patients in the training
cohort, age, T stage, N stage, PSA, primary Gleason score,
and secondary Gleason score were all identified as inde-
pendent predictors of the risk of bone metastasis in indi-
viduals with prostate cancer in univariate and multivariate
analyses (Figures 1(a) and 1(b)). )ese six variables were
thus included in a predictive nomogram capable of gauging
the odds of bone metastasis (Figure 1(c)). )is nomogram
exhibited high discriminative potential, with an AUC value
of 0.9 (Figure 1(d)). ROC curves corresponding to our
nomogram revealed that at the optimal cutoff value of 0.016,
the sensitivity and specificity values were 0.788 and 0.864,
respectively. We then utilized this nomogram to predict the
odds of bone metastasis for SEER database patients included
in our validation cohort, with an AUC value of 0.904 at the
optimal cutoff of 0.016, thus supporting the results obtained
from the training cohort (Figure 1(e)). Moreover, consis-
tency between the training and validation cohorts was
assessed via Delong’s test, demonstrating that these two
ROC curves were highly consistent with one another
(Supplementary Data 1 and 2). When calibrating our

nomogram, we found that it was able to accurately gauge the
odds of bone metastasis in our training samples
(Figure 1(f)). In the validation cohort, however, we obtained
P< 0.05, indicating that it was able to accurately predict the
odds of bone metastasis in this group (Figure 1(g)). All of
these data suggested that our nomogram was able to dif-
ferentiate between low- and high-risk bone metastasis
patients.

3.2. Nomogram-Based TCGA Data Analysis and Patient
Grouping. Next, prostate cancer patient data from the
TCGA database were obtained from the GDC data portal. Of
the 500 patients in this database, 379 exhibited complete data
pertaining to patient age, PSA levels, Gleason scores, and
TNM stage at the time of initial diagnosis. Using the no-
mogram constructed above, the odds of bone marrow
metastasis were gauged for these patients (cutoff� 0.016). All
10 TCGA cases exhibiting bone metastases were assigned to
the HRBM group (Supplementary Data 1–3).

3.3. Comparison of SNVs in the LRBM and HRBM Cohorts.
Next, waterfall plots were generated for 368 prostate cancer
patients in the TCGA cohort, revealing that a majority of
genes exhibited low-frequency SNV mutation rates, with
SNV frequency being highest for the TP53 gene
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Figure 1: Construction of a nomogram capable of predicting prostate cancer patient bone metastasis. (a) Forest plot results corresponding
to a univariate logistic regression model analysis of bone metastasis risk. (b) Forest plot results corresponding to a multivariate logistic
regression model analysis of bone metastasis risk. )e x-axis corresponds to the OR for bone metastasis. OR: odds ratio. CI: confidence
interval. (c) A nomogram used to predict the odds of prostate cancer patient bone metastasis based on patient age, T_stage, N_stage, PSA,
primary Gleason score, and secondary Gleason score. To use the nomogram, a straight line was drawn upwards from the appropriate point
on each variable axis to the score axis, with the points for each of these predictors being summed together.)e total sum score was then used
to judge the odds of bone metastasis for that patient by drawing a line downwards. (d) ROC curves for the predictive nomogram in the
training cohort (ROC curve AUC� 0.9; cutoff� 0.016; sensitivity� 0.864; specificity� 0.788). (e) ROC curves for the predictive nomogram
in the validation cohort (ROC curve AUC� 0.904; cutoff� 0.016; sensitivity� 0.864; specificity� 0.812). (f ) Calibration models for the
predictive model when used to analyze the training cohort, with the actual and predicted probability being graphed against one another.
(g) Calibration models for the predictive model when used to analyze the validation cohort. In the calibration curves, the reference line
corresponds to perfect concordance between predicted and actual odds of bone metastasis.
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Altered in 235 (63.86%) of 368 samples. 
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(Figure 2(a)). We assess SNV frequencies in the overall
(Figure S1(a)), LRBM (Figure S1(b)), and HRBM
(Figure S1(c)) cohorts, revealing that missense mutations
were the most common mutation type, with SNPs being
more common than insertions/deletions and with C>T
mutations being the most common SNV type in these pa-
tients. Median numbers of variants per sample differed
between these cohorts, with a higher number of median
variants per sample in the HRBM cohort (median: 22)
(Figure S1(c)) as compared to the overall (median: 19)
(Figure S1(a)) and LRBM (median: 17) cohorts
(Figure S1(b)). We then calculated TMB scores in these
patients (Supplementary Data 2), with these scores being
higher in HRBM samples relative to LRBM samples
(Figure 2(b)). Differences in the top 30 high-frequency SNVs
in the LRBM (Figure S1(d)) and HRBM (Figure S1(e))
cohorts reveal that 8 genes exhibited significant differences
in SNV frequencies between these two patient groups (TP53,
NALCN, ROBO4, RYR2, XIRP2, NEB, CUBN, ABCA13)
(Figure 2(c)). Mutational plots revealed that TP53 mutations
in the LRBM group co-occurred with RYR2 mutations
(Figure 2(d)), while in HRBMpatients they co-occurred with
ABCA13 mutations (Figure 2(e)). )ese data suggested that
prostate cancer patients harboring high SNV frequencies are
more likely to develop bone metastases, particularly among
individuals with elevated p53 mutational frequencies.

3.4. Differences in CNVs and Fusion Genes in the LRBM and
HRBM Cohorts. When CNV frequencies were compared
between the HRBM and LRBM cohorts, 676 genes harboring
CNVs at different frequencies between these groups were
identified (Figure 3(a)), Supplementary Data 3). )ese genes
were enriched in GO terms including carbonate dehydratase
activity, acetylcholine receptor regulator activity, and neu-
rotransmitter receptor regulator activity (Figure 3(b)), as

well as KEGG terms such as nitrogen metabolism and
mineral absorption (Figure 3(c)). )e Tumor Fusion Gene
Data Portal (https://www.tumorfusions.org/) [23] was ad-
ditionally used to assess gene fusion data, revealing com-
parable frequencies of TMPRSS2-ERG, which is the most
frequent form of gene fusion in prostate cancer, in both
patient cohorts (Figure 3(d)). Overall, the average gene
fusion frequencies in the HRBM cohort were increased as
compared to the LRBM cohort (Figure 3(e)). Together, these
results suggested that HRBM patients exhibit increased
heterogeneity as compared to the LRBM cohort.

3.5. Generation of a BoneMetastasis-Related ceRNANetwork.
)e R “DESeq2” package was used to identify 201
DElncRNAs (Figure 4(a), Supplementary Data 4-1), 38
DEmiRNAs (Figure 4(b), Supplementary Data 4-2), and 358
DEmRNAs (Figure 4(c), Supplementary Data 4-3) when
comparing the LRBM and HRBM cohorts. )e miRcode
database was used to identify two DEmiRNAs predicted to
interact with four lncRNAs. However, of these interactions,
both hsa-mir-137 and its predicted binding partners
(LINC00536 and DSCR8) were upregulated in the HRBM
cohort, in contrast with their predicted regulatory rela-
tionship given that lncRNAs are generally expected to
downregulate miRNAs. )ese interactions were thus
omitted from our network. )e resultant ceRNA network
incorporated one DEmiRNA (hsa-mir-508) and two
DElncRNAs (LINC00536 and DSCR4) (Figure 4(d)). Next,
the miRDB, miRTarBase, and TargetScan databases were
used to identify seven DEmRNAs that were expressed at
higher levels in HRBM samples relative to LRBM samples
that were predicted to be targets of hsa-mir-508
(Figure 4(d)).

As these mRNAs accounted for only a small fraction of
the overall DEmRNAs identified in this study, we conducted

* P < 0.00

>3 (Co–oourance)

. P < 0.05

–l
og

10
 (P

–v
al

ue
) 2

1
0
1
2
> 3 (Mutually exclusive)

ZFHX3 [5]
XIRP2 [5]

MYO9A [5]
MUC17 [5]
LRP1B [5]

FAT4 [5]
CUBN [5]

CSMD1 [5]
CNTNAP5 [5]

ATM [5]
ABCA13 [5]
USH2A [6]
SPTA1 [6]

OBSCN [6]
KMT2C [6]
HMCN1 [6]

COL11A1 [6]

CO
L1

1A
11

 [6
]

CACNA1E [6]

CA
CN

A1
E 

[6
]

MUC16 [7]
KMT2D [7]

SYNE1 [8]
NALCN [8]
SPOP [10]
TTN [12]
TP53 [32]

ZF
H

X3
 [5

]
XI

RP
2 

[5
]

M
YO

9A
 [5

]
M

U
C1

7 
[5

]
LR

P1
B 

[5
]

FA
T4

 [5
]

CU
BN

 [5
]

CS
M

D
1 

[5
]

CN
TN

AP
5 

[5
]

AT
M

 [5
]

AB
CA

13
 [5

]
U

SH
2A

 [6
]

SP
TA

1 
[6

]
O

BS
CN

 [6
]

KM
T2

C 
[6

]
H

M
CN

1 
[6

]

M
U

C1
6 

[7
]

KM
T2

D
 [7

]
SY

N
E1

 [8
]

SP
O

P 
[1

0]
NA

LC
N

 [8
]

TT
N

 [1
2]

TP
53

 [3
2]

(e)

Figure 2: SNV comparisons in patients at a low and high risk of bonemetastasis. (a) Mutational landscape profile for prostate cancer patient
samples, with the waterfall plot being used to show mutational information for each gene, while colors with specific annotations along
the bottom of the plot denote specific types of mutations. Mutational burden is shown in a bar plot above the legend.MB, metastasis of bone.
(b) TMB value for the LRBM and HRBM cohorts. Violin plots represent TMB values as dots, with a box plot being present within this
violin plot. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001; two-sided Mann–Whitney U test. (c) Differentially mutated genes were compared
between the LRBM and HRBM cohorts with the “mafCompare” function in the R “maftools” package. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.
(d-e) Coincident and exclusive associations among mutated genes within the (d) LRBM and (e) HRBM cohorts.
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GO and KEGG analyses of all such DEmRNAs, revealing
them to be primarily associated with mitosis-related GO
terms (Figure 4(e)), hormone activity, and extracellular
matrix structural constituents, which are closely associated
with the risk of bone metastasis (Figure 4(e)). In KEGG

pathway analyses, these DEmRNAs were associated with the
steroid hormone biosynthesis, oocyte meiosis, and cell cycle
pathways (Figure 4(f)). )ese genes and related functional
networks may thus promote the incidence of prostate cancer
bone metastasis.
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Figure 3: Comparisons of CNV and gene fusion frequencies in the HRBM and LRBM cohorts. (a) CNVs with different mutational
frequencies in the LRBM and HRBM patient cohorts, with the inner circle presenting a scatter plot of the 676 CNVs that were differentially
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harboring CNVs that were also significantly differentially expressed between these two cohorts are marked within the circle. (b-c) GO
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on the P value for the corresponding term. (d) Frequencies of TMPRSS2-ERG gene fusions in the LRBM and HRBM cohorts, with the y-axis
corresponding to the TMPRSS2-ERG gene fusion proportion. (e) Frequencies of gene fusions in the LRBM and HRBM cohorts. Violin plots
show gene fusion frequencies in individual samples as dots, with boxplots being drawn within violin plots. ∗P< 0.05, ∗∗P< 0.01,
∗∗∗P< 0.001; two-sided Mann–Whitney U test.
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Figure 4: Continued.
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3.6. Identification of Gene Co-Expression Modules Related to
Bone Metastasis Risk. Next, we generated WGCNA co-ex-
pression modules for the 358 DEmRNAs identified when
comparing the LRBM and HRBM cohorts. When screening
at a soft power value of 18 to reflect co-expression network
scale-free topology (Figure S2(a), S2(b)), we were able to
establish four separate co-expression modules that were
colored blue, turquoise, brown, and grey, with the latter
containing all genes that did not fit into the three former
modules (Figure 5(a), Supplementary Data 5).

)e blue module consisted of 15 genes that were
upregulated in HRBM samples relative to LRBM samples,
with KIF14 being identified as the hub gene in this module
using the CytoHubba MCC method (Figure 5(b)). GO
analyses revealed these blue module genes to be enriched in
terms associated with microtubule binding, microtubule
motor activity, tubulin binding, ATPase activity, motor
activity, and protein C-terminal (Figure 5(c)), as well as
KEGG terms including oocyte meiosis and cell cycle
(Figure 5(d)).

We also generated a PPI network incorporating all of
these genes (Figure S2(c)). )e turquoise module consisted
of 26 genes that were downregulated in HRBM samples
relative to LRBM samples, with MYH7 being identified as
the hub gene within this module (Figure 5(e)). Enrichment
analyses revealed these genes to be enriched for GO terms
including actin binding, actin filament binding, actin
monomer binding, alpha-actin binding, structural constit-
uent of muscle, actin binding, and myosin binding
(Figure 5(f )) and for KEGG terms such as cardiac muscle
contraction, adrenergic signaling in cardiomyocytes, hy-
pertrophic cardiomyopathy, thyroid hormone signaling
pathway, and the cGMP-PKG signaling pathway
(Figure 5(g)). In the PPI network constructed based on these
genes, MYH7 was predicted to interact with certain other
genes from this module (Figure S2(d)).

3.7.;e Relationship between the ImmuneMicroenvironment
and the Odds of BoneMetastasis. To evaluate the differences
in the immune microenvironment in prostate cancer pa-
tients as a function of bone metastasis risk, we evaluated 29
immunological signatures (Supplementary Data 6-1) iden-
tified in another previous report [21]. Based on these
compiled signatures, we assessed the enrichment of par-
ticular immune cells, pathways, or function types within
prostate cancer samples in the TCGA database using an
ssGSEA algorithm (Figure 6(a)). We found the ssGSEA
scores for aDCs, APC_co_inhibition, checkpoint, DCs, in-
flammation-promoting, macrophages, para-inflammation,
T_cell_co-inhibition, T_cell_co-stimulation, T_helper_cells,
and TypeI_IFN_reponse to be higher in the HRBM cohort as
compared to the LRBM cohort, whereas the mast cell
ssGSEA score exhibited the opposite trend (Figure 6(b)). We
also calculated immune, stromal, tumor purity, and ESTI-
MATE scores for these cohorts to gauge differences in the
immune microenvironment between low- and high-risk
patients (Supplementary Data 6-2) and revealed the stromal
(Figure S3(a)), immune (Figure S3(b)), and ESTIMATE
(Figure S3(c)) scores to be increased in HRBM patients
relative to LRBM patients (Figure S3(d)), while the opposite
trend was evident for tumor purity scores. )ese data
suggested that HRBM samples exhibit enhanced immune
system activation. When we explored differences in immune
checkpoint gene expression between these cohorts, we found
several such genes to be upregulated in HRBM patient
samples including BTLA, CD276, CD70, CD80, CD86,
HAVCR2, HHLA2, ICOS, IDO1, IDO2, LAIR1, LGALS9,
NRP1, TIGIT, TNFRSF18, TNFRSF25, TNFRSF4,
TNFRSF8, TNFRSF9, and TNFSF18 (Figure S3(e)). To-
gether, these data indicated that HRBM patient immune
activity was increased overall as compared to LRBM pa-
tients, with a pronounced upregulation of checkpoint gene
expression in these high-risk patients.

Steroid hormone biosynthesis
pvalue

0.0005

0.0010

0.0015

0 5 10 15

Neuroactive ligand−receptor interaction
Oocyte meiosis

Salivary secretion
Cell cycle

Ascorbate and aldarate metabolism
Pentose and glucuronate interconversions

(f )

Figure 4: Generation of a bone metastasis-related ceRNA network. (a-c) Differentially expressed lncRNAs (a), miRNAs (b), and mRNAs
(c) identified when comparing the LRBM and HRBM cohorts. )e top 10 upregulated and downregulated genes are shown for each
category, with horizontal lines corresponding to an adjusted P value of 0.05. (a, c) Vertical lines correspond to a log2 (fold change) at −1 and
1. (b) Vertical lines correspond to a log2 (fold change) at −0.58 and 0.58. (d) A ceRNA network was generated in which lncRNAs, miRNAs,
andmRNAs were represented by hexagons, rhombuses, and ovals, respectively. (e) Enriched GO terms associated withmRNAs differentially
expressed between the LRBM and HRBM cohorts, with the top 10 terms in each of three categories being shown. BP: biological processes.
CC: cell component. MF: molecular function. (f ) KEGG enrichment analyses for mRNAs differentially expressed in the HRBM and LRBM
cohorts. )e brown module was composed of five genes that were upregulated in HRBM patient samples, among which COL10A1 was the
hub gene (Figure 5(h)). )ese five genes were enriched for GO terms including extracellular matrix structural constituent, extracellular
matrix structural constituent conferring tensile strength, heparin binding, glycosaminoglycan binding, and sulfur compound binding
(Figure 5(i)), as well as the protein digestion and absorption of KEGG pathway (Figure 5(j)). In the brown module PPI network, COL11A1
and COL10A1 were predicted to interact (Figure S2(e)).

10 Genetics Research

https://doi.org/10.1155/2022/8213723 Published online by Cambridge University Press

https://doi.org/10.1155/2022/8213723


1.0
Clustetr Dendrogram

Module (branch) color

Module

0.8

0.6

H
ei

gh
t

0.4

0.2

0.0

(a)

DLGAP5

NUSAP1

NCAPG

CKAP2L

ASPM

NEK2
ESPL1

BUB1

TPX2

CENPF

KIF4A

TOP2A

SGO1

KIF14

(b)

Microtubule binding

Microtubule motor activity

Motor activity

Protein C−terminus binding

Tubulin binding

ATPase activity

p.adjust

0.020
0.025
0.030
0.035
0.040

0 1 2 3

(c)

Oocyte meiosis

Cell cycle

p.adjust

5e−04

1e−03
0 1 2 3

(d)

XIRP1
DUPD1

PPP1R3A

LMOD2

AGBL1

ATP1B4

KLHL40

SMCO1
HJV

ASB10
CCDC63

FBXO40
UNC45B

MTH7MYOZ2

MYL1
TRDN

CKM

NRAP

MYL2
C10orf71

ACTA1

XIRP2

SYNPO2L

DHRS7C

LRTM1

(e)

actin binding

actin filament binding

actin monomer binding

alpha−actinin binding

actinin binding

myosin binding

structural constituent of muscle

p.adjust

0.005
0.010
0.015
0.020

0 2 4 6 8

(f )

Figure 5: Continued.

Genetics Research 11

https://doi.org/10.1155/2022/8213723 Published online by Cambridge University Press

https://doi.org/10.1155/2022/8213723


4. Discussion

4.1. Bone Tissue Is the Most Common Site of Prostate Cancer.
Metastasis [2]. While medical advances have improved
prognostic outcomes in prostate cancer patients, bone
metastases are still relatively common among patients with
this form of malignancy [1]. As such, there is clear value in
the construction of a model capable of predicting bone
marrow metastasis and to explore genomic differences be-
tween individuals at low or high risk of bone metastasis in
order to enable urologists to more accurately prevent and
treat these metastases.

In prior reports, age, T stage, N stage, M stage, PSA,
primary Gleason score, and secondary Gleason score are
closely related to prostate cancer prognosis [24]. In uni-
variate and multivariate logistic regression analyses, we
confirmed that these variables were independent predictors
of prostate cancer patient bone metastasis that were then
used for nomogram construction. Our nomogram was not
only accurately calibrated, although it exhibited excellent
discriminatory capabilities, with an AUC of 0.9 [25]. Pre-
dictive results in the validation cohort of patients confirmed
that we were able to accurately stratify patients into low-risk
and high-risk cohorts based on the optimal cutoff value.

Prostate tumors frequently exhibit many low-frequency
SNVs [3], and as such, we were only able to detect eight
genes exhibiting differences in SNV frequencies when
comparing the HRBM and LRBM patient cohorts. )e gene
most frequently harboring SNVs in prostate cancer patients

is TP53 [3], and we further found the frequency of TP53
SNVs to be elevated in the HRBM cohort as compared to the
LRBM cohort. )e P53 protein plays essential roles in
regulating transcription, metabolic changes, and cell cycle
arrest [26]. Genomic instability is a hallmark of prostate
cancer, resulting in high rates of detectable CNVs [27] and
gene rearrangements [28]. We further found the HRBM
cohort to exhibit an elevated CNV frequency as compared to
the LRBM cohort. While no significant differences in
TMPRSS2-ERG gene fusion frequency were observed when
comparing the two patient cohorts, we did observe elevated
gene fusion mutation rates in the HRBM group relative to
the LRBM group. )ese differences are consistent with the
higher levels of increased heterogeneity in HRBM patients
relative to LRBM patients.

We additionally assessed posttranscriptional regulatory
mechanisms involved in the onset of bone metastases.
)rough ceRNA-based competitive regulation of miRNAs,
lncRNAs can regulate genes at the posttranscriptional level
to contribute to prostate cancer bone metastases [29]. In the
ceRNA network constructed in this study, we found hsa-
mir-508 to be downregulated in HRBM samples relative to
LRBM samples, whereas LINC00536 and DSCR4 were
lncRNAs exhibiting the opposite trend. Likewise, the
mRNAs encoding ENPF, ZNF556, SOX11, HJURP, CRISP3,
KIF18B, and MELK were upregulated in HRBM samples
relative to LRBM samples. Prior studies have indicated that
hsa-mir-508 acts to suppress gastric cancer metastasis [30].
LINC00536 has been reported to drive bladder cancer
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Figure 5: Bone metastasis-related gene module identification. (a) A dendrogram generated via the clustering of dissimilarity based on
consensus topological overlap with corresponding modules being shown based on the colored rows corresponding to modules containing
genes that were highly connected with one another. (b) Bluemodule co-expression network, with the hub gene in the network center. (c) GO
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progression and worse patient outcomes [31]. Moreover, a
recent analysis indicated that DSCR4 suppresses human
choriocarcinoma cell migration and invasion [32]. CENPF is

related to cellular proliferation and mitotic activity, driving
prostate cancer metastasis [33], while HJURP is involved in
regulating the centromeric deposition of CENPF and
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Figure 6: Relationship between immunological microenvironment and the odds of bone metastasis. (a) A hierarchical clustering analysis of
367 TCGA prostate cancer samples based on 29 immune-related gene sets. Tumor purity, ESTIMATE, immune, and stromal scores were
determined using ESTIMATE. RBM: risk of bone metastasis. (b) ssGSEA score comparisons in the LRBM and HRBM cohorts for 29
immune-related gene sets. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001; two-sided Mann–Whitney U test.
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controls cell cycle progression [34]. In one report, the loss of
p53 was linked to the upregulation of both CENPF and
HJURP [35]. SOX11 [36], CRISP3 [37], KIF18B [38], and
MELK [39] expression levels have also been found to be
positively correlated with poor prostate cancer patient
prognostic outcomes, while ZNF556 has been associated
with poor colon cancer patient prognosis [40]. Overall, these
findings confirmed that the ceRNA network developed
herein may offer insight into the likelihood that a given
prostate tumor is likely to metastasize to the bone.

In one recent analysis, 9 DEGs and significant gene
modules associated with CRPC phenotypes were identified,
with a WGCNA approach being further utilized for the
selection of three key hub genes [41]. We similarly leveraged
a WGCNA approach to develop three co-expression net-
works associated with bone metastasis. PPI network analyses
revealed genes in the blue module to exhibit functional
correlations with one another, while GO analyses suggested
that these blue module genes were microtubule-related. As
essential components of the cytoskeleton, microtubules can
control mitosis, the trafficking of organelles and vesicles, and
the migration of cells [42]. Microtubule inhibitors have been
reported to suppress the growth of metastatic prostate
cancer [43]. Additional KEGG analyses revealed these blue
module genes to be associated with oocyte meiosis and the
cell cycle, additionally confirming the relationship between
these genes and prostate cancer cell proliferative activity.)e
microtubule motor protein KIF14 [44] has also been re-
portedly linked to poor patient outcomes and disease pro-
gression in individuals with prostate cancer [45]. We found
KIF14 to exhibit the highest connectivity, serving as a hub
gene within the blue module. When we similarly conducted
GO enrichment analyses of the turquoise module, we found
the genes therein to be primarily related to actin binding.
Recent work suggests that actin cytoskeletal remodeling can
inhibit prostate cancer metastasis and invasion [46]. )e
turquoise module hub gene MYH7 has been reported to be
involved in myosin-actin interactions [47]. Four of the five
genes in the brown module were associated with the ex-
tracellular matrix. Prostate cancer cells must modify the
primary tumor site ECM to escape this site and must
similarly modify the ECM at the site of metastasis to fa-
cilitate metastatic growth and adaptation [48]. COL10A1,
which was the brown module hub gene, is a component of
the ECM that is known to facilitate lung adenocarcinoma
metastasis [49]. Together, these data indicated that these
three hub genes and the associated co-expression modules
support bone metastasis via three different mechanisms,
offering new insights for future study of this form of me-
tastasis in individuals with prostate cancer.

For patients with inoperable bone metastases, immu-
notherapy may be one of the limited hopes. However, bone
is a special immune site with a unique immunosuppressive
microenvironment [50]. We found that samples in the
HRBM group exhibited a significantly higher TMB as
compared to samples in the LRBM group. Moreover, HRBM
patient samples exhibited higher stromal, immune, and
ESTIMATE scores but lower tumor purity as compared to
LRBM samples. )ese results suggested that HRBM samples

exhibit increased immune activity. Consistently, prior evi-
dence has shown that a higher TMB is conducive to neo-
antigen formation, thus rendering tumors more
immunogenic, thereby improving clinical responses to
immunotherapeutic intervention [51]. In 2010, the FDA
approved the first DC-based cancer vaccine, Sipuleucel-T, as
a treatment for patients diagnosed with minimally symp-
tomatic mCRPC, utilizing DCs loaded with PAP to generate
specific anti-PAP responses to control tumor growth in these
patients [52]. We observed increases in DCs and aDCs
within samples from HRBM patients, suggesting that these
individuals may be more responsive to DC-based vaccina-
tion. We additionally compared differences in immune
components between these two patient cohorts, revealing an
increased immune checkpoint signature in the HRBM
group. Notably, a prior phase 3 trial testing a monoclonal
CTLA-4-blocking antibody failed to improve OS in mCRPC
patients [53], and the efficacy of PD-1 blockade has also been
limited in this oncogenic context owing to the relatively low
rates of PD-L1 expression relative to those observed for
other cancer types [54]. Moreover, we detected no differ-
ences in PD-L1 or CTLA-4 expression when comparing the
HRBM and LRBM groups, although other immune
checkpoint molecules including TIGIT, IDO1, and CD274
were upregulated in HRBM samples as compared to LRBM
samples, suggesting that they may be viable targets for
immunotherapeutic intervention.

5. Conclusions

Herein, we used the SEER database to construct an easy-
to-use nomogram capable of accurately gauging the odds
of bone metastasis in prostate cancer patients. Compar-
isons of patients in the HRBM and LRBM cohorts revealed
clear differences in mutational landscapes between these
groups, with HRBM patients exhibiting higher frequen-
cies of gene fusions, CNVs, and SNVs (particularly in the
P53 gene) relative to LRBM patients. Moreover, we
constructed a ceRNA network based on the lncRNAs,
miRNAs, and mRNAs differentially expressed between
these two patient cohorts, and we extracted three
WGCNA co-expression modules. In so doing, we were
able to identify KIF14, MYH7, and COL10A1 as hub genes
within these modules. Lastly, we detected a higher degree
of activity associated with immune responses in the
HRBM group relative to the LRBM group, with immune
checkpoint ssGSEA signature scores being higher in the
HRBM cohort as compared to the LRBM cohort. )ese
results have the potential to guide the prevention and
targeted treatment of prostate cancer-associated bone
metastases, in addition to providing a tool for screening
for HRBM prostate cancer patients.
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can be downloaded from the Genomic Data Commons
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