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ON THE BOUNDARY VALUES OF THE SOLUTIONS
OF LINEAR ELLIPTIC EQUATIONS

J. CHABROWSKI AND H.B. THOMPSON

The purpose of this article is to investigate the traces of weak

solutions of a linear elliptic equation. In particular, we

obtain a sufficient condition for a solution belonging to the

J. 2 2
Sobolev space fir"' to have an L -trace on the boundary,

loc

Introduction

2
This paper deals with L -behaviour near the boundary of weak

solutions of the elliptic equation

n n

(1) Lu = - £ D.{a.Ax)D u) + £ b.{x)D u + o(x)u = f(x)

in a bounded domain Q . The problem we are concerned with originates in

the theory of analytic functions. We say that the analytic function f(z)

2
defined on (|s| < l) has a limit in L on the boundary, if there exists

2
a function <f> i. L (0, 2ir) such that

lira f |/(rete)-cj)(e)|2de = 0 .
r+1-0 j 0

Riesz [74] proved the following criterion: the analytic function f(z) on

2
(|a| < 1) has a limit in L on the boundary if and only if the function
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/•2TT .

U(r) = |f(pelB)pd8 , 0 < r < 1 ,

is bounded. Later on Littlewood and Paley [6] established the following

theorem: the analytic function f(z) on (|s| < 1) has a limit in L

on the boundary if and only if the function

•

1 *e,
o

0 < 9 < 2TT ,

2
belongs to L (0, 2TT) . The results of Riesz and Littlewood and Paley were

extended by many authors to harmonic functions and solutions of elliptic

equations (for further historical material and bibliographic references see

[JO]). In particular Mikhailov in a series of the articles [7], [£], [9]

and [70] extended the above results to solutions of the equation (l) under

the assumption that a. . (. CX(Q) , b. € CX{Q) and a € C(Q) . In this
I'd "̂

paper we establish Mikhai lov's results under weaker assumptions, namely

b. f LS(Q) , s > n , and a € Lr(Q) , r > n/2 , and by different methods.

The plan of the paper is as follows. Section 1 is devoted to

preliminaries. In Sections 2 and 3 we discuss traces of solutions in

W ' (Q) of ( 1 ) . Section h deals with energy estimates for solutions in

VI * (Q) • Finally in Section 5 we briefly study the Dirichlet problem in
the W-, ' -framework. Recall that a weak solution in u' (Q) of the

loc

equation (l) is a solution of the Dirichlet problem with the boundary

°-l 2
condition u = <f> on 9<2 if and only if u - <J> € \T"' (Q) . In this

definition it is assumed that the boundary data $ is a trace of some

function <j) from ir'(Q). Of course this assumption is rather

2
restrictive, because not every function in L (9<2) is the trace of some

function belonging to W ' (Q) . In connection with the results obtained

in Sections 2,3 and h it makes sense to consider the Dirichlet problem

2
with boundary data in L (dQ) . This possibility has already been noted by

Necas [72] and [73] (see Chapter 6) and by Mikhailov [9] and Guscin and
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M i k h a i l o v [ 3 ] .

1. Preliminaries

Let OCR be a bounded domain with the boundary 30, of class (T •
n

In Q we consider the equation ( l ) .

We make the following assumptions:

(A) there exists a positive constant Y such that

-1 2 " 2
• •_•! ij i j ~

for a l l x € § and 5 € i? ; moreover the coefficients

a• • are measurable and of class u in some neighborhood
1*3

of 3§ ;

(B) b. € LS(Q) ( i = 1, . . . , n) , c € LT{Q) , where

n < s 2 °° , n/2 < r S °° ;

(C) j /(x)2r(x)6dx < °° , where 2 5 9 < 3 ,

r(x) = dist(x, dQ) .

In this paper we use the notion of a generalized solution of (l)

1 2 J. 2 °_1 2
involving the Sobolev spaces f/T' (0), w' (S) and (/"' (0) (for the

J.OC

definitions of these spaces see [2] or [4]).

A function u(x) is said to be a weak solution of the equation (1) if

u € f/t' (o) and u satisfiesloc

f [ « n l r
(2) A a. Xx)D.uD.v + X b.(x)D.u.v+c(x)uv\dx = f{x)vdx

for every y € W ' ($) with compact support in Q .

It follows from the regularity of the boundary "dQ that there is a

number 6Q > 0 such that for 6 € (0, 6fl] the domain

Q-x ~ Q n {̂ i H"1" I^J/I > 6} , with the boundary 30,. , possesses the following
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property: to each x € "dQ there is a unique point x- (x ) € 30- such

that x,. [x ) = a; - 6v (a: ] , where v (x ) is the outward normal to dQ at

x . The inverse mapping of x ->• x,. (x ) is given by the formula

x_ = xr + 6vr (Xj.] , where v, [i,] is the outward normal to 30,. at re,. .0 o o 0' o*• oy o o

Let x? denote an arbitrary point of 30.,- . For fixed 5 E (o, 6 ]

let

Az = 9«6 " {x; |x-x6| < e} ,

e = {x; x = x6

and

where |/4| denote the n - 1 dimensional Hausdorff measure of a set A

Mikhailov [S] proved that there is a positive number Yo such that

Yo - dsQ -
 Yo

and

(U) lim T = - = 1

uniformly with respect to Xr € 3̂ r .

According to Lemma 1 in [2], p. 382, the distance r>(x) belongs to

u{JQ-Q^ ) if 6 is sufficiently small. Denote by p(x) the extension

of the function r(x) into Q satisfying the following properties

p(x) = r(x) for x £ Q - Q& , P f (?(Q)- , p(x) > 36 QA in

y~ r(x) S p(x) S Y-.̂ Ca:) in Q for some positive constant Y-, >

3Q& = (x; p(x) = 6} for 6 (. (o, 6Q] and finally 3Q = (x; p(x) = 0> .
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It follows from assumption (A) that the constant 6 can be chosen so

small that a . . € C1[Q-Q* J .

We will use the surface integrals

MAS) = f \u[xJx)) \2dS and M(6) = f \u(x)\2dS ,
1 h<s ° x hg&

 x

where u £ WT' (Q) and the values of u(xAx)) on dQ and u(x) on 8Q»

are understood in the sense of traces (see [4], Chapter 6). It follows

from Lemma h in [J] that MAS) and M(8) are absolutely continuous on

[6 , 6 "] for every 0 < 6 < 6 . Moreover if Af(6) is bounded on

(o, 6 J , then for every 0 5 a < 1 there is a positive constant C such

that

( 5 ) f ^ ^ -f d x C

f o r e v e r y 6 € [ 0 , 6 / 2 J ( f o r d e t a i l s s e e Lemma 5 i n [ I ] ) .

The f o l l o w i n g r e s u l t i s a m o d i f i c a t i o n o f Lemma 6 i n [ J ] .

LEMMA 1. Suppose that u € ^ M S ) and that \Du{x)\ r{x)dx < °°.

i f 0 < y < 1 a n d 0 < 6 < 6 / 2 w e fove, / b r 6 £ ( o , 6 / 2 ] ,

±KSX>

\
f u(x)2dS+6j""y f

where K is a positive constant independent of S and 6

Proof. Let 6 € (o, 6 /2j and put

2
dx + dx .

p-6)U >Q6 (p-8)U
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Since p(x) > 6 on 6- , we have

\ ( p 6 )( p - 6 )
u
2dx.

We now note that

6,

V •
As ( u[x Ax)) dS is absolutely continuous on \6, 6 ] , integrating by

34
parts

u ,
dx

dSndt
J 6 ' 3Q

< - 2 - i — [ u2dS + T-^- I |w(x)| iDufa i j I fp -S) 1 "^

where we have used Young's inequality in the final step. Now choosing
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2YQ / ( 1 - U ) = h t h e r e s u l t f o l l o w s .

2. Main result

We are now in a position to establish a criterion for the continuity

of M(6) and M{6) on [o, 6 } which plays an essential part in the

ensuing treatment of the Dirichlet problem.

THEOREM 1. Let u be a solution of (l) belonging to VTJ (Q) , then

the following conditions are equivalent:

I. M(6) is a bounded function on (o, 6 ] ;

II. | \Du(x)\2r{x)dx < oo ;
Q

III. M(6) is continuous on {o, 6 ] .

Proof. Let $ be a smooth function on Q such that $ = 1 on

Q - Q& i , <J> = 0 on Q^ and 0 5- $ < 1 on § , where 0 < 6 < 6Q/2

is to be determined later. Put

w(x)(p(x)-6)$(x)2 for x € 65 ,

0 for x € §-fi- ,

where 0 < 6 5 <5Q/2 . It is clear that y is an admissible test function

in (2) and

(6) I f a. .D.uD.u(p-6)$Zdx + f 7 a- .D.u.uD.p$2dx
in *t -1—T *̂̂  1* 3 JO ' '—i *̂̂  "̂  0
VS 6 '

f M f M 9
I ai.OiM.M(p-6)*O.*da; + Y, b^M.uip-6)$ dx+ 2

I fu(p-6)92dx .
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The proof of I =* I I . Denote the in tegra ls on the l e f t hand side of

(6) by J , J , J , J, and J . I t follows from assumption (A) that

(7) T, > y 1 I \Du\2(p-6)$2dx .
1 J o .

By Green's formula (see [ / / ] , p . 139) we have

n 2 2
T a • -D .u D .p$ dx

= -h

Thus

(8) \J2\ S h a. .D.pD .

I n ( p i p
E D.\a. .D .p^\u dx .

'* I "
f u21Z?

where

n
C = h sup Y, \D.[a..D.p)\ , C = sup

Q-Qs ij=l % %3 ° Q

I t follows from Young's inequality that

-1
(9) f \Du\2(p-&)$2dx + C_ f M2

Jo J Jo

where

C = 8y sup Y, \aii-\ •

To est imate J, and c/̂  l e t us f i r s t suppose that n > 3 • In view of

Holder ' s inequal i ty we obtain
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k j ^ [ I h\ ii(p-sren £
1 = 1 Ls(9) £

(Gj
Du(p-S)\

where

-L = I _ 1 1 .JL = 1
2* 2 n ' s + s n '

and 0 < e < 1 is chosen so that es < 1 . In view of (5),

\u{x) \'
dx 2 C , 0 < a < 1 ,

for 6 € (0, 6Q/2) and consequently

inequality ([2], p. ll»8) we have

By Sobolev's

5 5\\\D

for some positive constant 5 independent of 6 .

positive constant S such that

Therefore there is a

U ,-£,
k\ <s|

x I I \Dji\Z(p-6)^2dx+\D ||M(P-6)G

Note that there is a constant A > 0 independent of 6 such that
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5 A (t-5) idtl
J« J

Choose 6 so that

- 1

^=l
b.\\

L b(Q)

Consequently by Young's inequality we obtain

(10) \JA <^f O u
1 e

I
0

Similarly

El
k.l ^

II ! s + e i

-2*/

where

1 1 2
+ =

Then in view of the Sobolev inequality there is a positive constant £

such that

| <5 ||e||
-2e,

-l+2e

J
M2(p-6) |

Finally taking 6 so small that
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L { Q )

we arrive at the inequality

- l r n ~ . . -1 r „ -1+2E,I 2 2 Y ( 2 - - • • - - ,
(11) J\- 5 J-Q— 0 w ( p - 6 ) $ dx + -L£- u (p -6) dx

5 ° In x ° in

The remaining case n = 2 can now be obtained by using the fact that

w ' (6) (« = 2) is continuously imbedded in L"(Q) for a l l 1 5 q < °°

(see [4] , p. 287).

By Young's inequality we obtain

(12) If fu(p-&)92dx 5 h f ^ ( P ^ ) 9 ^ + h [ M2(p-6)"ada: ,
Q Q Q

where a = 6 - 1 < 1 . Combining the identity (6) and the estimates (7),

(8), (9), (10), (ll) and (12) we deduce that there is a positive constant

C\, such that

\Du\2(p-6)<b2dx 5 C, M(6) + [ u2dx + [ w2(p-6) |D $

for all 6 € (o, 6 /2] , where B = max(a, l-2e , l-2e) . The Monotone

Convergence Theorem implies that

\Du(x)I r{x)dx

Since u (. W^'2(Q) , it follows that I =» II.
loc

To prove II =» III note that Lemma 1 implies
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f U(X) „ <& ~ c ' 0 5 y < 1 ,
J « 6 ( p ( x ) - S ) M

f o r 6 f ( o , 6 / 2 ] , where C i s independent of 6 . F i r s t we prove t h a t

M(&) i s con t inuous a t 6 = 0 . Indeed from t h e f i r s t p a r t of t h e proof

h [ T a. .D .pD .pu2$2dS = I f a. .D.uD .u(p-6)$2dx

r n f 1 r n
- h \ Z D .[a. .D .0 \u dx + 2 \ T a. .D.uu{p-S)W .$dx

o r p p f p
b.D.uu(p-&)$ dx + cuT(p-6)$ dar - /w(p-6)$ da:

Thus

lim I u2 £ a..D.pD pdS
6+0 J3«, £,.7=1 ° °

exists , by the Dominated Convergence Theorem. Since

n
Y~ - I a..D.pD.p S y

is continuous on Q - Q. i t follows that Af(6) is continuous at 6 = 0 .
60

That II =» III follows from the relationship

dS ,M(&) - MAS) = f u[xAx))'
1 Jao 6

- 1

since dSjdSQ •*• 1 uniformly as 6 -»• 0 .

Finally I I I => I follows from the proof II =» I I I .

2
3. Traces in L

Our next objective is to prove that u has a trace on 3Q in

L (3Q) ; that i s , u{xA converges in £ (8$) as 3 -»• 0 . To do this we

https://doi.org/10.1017/S0004972700011461 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011461


Boundary values of elliptic equations 13

first show that u[x^\ converges weakly in L (3$) to some function C

(Theorems 2 and 3) and then show norm u (a;,.) converges to norm C, . The

result then follows by uniform convexity.

THEOREM 2. Let u € W^SO) be a solution of (1). Assume that one

of the conditions 1, II ov III holds. Then there is a sequence 6 -*• 0 as

2
v ->• °° and a function £, (. L (3Q) such that

lim f u[x~ (x))g[x)dS = Z,(x)g{x)dS

THEOREM 3. Let u € W^SO) be a solution of (l). If one of the

conditions I, II or III holds, then the function

G(8) = I u{xAx))v(x)dS
J3« x

is continuous on [o, 6Q] /or every y in L (3g) .

Proof. It is clear that G(6) is absolutely continuous on [6 , 6/J

for any 6 < 6. , hence it remains to prove the continuity at 6 = 0 .

Note tha t

n
g{x) = Y. a..(x)D.pD.p

i,J=l l3 * °

-1
i s uniformly continuous on Q - Q~ and y S g(x) S y on Q . On the

0

other hand M(6) is bounded and the elements of c (Q) vanishing on Q.

2
are dense in L (3§) , so it suffices to show that

f n

G(S) = uV £ ai.DipD.pdSa3S r i »<7=1o

continuous for each V € C{Q) vanishing on
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Taking

v =

4<(p-6) for x € Q& ,

for x € Q-Q, ,

in (2) as a test function, we obtain

G(8) =
n n
T a. .D.uD.V(p-S) - £ D.[a..D.pV)u
•7=1 T'O ^ 3 J 7-_-i 1- 13 3

+ £ b.D.uV(p-6)+cuV(p-6)-f¥(p-6)
^=l ^ ^

da; .

By an argument similar to that used in the proof of Theorem 1 one can

easily show that the integrand on the right hand side is in L (Q) and the

result follows.

In order to prove the convergence of the norm we use the following

function and technical lemmas.

r

For 6 € (o, 6 ] we define the mapping x : Q -»• Q~ by

x U) =
x for x €

xK+h[x-x<.) for x € Q-Qr .

Thus x (x) = x for each x € Q* and x (x) = x« . (x) for each x £ Z

Moreover p(j; ) * 6/2 and x is uniformly Lipschitz continuous. Note

that if M € W^fc(Q) then u[x6) i (v^'2(«) .

The proofs of the following lemmas can be found in [!]•

LEMMA 2. Let hi. l}{Q) , then

lim [ h[x6(x))dx = 0 .
S-K) 'Q-Q,

o

LEMMA 3. If pv/2f € L2(Q) , 0 s u < 1 , j f L2(«) and

g>(a;) dS i s bounded on (0, 6 1 ,
)%a x °
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lim g[x (x))f(x)dx = 0 .
6-t> >Q-Q&

LEMMA 4. If f is a non-negative function in L (Q) and if

f(x)dS is bounded on (o, 6_] , then

f
>Q-Q& P(X)
f ^ * * ^ - » f
>Q-Q& P(X)M l v fo,6o] hat

where 0 2 y < 1 .

LEMMA 5. Let g € L2(§) , p V € L2(Q) awtf supposeI \g(x) | dS -is bounded on [o, 6 ] , then

lim [ /(x6(x))?(x)dx = 0 .
<5-0 >Q-Q6

LEMMA 6. If p V and p \ belong to L (Q) , then

lim f f[xS(x))g(x)p(x)dx = 0 .
6-K) }Q-Q&

Let L = L (3§, dS ) with inner product (norm) denoted by < •, •>

(11*11,) and L = L [dQ, gdS ) with inner product (norm) denoted by

<*, ->2 (H-H2) , where

n
g(x) = £ a. .(x)O.p(x)D p(x) .

Now we are in a position to prove the main result of this section.

THEOREM 4. Let u € ̂ ^ ( S ) be a solution of (l) such that one of

conditions I, II or III holds. Then there is a fun

to L (dQ) such that u(xA converges to X, in L .

the conditions I, II or III holds. Then there is a function C, belonging

(
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Proof. Since || • || and ||*|L are equivalent i t suffices to show

that there is Z € L such that lim u[xA) = C, in L . By Theorem 2 and
2 2

3 there is t, (. L such that lim u[xS) = C, weakly in L . Since L
2 6-K) ° 2 2

is uniformly convex i t suffices to show that lim ||w(xj.)|| = ||?|L . Let
6-0 2 2

V € J*^'2(G) and ? = 0 on Q& , set
0

n n
F[V(x)) = Y, a..D.uD.yp- Y D.[a. .D.py)u

b.D.uVp + cu^p -

As in the proof of Theorem 1 we find that

for a l l 4* i C1^) such tha t V = 0 on $5 and hence for a l l

* € ^ ^ ( Q ) with Y E o on S. . Let $ be as defined in the proof of

Theorem 1. Since u[x )*(a;)2 € ArL»2(S) and u[x )$ (x) 2 = 0 on Q& weQ&

have

<C, «^61> = f F[u{x6(x)))dx = f F(u(x6(z)))dx + f F(u(x)Hx)2)dx
J « • >Q-Q& >Q6

for 6 5 6 / 2 , since a; (ar) = x on Sfi and $ = 1 on S - S. . . We

show that

l i m f F[u{x&(x)))dx = 0
6-K) J $ - 6 r

and that
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so that

lim I F[u(x)$(x)2)dx = lim il"(*6)||2 ,
6-K) 'Qe 6-K)

HCll2 = l i m < C , u[x&)> = l i m | | M ( x 6 ) | | 2

6-K)

since a; (x) = x. . (x) on 9<2 . Setting

6-K)

v(x) =

u(x) fp(x)-6)0(x)2 for x € 0, ,

for x € S-Sr ,

it follows from (6) that

l im ")dx = lim
/<;-M-I J r

a. .D.uD M(p-&)4>2

+ 2 2, a • -D •

2

J ie

= - l im t D.la D p<t>2u2\dx

u2gd5

= lim f M(x.)2
ff(x)dS + lim f u{x)2[g[x&)-g(x)\dS

6-K) hQ ° 6^0 J3« ° ° X

= l im
6-K)

= l im

= lim | | K ( X 6 ) | | 2 •
6-K)

Now i t remains t o prove t h a t l im F[U[X (x)))dx = 0 . Note that
6-K) >Q-Q&
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\F{u{x6(x)))\

5 c[\Du(x)\\Du{x6(x))\p(x)+\u{x)\\u{x6(x))\+\Du(x6(x))\\u(x)\]

+ £ \b.(x)\\Du(x)\\u[x8(x))\p(x) + \c(x)\\u(x)\\u[xS(x))\p(x)

for x € Q-Qr , where C is a positive constant independent of 6 . Since

p 1(pf) € L2 , 0 5 9/2 - 1 < h and w2dS is bounded, by Lemma

3 ,

l i m f \f(x)\\u[xS)\p(.x)dx = 0 .
&-+0 >Q-Q&

I t fo l lows from Lemma 2 and Holde r ' s i n e q u a l i t y t h a t

lim \u(x)|\u(x )\p(x)dx = 0 .

In view of Lemmas 5 and 6,

l i m f \Du[x8(x))\\u(x)\dx = 0 ,
6-K)

l i m |Dw(x)| |0w(x<S(a;)) \p(x)dx = 0 .

To estimate the remaining terms we restrict ourselves to the case n > 2 .

By Holder's inequality

£ \b.(x)\\Du(x)\\u[x6(x))\(>(x)dx

n II h -e (6 h+£

where

s + sx n ' 2* 2 w ' £ S 1

https://doi.org/10.1017/S0004972700011461 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011461


B o u n d a r y v a l u e s of e l l i p t i c e q u a t i o n s 19

Now the Sobolev i n e q u a l i t y impl i e s t h a t

| | M (x 6 (x ) )p* + E | | . , 5
L

and consequently, by Lemmas U and 6,

m f £ \b.(x)\\Du(x)\\u{xS(x))\p(x)dx .
0 'Q-Qj, i=l %

lim
&

Similarly one can prove that

lim |e(x)||M(X)|\U[X&(X))\p(x)dx = 0 ,

6-K) Q-Qx

and this completes the proof.

4. The energy estimate

Consider the elliptic equation of the form

n n

(I1) Lu + Xu = - Y D .{a. .{x)D.u) + £ b.{x)D.u + [a(x)+\)u = fix)

in Q , where A is a real parameter.

The results of Section 3 suggest the following concept of the

Dirichlet problem.

L e t <j> € L2(dQ) . A weak s o l u t i o n u € W^'2(Q) o f ( I 1 ) fo r ( 1 ) 1 i s a
loc v '

solution of the Dirichlet problem with the boundary condition

(13) u{x) = <j>(x) on ZQ

if

lim [u{xAx))-<i>(x)]2dS = 0 .

6̂ o ho x

Under stronger assumptions the above form of the Dirichlet problem has

already been considered by Necas [J2], [/3] (Chapter 6), Guscin and

Mikhailov [3] and Mikhailov [9]. The relation to the Dirichlet problem in

(/"' {Q) will be discussed in the next section.
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20 J . C h a b r o w s k i a n d H . B . Thompson

We now establish the following energy estimate.

THEOREM 5. Let u € ^ Q ^ S ) be a solution of the Dirichlet problem

( I 1 ) , (13). Then there exist positive constants d, X and C

independent of u , such that

(lU) \Du{x)\2r{x)dx + sup M(&) + u{x)2dx

5 c\\ 4>(x)2dS + f f (x) 2 r (x) 6 J

/ o r X > XQ .

Proof. Note that if u d W~" {Q) is a solution of the Dirichlet

loc

problem ( I 1 ) , (13), then the conditions I , I I , I I I hold. Let V be the

t e s t function introduced in the proof of Theorem 1. Thus we have
, * i r £ 2^2,
(15) 12 | X & • -L) -PD .pu 9 dS

V a. .D.uD.u(p-&)$ dx - h Y D. a. .D .p* \udx

+ 2 ^ a. .D.u-u(p-6)$5.$dx + y b .D .wu(p-S)$>2dx

Since we may assume that 6 2 1 , i t is clear from the proof of I * II

(Theorem 1) that

(16) f u2dS < L \\ |Ow|2(p-5)$2dx + ( u2<S>2dx

u2\D$\2dx + I u2{p-6)\m\2dx + X j w2(p-6)$2dx
J«6 J«6
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for all 6 € (o, 6/2) , where L is a positive constant independent of

6 , 6 = min(a, l-2e, l-2e ) , a = 1 - 6 ; the constants 0 < £ < 1 and

0 < £ < 1 were introduced in the proof of I ̂  II (Theorem 1). On the

other hand it follows from (15) and assumption (A) that

(17) Y" 1 I \Du\2(p-6)$2dx + A [ u2(p-6)$2dz
'Qx

2 h f I a.DpDpu2*2dS+h\ I DL Dp<b2}u2dx

a. .O.

Denote the fourth and fifth integrals on the right hand side of the

last inequality by I and !„ . As in the proof of Theorem 1 we have

(18) \l±\ S L26X M 2, ,,.2, f 2, r,2£-1^2,(p-6)$ dx + u (p-6) $ dx

6

+ I u2{p-6)\D$\2dx
la.

(19) \I2\ S f \Du\
^ 6

2(p-6)*2dx + [ u2(p-S)

+ I u2(p-6)\D$\2dx

Choose 6 such that

(l-2es ] Is (l-2e s ) /s

Consequently we deduce from (IT), (l8) and (19) that
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(20) I \Du\2(p-6)$2dz + X [ u2(p-&)$2dx

2 Lk M(8) + [ u2t>2dx

L J u2\D$\2dx

w2(p-6)"6$2<ia; + f f{p-&)Q<b2dx
J«6

for al l 6 € [o, S /2J , where L, is a positive constant. Letting 6

tend to zero we therefore obtain

(21) I \Du\2p(x)$2dx + X I u2p2$2dx
la la

dQ

Now let ¥ be a smooth function on Q such that ¥ = 1 on

2 -3 2,
+1 M p $ or + p $ da:

= 0

on § - 0. , on ~Q , where 0 < 6 < 6 < 6 . Taking

U = as a test function by a standard argument, we deduce that

(22) [ \Du\2V2dx + X ( u
la ia

S Lr

Since

\Du\2V2dx > JJ ( \Du\2p(x)dx ,
° l

where 6* = sup p(x) , by choosing 6̂

obtain

= 6 and using (21) and (22) we
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(23) I \Du\2p{x)dx + X u2pdx
Jo Jo

I $(x)2dx + I u2dx + f u2\DV\2dx + ( u2\D<b\2<k

+ f u2p~^dx + f fpQdx + f i V d x •
Jo Jo Jo

Thus combining (l6) and (23) we obtain

(2U)

I u2dx + [ u2\D$\2dx

u2(p-6)~&dx
Q Q

for all 6 € (o, 6/2] , where L is a positive constant. To proceed

further we derive from Lemma 1 that

(25) I M (p-6)~*dx

6

5 K 6"6 |^ M
2dx+6j-

f

61 "1 " "1

On the other hand it follows from Theorem 1 in [77], p. 138, that

(26) u2dS 5 C||u|

where C is an absolute constant independent of 6 . Combining (22) and

(26) we obtain

(27) [ \ [ \ \ {u2dS SCA\ u2dx + [ u2\D

Choosing 6 such that LJiS < 1 , the estimates (23), (2U), (25) and

(27) imply
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(28) f \Du\Zpdx + X [ u2pdx + M(6)

S Lr u2dx + u2\D$\2dx + u2\m\2dx + I u2p~&dx
Q Q ^ Q

f ffdx + f

for 6 € (o, 6 /2] , where £„ is a positive constant. We can now easily

complete the proof of the theorem. Indeed, note that

[ ? f ?
(29) u dx 2 d sup «(6) + [ M^ic ,

' Q OSSsi J Q,

and

f p __ O sJ ^ f ? — ft
(30) M p (it 5 ——r- sup M(6) + I w p dr

u

for <2 5 6 . Taking ii sufficiently small and X sufficiently large,

say X > X , the result follows from (28), (29) and (30).

We mention here that Guscin and Mikhailov [3], [9], also proved the

energy estimate. The proof presented here is entirely different.

5. Application to the Dirichlet problem

In this section we study the solvability of the Dirichlet problem with

2
boundary data in L (9$) . The definition of the Dirichlet problem in

w ' (Q) of (l1), (13) has already been introduced in the previous section,
loc

Recall that a function «€(/"' (Q) is a solution of the Dirichlet

problem (l), (13) (or (I1), (13)) if u is a weak solution of (l) (or

(I1 )) and w - <j> € ̂ ""2(Q) •

In this definition it is assumed that boundary data <j> can be

extended to an element of w ' {Q) which is also denoted by 4> . As we

pointed out in the Introduction this is a restrictive assumption because

2 _1 2
not every function in L (9<2) is the trace of an element in w ' {Q) .

https://doi.org/10.1017/S0004972700011461 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011461


B o u n d a r y v a l u e s o f e l l i p t i c e q u a t i o n s 2 5

Let us introduce the Hilbert space fr' (Q) of all functions u(x)

in W^'2(Q) such that
loc

2 f 2 f i i2
||u|| = u{x) dx + |Z?w(x)| r{x

It is evident that

[3D IM|2 „ 5 max(l,
^ 2

f 2 1
u\x) dx + sup W(o)

J £ J

THEOREM 6. Let X > X iTzen / o r euery <|> € L2(3S) t>jere i s a

unique solution of the Diridhlet problem ( I 1 ) , (13) in f/7* (Q) •

Proof. Let {<j> } be a sequence of functions in L (3<2) converging

in L (3§) to the function (j) .

Define

'fix) for x €

Qx) - •

for m such that 1/m 5 6_ . Let w be a solution of the Dirichlet
0 m

problem

Lu + Xu = f in Q ,
m

u = 4> on 3$ ,

in W' (Q) (see [75], [J6] or [5]). Here we may assume that X is

sufficiently large that the theorems on the existence of solutions in

(/' (<?) are applicable. It is obvious that inequality (lU) is valid for

u and
m
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\Du -DU \2r(x)dx + sup [u -u )2dS + [u -u )2dx
in P <J <̂*<=,7 J in P Q' x In P Q

It follows from (31) that lim u - u exists in if"1 (Q) . As in [9] one

2
can show that u satisfies the boundary condition (13) in L

THEOREM 7. Suppose that f{x)2r(x)2dx < °° and let 4> € L2(dQ) .

If there is a function (f> in w^iQ) such that <))=<(> on dQ (in the

sense of trace), then a solution u{x) in WZ' (Q) of the Dirichlet

problem ( l ) . , (13) is a solution in w~' (Q) of the same problem.

The proof is essentially the same as that of Lemma 3 in [9] and

therefore is omitted.

Theorem 7 implies that every solution in WI* (Q) of the problem

I Lu = 0 on Q ,

u = 0 in dQ ,

or of the problem

I L*u = 0 on 3Q ,

u = 0 in dQ ,

is a solution in W ' (Q) . Consequently the problem (32) or (32*) can

have only a finite number of linearly independent solutions (see [5],

p. 156, or [J5], [J6]).

It is known that for the Dirichlet problem (l), (13) to have a

solution iv ' (Q) (we assume that the boundary data is the trace of an

element in (/' (§) ) , it is necessary and sufficient that / and (J> be

related as follows:
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<$>dS =\ u*
X >Q 3

(33) -^-<$>dS =\ u*fdx ( j = l , . . . , p ) ,

where {w*} is a maximal linearly independent system of solutions of the
3

problem (32*) and 9/8i\? denote the conormal derivative of the elliptic

operator (l). If a.., b. € (^(Q) then u*. € ffif2(Q) and Mikhailov [9]

was able to show that the Dirichlet problem (l), (13) in W7' (Q) has a
loc

solution if and only if (33) holds. Nevertheless we can show in our

situation that the Dirichlet problems in tP~'2{Q) and W^'2{Q) have the
loc

same eigenvalues.

Fix X , and consider the Dirichlet problem

(31+) Lu + ( X Q + X ) M = / on Q ,

(35) u = * i n 8<2 ,

where 4> € L2(dQ) and f(x)2r(x)Zdx < « .
J

In view of Theorem 6 the Dirichlet problem (31+), (35) has a unique

solution u in Ac' (Q) provided X is sufficiently large.

THEOREM 8. Let <j> € L2(dQ) 3 | f(x)2r{x)2dx < <*> . Then the

Dirichlet problem (!'), (13) has a solution in Ac' (Q) if and only if

X u. is orthogonal to every eigenfunction of the problem

(36) L*u + Xu = 0 in Q , u = 0 on dQ .

Proof. Suppose that u is a solution of the problem (I1), (13) in

(37) w = u - uQ •

Then u is a solution in AC' (fl) of the problem
loc

(38) Lw + Xw = X w. in $ , u = 0 on 9§ .
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It follows from Theorem 7 that w i JT"' (Q) and consequently X u is

orthogonal to every eigenfunction of the problem (36).

Conversely if ^rMQ is orthogonal to every eigenfunction of the

problem (36) then the problem (38) has a unique solution in W ' (<?) and

the solution of the Dirichlet problem (I1), (13) is given by the formula

(37).

Observe that the solution of the Dirichlet problem in fir"' (0)
loc

belongs to w'(Q).

THEOREM 9. Suppose that f i Lq(Q) for some q > n/2 and a is •

bounded away from zero on Q . Then for every <f £ C(<}Q) there exists a

unique solution in w"" (Q) n C(Q) of the Dirichlet problem (l), (13).

Proof. It follows from Theorem 3.8 in [7 5] that the Dirichlet problem

Lu = 0 in Q , u = 0 on dQ has only the trivial solution in w ' (Q) .

Consequently by Theorem 8 there exists a unique solution u (. i/' (Q) of

the problem (1), (13). It remains only to show that u € C(Q) . Let {(j) }

be a sequence in C (Q) converging uniformly to <j> on 9$ . By virtue of

Theorem lU.l in [5] the solution of the Dirichlet problem

Lu + Xu = f in Q ,

w = 4>m on 9<? ,

b e l o n g s t o w' {Q) n C(Q) . By Theorem 3 - 8 i n [ 7 5 ] ,

s u p \u (x)-u (x) | 5 s u p |<j> (z)-(|> (a;) | •*• 0
Q P q Q P q

as p, q •*• °° and the result follows.

This theorem is similar to , but slightly sharper than, Theorem 8.30 in

[Z] (P. 196).
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