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ON THE BOUNDARY VALUES OF THE SOLUTIONS
OF LINEAR ELLIPTIC EQUATIONS

J. CHABROWSKI AND H.B. THoMPsON

The purpose of this article is to investigate the traces of weak
solutions of a linear elliptic equation. 1In particular, we

obtain a sufficient condition for a solution belonging to the

Sobolev space Wiéi to have an L2—trace on the boundary.

Introduction

2 .
This paper deals with L -behaviour near the boundary of weak

solutions of the elliptic equation

n n
(1) u=- Y D.a. .(x)Du) + ¥ b.(x)D.u + clz)u = flx)
A S BN ¥ | 1 Rl 2 1
1,J=1 1=1
in a bounded domain & . The problem we are concerned with originates in

the theory of analytic functions. We say that the analytic function f(2)
defined on (|z| < 1) has a limit in L2 on the boundary, if there exists
a function ¢ € L2(0, 27®) such that

1im 12“ If(reie)-¢(6)|2d9 =0 .

r>1-0 ‘0

Riesz [14] proved the following criterion: the analytic function f(2) on

2
(|z| < 1) has a limit in L~ on the boundary if and only if the function
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en 18y |2
Ulr) = f |f(re")|°d6 , 0<r<1,
0

is bounded. Later on Littlewood and Paley [6] established the following

theorem: the analytic function f(z) on (|z| < 1) has a limit in r?

on the boundary if and only if the function
It 8y 2
g(®) = (L-p)|f'{re”")|%a@r| , 0<0 <om,
0

belongs to L2(O, 2nr) . The results of Riesz and Litflewood and Paley were
extended by many authors to harmonic functions and solutions of elliptic
equations (for further historical material and bibliographic references see
[70]1). 1In particular Mikhailov in a series of the articles [7], [§], [9]

and [10] extended the above results to solutions of the equation (1) under

the assumption that a;; € 01(5) . b ¢ @) and ¢ € C(§) . 1In this

paper we establish Mikhailov's results under weaker assumptions, namely
b, ¢ 15@) , s>n ,and c € L¥(Q) , r>n/2 , and by different methods.

The plan of the paper is as follows. Section 1 is devoted to

preliminaries. In Sections 2 and 3 we discuss traces of solutions in

Wi;i(Q) of (1). Section 4 deals with energy estimates for solutions in
1,2 i i i > PR .
Wloc(Q) . Finally in Section 5 we briefly study the Dirichlet problem in

1,2 . . Wl’2
the WlOC—framework. Recall that a weak solution in (@) of the

equation (1) is a solution of the Dirichlet problem with the boundary
c s . . %l 2 .

condition w=¢ on 9Q if and only if u - ¢l € W°°(q) . 1In this

definition it is assumed that the boundary data ¢ 1is a trace of some

function ¢l from Wl’g(Q) . Of course this assumption is rather

restrictive, because not every function in L2(BQ) is the trace of some

2
function belonging to Wl’ (@) . 1In connection with the results obtained

in Sections 2, 3 and 4 it makes sense to consider the Dirichlet problem

with boundary data in L2(3Q) . This possibility has already been noted by
NeZas [12] and {13] (see Chapter 6) and by Mikhailov [9] and Guscin and
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Mikhailov [3].

1. Preliminaries
Let @ cC Rh be a bounded domain with the boundary 9@ of class 02 .
In § we consider the equation (1).
We make the following assumptions:

(A) there exists a positive constant Yy such that

2

n
-1
le]°= ¥ a
i,4=1

2
Y (=)e e = vlg]

ij
for all x € @ and § € Rn ;s moreover the coefficients
a.. are measurable and of class Cl in some neighborhood

tJ
of 9@ ;

(B) b, ¢ (@) (i=1, ....n) , e ¢€r"(Q) , where

n<g=sw, pf2<p=o;
2 )
(c) I fle)rlx) de < = , where 2 <6 <3,
Q

r(z) = dist(z, 3Q) .
In this paper we use the notion of a generalized solution of (1)
involving the Sobolev spaces Wl]_éi(Q)’ Wl’z(Q) and [?/l’z(Q) (for the
definitions of these spaces see [2] or [4]).

A function u(x) is said to be a weak solution of the equation (1) if

52 o
u EWioc(Q) and y satisfies

n n
(2) J Y a.x)pub.w + Y b.z)D.u.vvelz)uv|dz = J flz)vdx
Q lg.ga ¥ * I g1t P Q

for every v € Wl’a(Q) with compact support in ¢ .

It follows from the regularity of the boundary 9@ that there is a

number 60 > 0 such that for 6 € (0, 60] the domain

QG =gQn {x; mﬁ; Ix-yl > 8} , with the boundary BQG , possesses the following
y€Q
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property: to each xo € 3@ there is a unique point xa(xo) € BQG such

that xs(xo) =z - &v(x.) , where V(xo) is the outward normal to 9§ at

0 0

zy - The inverse mapping of xo - xé(xo] is given by the formula

Ty = Xy + évd(xs) , Wwhere Vﬁ(xd) is the outward normal to 3Q6 at g

Let xé denote an arbitrary point of 3Q6 . For fixed & € (O, 60]

let
4, = 3gg o dz; |a-zg| < e},
B, = {x; @ = 3+dv(xg), &5 € A},
and
0 e '“e

where |A| denote the #n - 1 dimensional Hausdorff measure of a set 4 .

Mikhailov [8] proved that there is a positive number Y, such that

(3) Yff?ng
0
and
s
W o0 Bo

uniformly with respect to &g € 3Q6

According to Lemma 1 in [2], p. 382, the distance r(x) belongs to

Cg(é;QG ) if 50 is sufficiently small. Denote by p(x) the extension
0

of the function r(xz) into @ satisfying the following properties

p(xz) = r(x) for z €@ - Qs » P € 62(5) , plz) = 360/h in g
° 0

A

Yl r{x) < p(x) er(x) in @ for some positive constant Y, s

39gs = {z; p(z) = 8} for & ¢ (o, 60] and finally 93¢ = {z; p(x) = 0} .
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It follows from assumption (A) that the constant 60 can be chosen so
small that aij € Cl|Q-Q60| .

We will use the surface integrals

M. (8) = f lu(z (x))|2dS_ ana M(8) =I lu(z)|%ds_
1 30 ) x 3Q5 x

where u € Wi;i(Q) and the values of u(xd(x)] on 3@ and u(x) on Z)Q(S

are understood in the sense of traces (see [4], Chapter 6). It follows

from Lemma L4 in [7] that Ml(d) and M(8) are absolutely continuous on

[Bl’ 66] for every O < 61 <6 Moreover if M(8) is bounded on

0"
(0, 50] , then for every O = a < 1 there is a positive constant (¢ such
that

ulx)

” [l
Q(S (O(x)—(‘i]a

de < C

for every § € (O, 60/2] (for details see Lemma 5 in [11]).
The following result is a modification of Lemma 6 in [7].

LEMMA 1. Suppose that u € Wigi(Q) and that f lDu(x)lzr(x)dx < o,
Q

Then if 0 <u<1 and 0 <8 =§,/2 we have, for § ¢ (0, 61/2] s

I u(x)2 dc
Qs (p(z)-8)"

< KE;“ f u(z) 2z [ u(x) 2as+si 7 [ Iou(xnz(o(x)-a]dx]
1 1

-q
§ 61

where K 1is a positive constant independent of 61 and § .

Proof. Let 6 € (0, Gl/é] and put

u2 u2 u2
JQ (p-8)" = J62 -, (p-&)* w IQ (p-5)M =
8 8 61 61
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Since p(x) =68, on @ , we have
1 61

2
f o dx = (2/8 )“J WPdr
Q 1

(p-8)" Q
6l 6l
We now note that
8
2 1 ds
J % 5 de = f (t-8)7¥ f u(xt(xo))z -th ds ,dt
Q.-@;. (p-9) é aQ 0
&6
1
6l
.2 f -u [ 2
<y (¢-6) ulx, (x ))ds dt
0 s 3Q Y70 0
As ( u(mt(x))zds is absolutely continuous on [§, 51] , integrating by
Jag

2.1-u
Y-8
< Ol-l f u(::cds (z))“ds
ooJag 1
2 &
2y 1
p 2 [ T o™ ey (o) Hou(e, (o)) | =, (o) |as e
8 0
L 1-p L
Y6 2y
< 21 f u?ds + —Qf lu(z)] | Du(z)| (0-8)*Vdx
I Jagy ™ Jgs-q5
1 1
b 1-p I
Y0 2By 2
- Ol-lu f W25 + l_uof u s
1
bo1-
2y 6
0’1 2
o R Ll GOt

1

where we have used Young's inequality in the final step. Now choosing
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Lg
2Y0 /(1-u) = % the result follows.

2. Main result

We are now in a position to establish a criterion for the continuity

of Mi(d) and M(8) on [0, GO] which plays an essential part in the

ensuing treatment of the Dirichlet problem.

THEOREM 1. Let u be a solution of (1) belonging to Wiéi(Q) s then

the following conditions are equivalent:

I. M(S8) is a bounded function on (0, 60] ;
II. f IDu(x)]2r(x)dx <o ;
Q

III. Ml((S) is continuous on [0, 60] .

1l on
Q - Q61/2 , =0 on le and 0<®<1 on & , vhere O < 61 < 60/2

Proof. Let & ©be a smooth function on é' such that ¢

is to be determined later. Put

u(z) (p(z)-6)8(x)2 for = € g5 >
v(x) =
0 for x € @@ ,

where 0 < § = 60/2 . It is clear that v 1is an admissible test function

in (2) and
% 2 % 2
(6) J a..D.uD u(p-8)0°dr + f a..D.u.uD.pddx
Q ta=1 I Qg it Tt Y
n n 2
+ 2 J Y a..D.u.u(p-8)9D .ddx + J Y b.D.u.u(p-8)9 dr
Qg ihe1 " J Q =1 “°

+ f cu? (p-6)d°dz
2

- J Fulp-8)0°dzx .
s
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The proof of I = II. Denote the integrals on the left hand side of

(6) by J., d. . J_, J

1 e L and JS . It follows from assumption (A) that

3’

(1) 72yt )f |u|(0-8)8%ds .
%

By Green's formula (see [J1], p. 139) we have

% 2 2
J, =% J a..D.u"D.pd dz
2 .5
Qs to9=1 7t
n n
= ) f y ai.DipD.pu2¢2dS - % f Y Di{ai.D.QQZ]uzdx .
gy 1,951 I “ 7 Qg 1,91 79
I 8
Thus
2 2 2 2.2
(8) |J2| <% f Y a..D.pD.p|u“9°ds + C J u o dx
. g 1 J 1
Q. \Z,7=1 e
S S
2
*CJ u®|D_o|odx
2 0 x
8
where

n

c.=% sup Y |D.(a..Dp)| ., ¢ ,=swp Y |a..D.pl

PG i g v M
0

n

It follows from Young's inequality that

-1 2 2 2 2
(9) |7,| = Y—J | Du|“(p-8)9°dx + C f u“(p-8)|D o|“dx ,
3 8 ) 3 Q x
S $

where

n

C.,=8yswp Y |a..
3 Q i.g1

To estimate Jb and J5 let us first suppose that n > 3 . In view of

Holder's inequality we obtain
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n -
19, ] = ”igl b e,
L

1
(9) L (Q6~Q51]
< 1up-8) "0l [0, utp-8)%]
i) ® 2
8 L (Qg)
where
L _1_1 1,1 .1
ot~ 2 " pn > s sl n°’
and 0 < € <1 1is chosen so that es; <1 . 1In view of (5),
2
f ~15LELLTE de=C, 0<a<1l,

for & € (0, 60/2) and consequently u(p—(‘i)%+€ € %l’z(Qé) . By Sobolev's
inequality ([2]1, p. 148) we have

L
§) €

IANCN

< Sﬂ‘Dxu(p—G)%+€¢’|

+(%+e)|u|Dxp|(p—6)E—%¢” + u(p-é)%+€Dx¢“
£2(e,) 1% (q,) 2% (g,

for some positive constant S independent of & . Therefore there is a

positive constant S such that

~ n -
9,1 = S”igl bi"Ls(Q)”(p-d) eHle(Qs‘Qa )
’ 1

x B Ip u|2(p—6)d>2dx+’
X
5

pauto-8)%0|  futp-6)0)
2% (Q,) L™ (e)

+

(p-8)" (p-6)%
M ot g,

Note that there is a constant 4 > 0 1independent of § such that
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1/s
€. 61 -E8 L
I(p-8)"e%1l s 4 fﬁ (¢-8) tde
1
L (055 )
1
-1/s. (1-es.)/s
= 1 1 1
= A[l-esl) 1 .
Choose 61 so that
- -1/sl (l-esl]/sl n -1
45(1-¢es.) 8, 5 b.‘ < 38— .
i=1 “N g
L°(Q)

Consequently by Young's inequality we obtain

-1
(10) |y = iYB—I |Dx“|2(p-6)¢2dx . ys_f 2 (0-8)26"L gz
% Q%

-1
s X f u2(p-6)|Dx®|2dfc
Q

8
§
Similarly
—281 %+el 2
751 = llel , to-8) M, Jto-8) " 2o ,
L 1 o%
¢ L (a5 ) %" (ag)
1

where

1.1 _2

7 + ;I'— 7 elrl <1.

Then in view of the Sobolev inequality there is a positive constant Sl
such that

-2€

< 1
lgl = sluanr(Q)u<p-a) I

1
L ~(Q5-¢5 )
8 61—

=1+2¢
x U u?(p-8) L +I | D |2 (p-6) 6%dax +I uz(p-6)|Dx<I>|2dx}
9

% %

Finally taking 61 so small that
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S_llell [1(p-8)
S )

we arrive at the inequality

-1 -1+2¢
(11) |o.] = L= |D u|2(p-6)¢2dx + X ©2(p-6) L
5 8 x 8
Qs Q
-1 2 2
+ %—J u(p-6)|D,0|%dx .
Q
§
The remaining case n = 2 can now be obtained by using the fact that

Wl’Q(Q) (n = 2) is continuously imbedded in Lq(Q) for all 1 =g <
(see [4], p. 287).

By Young's inequality we obtain

(12) ” Fulp-8)0%dz| < % j P(0-6)%x + & f w2 (p-6)"% |
s s

s

where a =6 -1 <1 . Combining the identity (6) and the estimates (7),
(8), (9), (10), (11) and (12) we deduce that there is a positive constant
Ch such that

f |Du|?(p-6)8°dz = Cl‘EM) +j u2dz +f w2 (p-8)|D_0|%dz
Q
s

) s

2(0-6)"az + J ﬁ(p-a)ed% ,

+J y
%

for a1l & € (0, Gl/é] , where B = max(a, 1-2¢€., 1-2¢) . The Monotone

s

Convergence Theorem implies that

J |Dulz) |12r(z)dz < = .
%5 /2

Since u € Wiéi(Q) , it follows that I = II.

To prove II = III note that Lemma 1 implies
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u(z)®

J udeC,OEu<1,
Qs (p(x)-6)

for & € (0, 60/2] , where C 1is independent of &§ . PFirst we prove that

M(8) is continuous at 6 = 0 . Indeed from the first part of the proof

2 2 2 2 2
5 j Y a, ;D pD.pu"% ds = ( Y aiJ.DiuDju(p—G)@ dx
@5 i,9=1 ¢ Y Qg 1.d=1

n 2 2 n
- % f y Di(a. D .pd ]u de + 2 { Y a; .Diuu(p—6)<I>Djd>dx
Qs ©.3=1 Jgg .1 ¥

n
+ J Y b.D.uu(p-6)0°dz + f e (p-6)0°dz - f fu(p-8)ede .
Q(S =1 e Q Qé

Thus

lim{ u2 % a..D.pD.pdS
800 Jagg  i.g=1 T

exists, by the Dominated Convergence Theorem. Since

< <
U 321 a; D;eD.p =Y

is continuous on § - Q6 it follows that M(6) is continuous at & = 0 .
0
That II = III follows from the relationship

2 ds6
uo) - (8 = [ ulmgle)?| 5 - alas
aq 0

since dSG/dSO -+ 1 uniformly as § -+ O .

Finally TII = I follows from the proof II = III.

3. Traces in LZ(aQ)
Our next objective is to prove that u has a trace on 23 in

2 . .
L7(3Q) ; that is, u(xa] converges in Lg(aQ) as 9 + 0 . To do this we
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first show that u(xd) converges weakly in LQ(BQ) to some function ¢
(Theorems 2 and 3} and then show norm u(xd) converges to norm f . The

result then follows by uniform convexity.

THEOREM 2. Let u ¢ Wi(’)i(Q) be a solution of (1). Assume that one

of the conditions I, II or III holds. Then there is a sequence 6v + 0 as

v+ o and a function ¢ € LZ(BQ) such that

tin | ule, (2))g(x)ds =J t(a)g(z)ds
v 139 5y z 3Q z

for each g € L2(8Q) .

THEOREM 3. Let u € Wl’e(Q) be a solution of (1). If one of the

loc

conditions I, II or III holds, then the function

G(8) = J u(x(x))¥(x)ds
3Q 8 x

ig continuous on [0, 60] for every Y in L2(3Q) .

Proof. It is clear that G(8) is absolutely continuous on [bl’ 60]

for any 61 < § hence it remains to prove the continuity at & = 0 .

O ]
Note that
n

glz) = Y a..(z)D.pD.p
i,9=1 *J v

is uniformly continuous on § - Qd and Y_l =g(z) <Y on @ . On the
0

other hand Mi(S) is bounded and the elements of Cl(a) vanishing on Q6
0

. 2
are dense in L (9Q) , so it suffices to show that

n

G(8) = f w Y a..D.pD.pdS
aQ(S iaj=l W x

is continuous for each V¥ ¢ Cl(é) vanishing on QG .
0
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Taking

Y(p-8) for =x € Qé ,
0 for = € Q-9 ,

in (2) as a test function, we obtain
n

n
a.jDiuDj\l’(p-cS) - Z D.(a,.D.o¥)u

‘G(G) = J i 1 _ T 13 J
Qs L2.d=1 1,551

n
+ Y b.D.u¥(p-8)+eu¥(p-8)-F¥(p-6)|dx .
i=1 %

By an argument similar to that used in the proof of Theorem 1 one can

easily show that the integrand on the right hand side is in Ll(Q) and the

result follows.

In order to prove the convergence of the norm we use the following

function and technical lemmas.
. . § = =
For & ¢ (0, 60] we define the mapping = : @ > QG by
x for x € Q6 ,

x6+%(x-m6] for x € @-Q5 .

Thus xé(x) = x for each x € QG and xé(x) = xd/z(x) for each x € 3¢ .

8
Moreover p(x ) > §/2 and xd is uniformly Lipschitz continuous. Note

that if u € Wi;i(Q) then u(xé) cw2(Q) .
The proofs of the following lemmas can be found in [7].
LEMMA 2. Let h € L'(Q) , then

h@xé(x)]dx =0.

lim

o

LEMMA 3. 17 o*%rc1P(@), 0osu<1, ge€I°(Q and
[ g(x)%ds_ is bounded on (0, §;] , then
3Qs
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g(xé(x)]f(x)dx =0.

1lim

6+0 IQ-QG

LEMMA 4. If f is a non-negative function in Ll(Q) and if

I flz)ds, is bounded on (0, GO] , then
QQG

s yhél'u
f _ﬂx_@]_ dx < 1 sup I f(x)de s
Q-5 p(x)" ™ (0.8,] Tee,

where 0 S pu < 1.

%

LEMMA 5. Let g € L2(Q) , P’f € L2(Q) and suppose that

}f |g(x)|2ds'x is bounded on [0, 8] , then
39,

f(xd(x))g(x)dx =0 .

lim

LEMMA 6. If p%f and p%g belong to LZ(Q) , then

f@rd(x))g(x)p(x)dx =0.

1im

820 f Q-

Let Li = LZ(BQ, de] with inner product (norm) denoted by (-, .)l

(”.”l) and Lg = LZ(BQ, gde) with inner product (norm) denoted by

(e, ')2 (”'H2) , where
n
glx) =} a_l:j(:c)Dip(x)Djp(x) )
1,J=1
Now we are in a position to prove the main result of this section.

THEOREM 4. Let u € Wiég(Q) be a solution of (1) such that one of
the conditions 1, II or III holds. Then there is a function [ belonging

to L2(8Q) such that u(xé) converges to § 1in Li .
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Proof. Since ”.”l and H°H2 are equivalent it suffices to show

that there is [ € Lg such that 1lim u(xs) = ¢ in Lg . By Theorem 2 and
§-+0

3 there is £ € L2 such that lim u(z,) = ¢ weakly in Lo . Since Lo
> son ¥l 2 >

is uniformly convex it suffices to show that 1lim Hu(xs)ne = HC”2 . Let
§+0

Y € Wl’e(Q) and Y20 on Q6 , set
0

n n
F(y(x)) = Y a..DuD¥po - Y D.(a,.D.p¥)u
i,3=1 gt g i.5=1 v 1d J
n
+ Y b.D.u¥p + cu¥p - fu¥p .
i ¢t

As in the proof of Theorem 1 we find that

(z, ¥)_ = j F(¥(x))dx
e g

for all VY ¢ Cl(a) such that ¥ 20 on QG and hence for all
0
Wl’2 . - . .
Y € (@) with ¥ =0 on QG . Let & be as defined in the proof of
0

Theorem 1. Since u(xé)d)(x)2 ¢ W%(@) ana u(xG)Q(x)2 =0 on @ we
0
have

(g, u(xé])z = [ F(u(xs(x)])dx = { F(u(xé(x)))dx + [ F(u(x)@(x)g)dx .

for 8§ = 6./2 , since x6(x) =x on @ and $ =1 on Q- @ . We
1 8 61/2

show that

lim { F(u(xé(x)))dx =0
§+0 /@@

and that

https://doi.org/10.1017/5S0004972700011461 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011461

so that

. 6()_
since x (x) = zg,

Boundary values of elliptic equations

§-0

1imf P (u(x)®(z)?) dz
80 /4

it follows from (6) that

1lim f
&0 Q6

Now it remains to prove that 1lim

F(u®2)dk = lim

lim Hu(ma)ng ,

2 . ) . Sy ,2
lels = Lim ¢z, u(=")) = Lim fu{e”) I3
§+0 80
2(.'z:) on 9Q . Setting
(u(x)(p(x)-é)@(x)2 for x € Qd .
v(x) =
0 for x € Q_Q(S >
h 2
f 3. a..DiuD.u(p—G)Q
60 1gg 2,551 T Y
n n
+2 Y  a..D.uudD.®(p-8) - Y
ig=r 7 7,4=1

1=1

&0 Jg  1,5=1 *
= lim I uggde
620 /g,

&0 60

= lim I u(x )zg(x)dS
60 Jag ¥

= 1in [ufz )P .
550 uleg )l

2 e

https://doi.org/10.1017/5S0004972700011461 Published online by Cambridge University Press

n
- lim J ) D.[a..D.p¢2u2]dx
Q6 d J J

F(u[x‘s(x)))dr =0 .

D. [a ..D .p<1>2u]u
1 17 J

n
+ .Z biDiuu(p—6)¢2+cu2(p-6)®2-fu(p—6)¢%]dx

= 1i f u(x 2g(:z:)dS + 1lim { u(x ]2 g(x:)-g(x)]ds
o 29 6) X "BQ 8 [ ) x

Note that
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17 (u (%)) |
< c[1ou(z) | | ou(e8(2)) | o() + () | (e (2) ) |+ | Du =) | [l 2) |]

n
+ ¥ Ibi(x)IIDu(x)llu(xs(x)]lp(ac) + et | (@) | u (=) | o(2)
=1

w 1f (=2 () [o(2)

for x € Q-QG , where C 1is a positive constant independent of & . Since

0(6/2)—l(pf) ¢ 12 , 0<86/2-1<% and f uede is bounded, by Lemma
9@ '
8

3,

lim ( ]f(x)||u(x6)|p(x)dx =0 .
620 7@-q

It follows from Lemma 2 and HGlder's inequality that

lu(a) | (=) |o(=)dz = 0 .

lim

&0 JQ—QG

In view of Lemmas 5 and 6,

lim I |Du@r6(x))llu(x)|dx =0,
6_>0 Q-Q(S
lim [ |Du(x)||Du(x6(x))|p(x)dx =0 .
6_’0 Q—Q(S

To estimate the remaining terms we restrict ourselves to the case n > 2 .

By Holder's inequality

n
I Y 16, () | (@) | (e () |o(z)do
Q-@g =1
2 % -£ 8 +e
=|Z 2] S N T I ) P T
=8 (qy) - (e-9;) b (e-q) 1 (9-9;)
where
1,1 _1 1_1 1
st EI Th o oxT 2 "m0 B <l
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Now the Sobolev inequality implies that

(&)l = 5| I (@)® 0, et (e))0T
L £° (e-@5) 12 (e-q,

and consequently, by Lemmas 4 and 6,

n
vin [ 3 by | 10u(@) | |u(e(0) [pla)ds -
§+0 Q—Q5 i=1

Similarly one can prove that

1lim

j le(2)] Jutz) | Ju (= (2)) | ole)dz = 0
§+0 Q_Q6

and this completes the proof.

4, The energy estimate
Consider the elliptic equation of the form
n n
(1') Lu+x=- Y D.la,.(x)D.u) + b.(x)D.u + (e(z)+A)u = flx)
R A Bt 1 L U1 7
1,J=1 =1
in @ , where A 1is a real parameter.
The results of Section 3 suggest the following concept of the
Dirichlet problem.
Let ¢ € L2(8Q) . A wesk solution wu € Wiéi(Q) of (1') (or (1)) is a
solution of the Dirichlet problem with the boundary condition
(13) u(x) = ¢(x) on 3@
if
lim [ [u(xé(x))-¢(x)]2dsx =0 .
§+0 - 3q

Under stronger assumptions the above form of the Dirichlet problem has
already been considered by Necas [121, [13] (Chapter 6), Guscin and
Mikhailov [3] and Mikhailov [9]. The relation to the Dirichlet problem in

Wl’z(Q) will be discussed in the next section.
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We now establish the following energy estimate.

THEOREM 5. Let u € Wi(;i(Q) be a solution of the Dirichlet problem

(1'), (13). Then there exist positive constants d, )\0 and C

independent of u , such that

(1) f |Du(x)|2r(x)dx+ sup M(3§) +[ u(x)2d:z:
Q 0<6=d Qd

b

< c[J o(x)%ds + J )2z O
3Q Q /

for )\?_)\0.

2 . . L.
Proof. Note that if u € Vlloc(Q) is a solution of the Dirichlet
problem (1'), (13), then the conditions I, II, IIT hold. Let v be the

test function introduced in the proof of Theorem 1. Thus we have

2 2.2
(15) % f Y a .DpD.pu"® ds
Tagg g1 WY
n n > >
= J Z a .DiuD.u(p~<S)<I>2dm - % J Z Di[a..D.pd> ]u dx
Qs t.9=1 77 Qg i.g=1 VY

n n
+2 f . L_ aijDL.u-u(p-G)(bDjd)dx + f Z biDiu'u(D-(S)(I)zdx
QcS 1,J=1 Q(S i=1

+ f (e+M)ul(p-6)0°dx - J fu(p-6)6°dx .
s s

Since we may assume that (Sl <1 , it is clear from the proof of I = II

(Theorem 1) that

(16) f WCds_ < LlB | Du| 2 (0-8) 8°dec *,[ w2Pe°d
3Q; Qs Q
+ I u2|D<I>|2d:c + J u2(p-6)|D<I>|2d'x: + A I uz(p-6)<b2dx
Q Qs Qs
. [ u2(p-8)"Bodr + [ f2(p—6)e<b2dx—| ,
9 Qs i
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for all 6 € (0, 60/2) , where "’ Ll is a positive constant independent of
§, B~= min(a, 1-2¢, 1-281) , @=1-063; the constants 0 < g€ <1 and
0 < el < 1 were introduced in the proof of I @ II (Theorem 1). On the
other hand it follows from (15) and assumption {(A) that

am vt J | Du|2(p-6)0°dz + A f ©2(p-6)0%dx
Q& JQ6

1A
N

2 22 n 2] 2
a..D.pD.ou"0°ds +'% D.la..D.pd ]u dx

. & id 17 g . & i\ i

8Qg 7,J=1 Q €,j=1 )

n n
2
- ..D.ue -8)9D .ddx - D.ue -
IQ ; %;l a; ;% u(p-6) J¢ !Q ié; bz % u({ p-8)0“dx
§ 7 [
- I cuz(o-é)égdx + f fu(p—6)®2dx .
% %

Denote the fourth and fifth integrals on the right hand side of the
last inequality by Il and I2 . As in the proof of Theorem 1 we have

(1-e5.)/s
(18) |Il| LS, . l[j
e

1A

| Du|2(p=8)0°dx + f u2(0-6)"Lo2
Q
8

o u2(p—6)|D®|2d%] .
}QG

(1-2¢.6.)}/r 2 -1
(19) |1,] = 1.8 it f | Dul?(p-6)0%dz + ! w2(p-8) L ¢%dx
Q Q
s s

+ I u2(p-6)|D¢|2dx

%
Choose 61 such that
(1-2es5,)/s (1-2¢.8.)/s -1
1771 1717771 Y
L2Gl + L361 < v

Consequently we deduce from (17), (18) and (19) that
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(20) I |Du)|?(0-6)8°dx + A J 42 (p-8)0°dzx
0 %

sLh@(s) + [ w2eldz + f u2(p-8) | Do | %dc +[ 42 | Do) dic
Q 9 Q
+ [ w2 (p-6)"Po%dz + f fz(M)%?d%
% s

for all § € (O, 61/2] , where L, 1is a positive constant. Letting ¢

i

tend to zero we therefore obtain
2
(21) [ |Du|%0(x)0%dz + A J u2p26°dx
e )

= Lh[I ¢(x)2dS + [ U2 dr + J u2p|D¢|2dx + f u2|D¢|2dx
99 Q Q Q

+ f uzp—BQde + J f2p6¢2dx .
[ q

Now let ¥ be a smooth function on & such that V¥

1 on & , ¥=0
62

on @ - Q63 , 0=Y¥=<1 on 5-, vhere 0 < 63 < 62 < 60 . Taking

2
v = u¥y as a test function by a standard argument, we deduce that

‘

(22) f | Du|2¥2dx + A J ©YPdx
Q@

e
< LSB w2 + J u? | D¥|%dx + f fzwgd.%
Q Q Q

Since

[ 1Paz | nfPazd| Il
Q

Q Q
62 S,

where 6* = sup p(x) , by choosing 62 = &, and using (21) and (22) we

0 1

obtain
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@3 | lDu|2o<x)dx+xf Pods
1q Q

SL{[ o) + | ar e [ W04s v | P|o0f2
’3q Q Q Q

+ I ugp-de + f f2pedx + I fzwzdél :
Q Q Q |
Thus combining (16) and (23) we obtain

(24) J “2de
adg
= LY[I ¢2dx + f uldz + f u2|D®[2dx + f u2|DW]2dx
2@ Q Q Q

+ I u2(p-6)_6dx + J
Qé Q

u2p'8dx + I f2pedx + f f2W2dé1

Q ‘q

for all & € (O, Gl/é] , where L, is a positive constant. To proceed

T

further we derive from Lemma 1 that

(25) | wP(p-6)Pdz

J
%
= K[%‘B I u2dx+61_6 J 7,42d.5'+61"B I
1 1 1
1 1

|Du|2(p_5)dx} :

On the other hand it follows from Theorem 1 in [17], p. 138, that

2 ~ 2
(26) f u“ds_ < Clull ,
x .2
2, 2 (@ )
1 1
where 5 is an absolute constant independent of 61 . Combining (22) and

(26) we obtain

(27) J u2de = El[] wdr + f uZIDxWIde + I fzwzd%} .
2, Q Q Q
1

Choosing 61 such that L7K61_B <1 , the estimates (23), (2k), (25) and

(27) imply
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(28) f |Du|®pdz + A [ ulpdz + M(8)
Q Q
u2|D¢|2dx + f u2|DW|2dx + ( u2p Bdx
Q ‘g

+ IQ fzpedx + I fzwzdx

Q

= L8 J ¢2dx + I u2dx + I
Q@ e Q

for & € (O, 61/2] , where L8 is a positive constant. We can now easily

complete the proof of the theorem. Indeed, note that

(29) f Bz =d sw M) + | uldr
Q 0<8=d JQd
and
1-8
(30) J uzp_de = ﬁrB sup M(8) + J uzp_sdx
Q 0=8=d @y
for d = 60 . Taking d sufficiently small and X sufficiently large,
say A = A the result follows from (28), (29) and (30).

O 3
We mention here that Guscin and Mikhailov [3], [9], also proved the

energy estimate. The proof presented here is entirely different.

5. Application to the Dirichlet problem
In this section we study the solvability of the Dirichlet problem with
boundary data in L2(8Q) . The definition of the Dirichlet problem in

Wiéi(Q) of (1'), (13) has already been introduced in the previous section.

Recall that a function u € Wl’z(Q) is a solution of the Dirichlet
problem (1), (13) (or (1'), (13)) if u is a weak solution of (1) (or

(o]
(1) and u - ¢ € F2(Q)
In this definition it is assumed that boundary data ¢ can be

extended to an element of Wl’z(Q) which is also denoted by ¢ . As we

pointed out in the Introduction this is a restrictive assumption because

2
not every function in L (8Q) is the trace of an element in Wl’z(Q) .
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Let us introduce the Hilbert space ﬁl’z(Q) of all functions u(x)

in Wl’z(Q) such that
loc

2
lluell

Wl

It is evident that

, = [ u(z)’dz + J | Du(z) | Pr(z)de < = .
2(q) e Q

(31)  Jlulf® > = max(1, d) ( | Du(x) | 2r(z)dx +J w(x)ode + sup M(8)
s Jg 9y 0=8=d

THEOREM 6. Let X = Ag - Then for every ¢ € L2(3Q) there is a

wnique solution of the Dirichlet problem (1'), (13) in Wiéi(Q) .

Proof. Let {¢m} be a sequence of functions in Ll(aQ) converging

in L2(3Q) to the function ¢ .

Define
flx) for x € A/
fk(x) =
0 for x € Q—Ql/m >
for m such that 1/m = 60 . Let u, be a solution of the Dirichlet
problem
Lu + Au = fﬁ in @ ,

in Wl’2(Q) (see [15], [16] or [5]). Here we may assume that XO is

sufficiently large that the theorems on the existence of solutions in

Wl’e(Q) are applicable. It is obvious that inequality (14) is valid for

u and
m

https://doi.org/10.1017/5S0004972700011461 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011461

26 J. Chabrowski and H.B. Thompson

2 2 2
Du_-Du da —u )%ds —u )2dx
IQ | p ql r(z)dzr + Ozggd faQs (up u )%ds_ + IQd (up uq)

< B 2.0 + _ 2
- C(fQ (fp fq) rds '(BQ ((bp ¢q) de

It follows from (31) that 1lim u, = u exists in ﬁl’z(Q) . As in [9] one
e

can show that u satisfies the boundary condition (13) in L2(8Q) .

THEOREM 7. Suppose that J fl2)2r(z)%de < © and let ¢ € L°(39) .
Q

If there is a function ¢1 in hi’z(Q) such that ¢l =¢ on 99 (in the

sense of trace), then a solution ul(z) 1in Wiéi(Q) of the Dirichlet

problem (1), (13) is a solution in Wl’z(Q) of the same problem.
The proof is essentially the same as that of Lemma 3 in [9] and

therefore is omitted.

Theorem 7 implies that every solution in Wiéi(Q) of the problem

Lu=0 on @,
(32)
u=0 1in 23§ ,

or of the problem

L*u

"
o

on 9@ ,
(32%)
u=0 in 9349 ,

is a solution in Wl’e(Q) . Consequently the problem (32) or (32%) can
have only a finite number of linearly independent solutions (see [5],

p. 156, or [15], [16]).
It is known that for the Dirichlet problem (1), (13) to have a
solution Wl’z(Q) [we assume that the boundary data is the trace of an

element in Wl’2(Q) ), it is necessary and sufficient that f and ¢ be

related as follows:
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x

Ju*
(33) f "4 gas =[ wifds (5 =1, ..., p)
ag N Q ¢

where {u;} is a maximal linearly independent system of solutions of the
problem (32%) and 98/9N denote the conormal derivative of the elliptic

operator (1). 1If a;is bi € Cl(Q) then u; € W2’2(Q) and Mikhailov [9]

was able to show that the Dirichlet problem (1), (13) in Wigg(Q) has a
solution if and only if (33) holds. Nevertheless we can show in our
situation that the Dirichlet problems in Wl’z(Q) and Wi;i(Q) have the
same eigenvalues.

Fix X , and consider the Dirichlet problem

(34) Iu + (AO+A)u =f on @,
(35) u = ¢ in aQ s
where ¢ € L°(3Q) and f flz)2r(x)2de < » .

Q

In view of Theorem 6 the Dirichlet problem (34), (35) has a unique

solution u. in Wl’z(

. A i . .
5 oc @) provided o 1is sufficiently large

THEOREM 8. Let ¢ € L°(39Q) , J Flz)r(2)%dz < © . Then the
Q

Dirichlet problem (1'), (13) has a solution in Wi;i(Q) if and only if
Aouo 18 orthogonal to every eigenfunction of the problem

(36) L*u +Au=0 in @, u=0 on 23Q .

Proof. Suppose that u is a solution of the problem (1'), (13) in

52
Wioc(Q) . Put
(371) W= U~ Uy -
. . . Wl,2
Then w 1is a solution in loc(Q) of the problem
(38) Iw + W = Aouo in @, w=0 on 3.
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It follows from Theorem 7 that w ¢ ﬁl’e(Q) and consequently Xouo is
orthogonal to every eigenfunction of the problem (36).

Conversely if Xou is orthogonal to every eigenfunction of the

0

problem (36) then the problem (38) has a unique solution in Wl’z(Q) and
the solution of the Dirichlet problem (1'), (13) is given by the formula

(37).

Observe that the solution of the Dirichlet problem in Wiéi(Q)
belongs to ﬁl’z(Q)

THEOREM 9. Suppose that f € L3(Q) for some q > n/2 and c is
bownded away from zero on @ . Then for every ¢ € C(3Q) there exists a
unique solution in ﬁl’e(é) n C(Q) of the Dirichlet problem (1), (13).

Proof. It follows from Theorem 3.8 in [15] that the Dirichlet problem

. - . . 01,2
Lu=0 in @ , u =0 on 9@ has only the trivial solution in Wl’ (@) .
Consequently by Theorem 8 there exists a unique solution u € ﬁl’g(Q) of
the problem (1), (13). It remains only to show that u € C(Q) . Let {¢m}
be a sequence in Cl(a) converging uniformly to ¢ on 9@ . By virtue of
Theorem 1k4.1 in [5] the solution of the Dirichlet problem

Lu+ Au=f in @ ,

Uu

¢ on 3¢,

m

belongs to Wl’z(Q) n ¢(Q) . By Theorem 3.8 in [15],

stép Iup(x)-uq(x)l < squ |¢p(x)-¢q(ﬂ=)| +0

as p, g > *® and the result follows.

This theorem is similar to, but slightly sharper than, Theorem 8.30 in
(2] (p. 196).
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