
2

A heavy ion phenomenology primer

What macroscopic properties of matter emerge from the fundamental constituents
and interactions of a non-Abelian gauge theory? The study of ultra-relativistic
heavy ion collisions addresses this question for the theory of the strong interaction,
Quantum Chromodynamics, in the regime of extreme energy density. To do this,
heavy ion phenomenologists employ tools developed to identify and quantify col-
lective phenomena in collisions that have many thousands of particles in their final
states. Generically speaking, these tools quantify deviations with respect to bench-
mark measurements (for example in proton–proton and proton–nucleus collisions)
in which collective effects are absent. In this chapter, we provide details for three
cases of current interest: (i) the characterization of azimuthally anisotropic flow,
which teaches us how soon after the collision matter moving collectively is formed
and which allows us to constrain the value of the shear viscosity of this matter; (ii)
the characterization of jet quenching, which teaches us how this matter affects and
is affected by a high-velocity colored particle plowing through it; and (iii) the char-
acterization of the suppression of quarkonium production, which has the potential
to teach us about the temperature of the matter and of the degree to which it screens
the interaction between colored particles.

2.1 General characteristics of heavy ion collisions

In a heavy ion collision experiment, large nuclei, such as gold (at RHIC) or lead (at
the CERN SPS and LHC), are collided at an ultra-relativistic center of mass energy√

s. The reason for using large nuclei is to create as large a volume as possible of
matter at a high energy density, to have the best chance of discerning phenomena or
properties that characterize macroscopic amounts of strongly interacting matter. In
contrast, in energetic elementary collisions (say electron–positron collisions but to
a good approximation also in proton–proton collisions) one may find many hadrons
in the final state but these are understood to result from a few initial partons that
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2.1 General characteristics of heavy ion collisions 5

each fragment rather than from a macroscopic volume of interacting matter. Many
years ago Phil Anderson coined the phrase “more is different” to emphasize that
macroscopic volumes of (in his case condensed) matter manifest qualitatively new
phenomena, distinct from those that can be discerned in interactions among few
elementary constituents and requiring distinct theoretical methods and insights for
their elucidation [53]. Heavy ion physicists do not have the luxury of studying
systems containing a mole of quarks, but by using the heaviest ions that nature
provides they go as far in this direction as is possible.

The purpose of building accelerators that achieve heavy ion collisions at higher
and higher

√
s is simply to create matter at higher and higher energy density. A

simple argument to see why this may be so arises upon noticing that in the center-
of-mass frame we have the collision of two Lorentz-contracted nuclei, pancake-
shaped, and increasing the collision energy makes these pancakes thinner. Thus,
at t = 0 when these pancakes are coincident the entire energy of the two incident
nuclei is found within a smaller volume for higher

√
s. This argument is overly

simple, however, because not all of the energy of the collision is transformed into
the creation of matter; much of it is carried by the debris of the two colliding nuclei
that spray almost along the beam directions.

The question of how the initial state wave function of the colliding nuclei deter-
mines precisely how much matter, containing how much entropy, is produced soon
after the collision, and consequently determines the number of particles in the final
state, is a subject of intense theoretical interest. We shall not describe this branch
of heavy ion phenomenology in any detail, but it is worth having a quantitative
sense of just how many particles are produced in a typical heavy ion collision.
In Fig. 2.1 we show the multiplicity of charged particles per unit pseudorapidity
for RHIC collisions at four different values of

√
s. Recall that the pseudorapidity

η is related to the polar angle θ measured with respect to the beam direction by
η = − log tan(θ/2). Note also that, by convention, the incident ions in these col-
lisions have a velocity such that individual nucleons colliding with that velocity
would collide with a center of mass energy of

√
s. Since each gold nucleus has 197

nucleons and each Pb nucleus has 208 nucleons, the total center of mass energy in
a heavy ion collision at the top RHIC energy is about 40 TeV and it rises to about
600 TeV at the current LHC energy. By integrating under the curve in Fig. 2.1, one
finds that a heavy ion collision at top RHIC energy yields 5060 ± 250 charged par-
ticles [94, 95]. The multiplicity measurement is made by counting tracks, meaning
that neutral particles (like π0s and the photons they decay into) are not counted. So,
the total number of hadrons is greater than the total number of charged particles. If
all the hadrons in the final state were pions, and if the small isospin breaking intro-
duced by the different number of protons and neutrons in a gold nucleus can be
neglected, there would be equal numbers of π+, π− and π0 meaning that the total
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Figure 2.1 Charged particle multiplicity distributions for central nucleus–nucleus
collisions (i.e. the 5% or 6% of collisions that have the smallest impact parameter)
over more than two orders of magnitude in

√
sNN. Data taken from Refs. [263]

and [94].

multiplicity would be 3/2 times the charged multiplicity. In reality, this factor turns
out to be about 1.6 [96], meaning that heavy ion collisions at the top RHIC energy
each produce about 8000 hadrons in the final state. At the LHC, the corresponding
pseudorapidity distribution is known so far only in a range around mid-rapidity
(see Fig. 2.1), with d Nch/dη = 1584 ± 4(stat) ± 76(sys) at η = 0 in the 5% or
6% of collisions with

√
s = 2.76 TeV that have the smallest impact parameter [4].

We see from Fig. 2.1 that this multiplicity grows with increasing collision energy
by a factor of close to 2.5 from the top RHIC energy to LHC at

√
s = 2.76 GeV.

The multiplicity per unit pseudorapidity is largest in a range of angles centered
around η = 0, meaning θ = π/2. Moreover, the distribution extends with increas-
ing center of mass energy to larger values of pseudorapidity, so that the total event
multiplicity at LHC is estimated to be a factor ∼ 5 larger than at RHIC, lying in
the ballpark of ∼25 000 charged particles in central collisions. The illustrations in
Fig. 2.2 provide an impression of what collisions with these multiplicities look like.

The large multiplicities in heavy ion collisions indicate large energy densities,
since each of these particles carries a typical (mean) transverse momentum of sev-
eral hundred MeV. There is a simple geometric method due to Bjorken [165], that
can be used to estimate the energy density at a fiducial early time, conventionally
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Figure 2.2 Event displays illustrating heavy ion collisions as seen by the STAR
detector at RHIC (upper panel) and the ALICE detector at the LHC (lower panel).
Nuclei (gold above; lead below) collided at the center of each image, and the
resulting tracks made by those charged particles produced in the collision that pass
through the STAR and ALICE time-projection chambers and the ALICE inner
tracker are shown, projected onto the page in the upper image and in perspective
in the lower image. Figures courtesy of Brookhaven National Laboratory (above)
and the ALICE Collaboration and CERN (below).

chosen to be τ0 = 1 fm. The smallest reasonable choice of τ0 would be the thick-
ness of the Lorentz-contracted pancake-shaped nuclei, for instance ∼ (14 fm)/107
at RHIC since gold nuclei have a radius of about 7 fm and the Lorentz factor is
set by energy of the incident nucleons and their mass in the center-of-mass frame,
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γ ∼ m N/E . But, at these early times ∼ 0.1 fm the matter whose energy density
one would be estimating would still be far from equilibrium. We shall see below
that data on azimuthally anisotropic flow indicate that by ∼ 1 fm after the colli-
sion, matter is flowing collectively like a fluid in local equilibrium. The geometric
estimate of the energy density is agnostic about whether the matter in question is
initial state partons that have not yet interacted and are far from equilibrium or
matter in local equilibrium behaving collectively; because we are interested in the
latter, we choose τ0 = 1 fm. Bjorken’s geometric estimate can be written as

εB j = d ET

dη

∣∣∣∣
η=0

1

τ0π R2
, (2.1)

where d ET /dη is the transverse energy
√

m2 + p2
T of all the particles per unit

rapidity and R ≈ 7 fm is the radius of the nuclei. The logic is simply that at time
τ0 the energy within a volume 2τ0 in longitudinal extent between the two receding
pancakes and π R2 in transverse area must be at least 2d ET /dη, the total transverse
energy between η = −1 and η = +1. At RHIC with d ET /dη ≈ 800 GeV [95],
we obtain εB j ≈ 5 GeV/fm3. In choosing the volume in the denominator in the
estimate (2.1) we neglected transverse expansion because τ0 � R. But, there is
clearly an arbitrariness in the range of η used; if we had included particles produced
at higher pseudorapidity (closer to the beam directions) we would have obtained a
larger estimate of the energy density. Note also that there is another sense in which
(2.1) is conservative. If there is an epoch after the time τ0 during which the matter
expands as a hydrodynamic fluid, and we shall later see evidence that this is so,
then during this epoch its energy density drops more rapidly than 1/τ because as
it expands (particularly longitudinally) it is doing work. This means that by using
1/τ to run the clock backwards from the measured final state transverse energy
to that at τ0 we have significantly underestimated the energy density at τ0. It is
striking that even though we have deliberately been conservative in making this
underestimate, we have found an energy density that is about five times larger
than the QCD critical energy density εc ≈ 1 GeV/fm3, where the crossover from
hadronic matter to quark–gluon plasma occurs, according to lattice calculations of
QCD thermodynamics [129].

As shown in Fig. 2.3, the spectrum in a nucleus–nucleus collision extends to
very high momentum, much larger than the mean. However, the multiplicity of
high-momentum particles drops very fast with momentum, as a large power of pT .
We may separate the spectrum into two sectors. In the soft sector, spectra drop

exponentially with
√

m2 + p2
T as in thermal equilibrium. In the hard sector, spec-

tra drop like power laws in pT as is the case for hard particles produced by high
momentum-transfer parton–parton collisions at τ = 0. The bulk of the particles
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Figure 2.3 Charged particle spectrum as function of pT in Pb+Pb collisions at
LHC energy for nearly head-on (the 5% of collisions with the lowest impact
parameter) and grazing collisions, compared to the corresponding spectrum in
p+p collisions with an appropriately scaled normalization. Figure taken from
Ref. [7].

have momenta in the soft sector; hard particles are rare in comparison. The separa-
tion between the hard and the soft sectors, which is by no means sharp, lies in the
range of a few (say 3–6) GeV.

There are several lines of evidence that indicate that the soft particles in a heavy
ion collision, which are the bulk of all the hadrons in the final state, have rescattered
many times and come into local thermal equilibrium. The most direct approach
comes via the analysis of the exponentially falling spectra of identified hadrons.
Fitting a slope to these exponential spectra and then extracting an “effective tem-
perature” for each species of hadron yields different “effective temperatures” for
each species. This species dependence arises because the matter produced in a
heavy ion collision expands radially in the directions transverse to the beam axis;
perhaps explodes radially is a better phrase. This means that we should expect
the pT spectra to be a thermal distribution boosted by some radial velocity. If
all hadrons are boosted by the same velocity, the heavier the hadron the more its
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Figure 2.4 (a) Spectra for identified pions, kaons and protons as a function of pT
in head-on gold–gold collisions at top RHIC energy [25]. (b) Spectra for identified
pions, kaons and protons as a function of pT in (non-single-diffractive) proton–
proton collisions at the same energy

√
s = 200 GeV [17].

momentum is increased by the radial boost. Indeed, what is found in data is that the
effective temperature increases with the mass of the hadron species. This can be
seen at a qualitative level in Fig. 2.4a: in the soft regime, the proton, kaon and pion
spectra are ordered by mass, with the protons falling off most slowly with pT , indi-
cating that they have the highest effective temperature. Quantitatively, one uses the
data for hadron species with varying masses to first extract the mass-dependence of
the effective temperature, and thus the radial expansion velocity, and then to extrap-
olate the effective “temperatures” to the mass → zero limit, and in this way obtain
a measurement of the actual temperature of the final state hadrons. This “kinetic
freezeout temperature” is the temperature at the (very late) time at which the gas
of hadrons becomes so dilute that elastic collisions between the hadrons cease,
and the momentum distributions therefore stop changing as the system expands.
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Figure 2.4 (a) Spectra for identified pions, kaons and protons as a function of pT
in head-on gold–gold collisions at top RHIC energy [25]. (b) Spectra for identified
pions, kaons and protons as a function of pT in (non-single-diffractive) proton–
proton collisions at the same energy

√
s = 200 GeV [17].

momentum is increased by the radial boost. Indeed, what is found in data is that the
effective temperature increases with the mass of the hadron species. This can be
seen at a qualitative level in Fig. 2.4a: in the soft regime, the proton, kaon and pion
spectra are ordered by mass, with the protons falling off most slowly with pT , indi-
cating that they have the highest effective temperature. Quantitatively, one uses the
data for hadron species with varying masses to first extract the mass-dependence of
the effective temperature, and thus the radial expansion velocity, and then to extrap-
olate the effective “temperatures” to the mass → zero limit, and in this way obtain
a measurement of the actual temperature of the final state hadrons. This “kinetic
freezeout temperature” is the temperature at the (very late) time at which the gas
of hadrons becomes so dilute that elastic collisions between the hadrons cease,
and the momentum distributions therefore stop changing as the system expands.
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In heavy ion collisions at the top RHIC energy, models of the kinetic freezeout
account for the data with freezeout temperatures of ≈ 90 MeV and radial expan-
sion velocities of 0.6 c for collisions with the smallest impact parameters [16]. With
increasing impact parameter, the radial velocity decreases and the freezeout tem-
perature increases. This is consistent with the picture that a smaller system builds
up less transverse flow and that during its expansion it cannot cool down as much
as a bigger system, since it falls apart earlier.

The analysis just described is unique to heavy ion collisions: in elemen-
tary electron–positron or proton–(anti)proton collisions, spectra at low transverse
momentum may also be fit by exponentials, but the “temperatures” extracted in
this way do not have a systematic dependence on the hadron mass, see Fig. 2.4b.
Simply seeing exponential spectra and fitting a “temperature” therefore does not
in itself provide evidence for rescattering and equilibration. Making that case in
the context of heavy ion collisions relies crucially on the existence of a collective
radial expansion with a common velocity for all hadron species.

Demonstrating that the final state of a heavy ion collision at the time of kinetic
freezeout is a gas of hadrons in local thermal equilibrium emboldens us to ask
whether the material produced in these collisions reaches local thermal equilib-
rium at an earlier time, and thus at a higher temperature. The best evidence for
an affirmative answer to this question comes from the analysis of “elliptic flow”
in collisions with nonzero impact parameter. We shall discuss this at length in the
next section.

We close this section with a simpler analysis that lays further groundwork by
allowing us to see back to a somewhat earlier epoch than that of kinetic freeze-
out. If we think of a heavy ion collision as a “little bang”, replaying the history
of the big bang in a small volume and with a vastly accelerated expansion rate,
then kinetic freezeout is the analogue of the (late) cosmological time at which
photons and electrons no longer scatter off each other. We now turn to the ana-
logue of the (earlier) cosmological epoch of nucleosynthesis, namely the time at
which the composition of the final state hadron gas stops changing. Experimental-
ists can measure the abundance of more than a dozen hadron species, and it turns
out that all the ratios among these abundances can be fit upon assuming thermal
distributions with some temperature T and some baryon number chemical poten-
tial μB , as shown in Fig. 2.5. This is a two parameter fit to about a dozen ratios.
The temperature extracted in this way is called the chemical freezeout temperature,
since one interpretation is that it is the temperature at which the hadronic matter
becomes dilute enough that inelastic hadron–hadron collisions cease to modify the
abundance ratios. The chemical freezeout temperature in heavy ion collisions at
top RHIC energies is about 155–180 MeV [193, 56]. This is interesting for sev-
eral reasons. First, it is not far below the QCD phase transition temperature, which
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Figure 2.5 So-called thermal fit to different particle species. The relative abun-
dance of different hadron species produced in RHIC collisions at

√
s = 200 GeV

is well-described by a two-parameter grand canonical ensemble in terms of a
temperature, T , and a chemical potential for baryon number, μB [56].

means that the appropriateness of a hadron gas description of this epoch may be
questioned. Second, within error bars it is the same temperature that is extracted
by doing a thermal model fit to hadron production in electron–positron collisions,
in which final state rescattering, elastic or inelastic, can surely be neglected. So,
by itself the success of the thermal fits to abundance ratios in heavy ion collisions
could be interpreted as telling us about the statistical nature of hadronization, as
must be the case in electron–positron collisions. However, given that we know that
in heavy ion collisions (and not in electron–positron collisions) kinetic equilibrium
is maintained down to a lower kinetic freezeout temperature, and given that as we
shall see in the next section approximate local thermal equilibrium is achieved at
a higher temperature, it does seem most natural to interpret the chemical freeze-
out temperature in heavy ion collisions as reflecting the temperature of the matter
produced at the time when species-changing processes cease.

We have not yet talked about the baryon number chemical potential extracted
from the thermal fit to abundance ratios. As illustrated in Fig. 2.6a, this μB

decreases with increasing collision energy
√

s. This energy-dependence has two
origins. The dominant effect is simply that at higher and higher collision energies
more and more entropy is produced, while the total net baryon number in the col-
lision is always 197+197. At top RHIC energies, these baryons are diluted among
the 8000 or so hadrons in the final state, making the baryon chemical potential
much smaller than it is in lower energy collisions where the final state multiplicity
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Figure 2.6 (a) Chemical potential extracted from thermal fits at different center
of mass energies [56]. (b) The number of protons minus number of antiprotons
per unit rapidity for central heavy ion collisions [132]. This net proton number
decreases with increasing center of mass energy from

√
s = 5 GeV (at the AGS

collider at BNL), via
√

s = 17 GeV (at the SPS collider at CERN) to
√

s =
200 GeV (at RHIC). (For each collision energy, yp indicates the rapidity of a
hypothetical proton that has the same velocity after the collision as it did before.)

is much lower. The second effect is that, in the highest energy collisions, most of
the net baryon number from the two incident nuclei stays at large pseudorapidity
(meaning small angles near the incident beam directions). These two effects can
be seen directly in the data shown in Fig. 2.1 and Fig. 2.6b: as the collision energy
increases, the total number of hadrons in the final state grows while the net baryon

900

µ b
 (M

eV
)

800

700

600

500

400

300

200

100

0
1 10

√sNN (GeV)

102

2.1 General characteristics of heavy ion collisions 13

AGS yp

SPS yp

RHIC yp

900

(a)

μ b
 (M

eV
)

800

700

600

500

400

300

200

100

0
1 10

√sNN (GeV)

102

yCM

–4 –2 0 2 4

dN
/d

y 
ne

t-
pr

ot
on

s

0

20

40

60

80

(b)

AGS
(E802, E877, E917)

SPS
(NA49)

RHIC
(BRAHMS)

Figure 2.6 (a) Chemical potential extracted from thermal fits at different center
of mass energies [56]. (b) The number of protons minus number of antiprotons
per unit rapidity for central heavy ion collisions [132]. This net proton number
decreases with increasing center of mass energy from

√
s = 5 GeV (at the AGS

collider at BNL), via
√

s = 17 GeV (at the SPS collider at CERN) to
√

s =
200 GeV (at RHIC). (For each collision energy, yp indicates the rapidity of a
hypothetical proton that has the same velocity after the collision as it did before.)

is much lower. The second effect is that, in the highest energy collisions, most of
the net baryon number from the two incident nuclei stays at large pseudorapidity
(meaning small angles near the incident beam directions). These two effects can
be seen directly in the data shown in Fig. 2.1 and Fig. 2.6b: as the collision energy
increases, the total number of hadrons in the final state grows while the net baryon
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number at mid-rapidity drops.1 This experimental fact that baryon number is not
“fully stopped” teaches us about the dynamics of the earliest moments of a hadron–
hadron collision. (In this respect, heavy ion collisions are not qualitatively different
than proton–proton collisions.) In a high energy proton–proton collision, particle
production at mid-rapidity is dominated by the partons in the initial state that carry
a small fraction of the momentum of an individual nucleon – small Bjorken x .
And, the small-x parton distribution functions that describe the initial state of the
incident nucleons or nuclei are dominated by gluons and to a lesser extent by
quark–antiquark pairs; the net baryon number is at larger x .

We shall not focus here on the many interesting questions related to the early-
time dynamics in heavy ion collisions. Because QCD is asymptotically free, it is
natural to expect that during the earliest moments of a sufficiently energetic heavy
ion collision, the physics should not be thought of as strongly coupled. The relevant
length scale at the moment of the collision between two highly Lorentz-contracted
nuclei is the mean spacing between gluons in the transverse plane (the inverse
of this length scale is called the saturation momentum) and in the high collision
energy limit this length scale is short and the physics is weakly coupled. The anal-
ysis of this weak coupling, but strong field, regime is the subject of much active
research that we shall not describe. One of the goals of this effort is to under-
stand how rapidly local thermal equilibrium can be established. We shall see in
Chapter 7 that calculations done via gauge/string duality have shed light on this
particular question.

In the next section we turn to the evidence that local thermal equilibrium is
established quickly, and therefore at a high temperature. This means that heavy ion
collisions can teach us about properties of the high temperature phase of QCD,
namely the quark–gluon plasma. And, we shall see later, so can calculations done
via gauge/string duality. We shall henceforth always work at μB = 0. This is a good
approximation as long as μB/3, the quark chemical potential, is much less than the

1 The data in Fig. 2.6b are plotted versus rapidity

y ≡ 1

2
ln

(
E + pL

E − pL

)
, (2.2)

where E and pL are the energy and longitudinal momentum of a proton in the final state. Recall that rapidity

and pseudorapidity η ≡ − ln tan(θ/2) = 1
2 ln

(
p+pL
p−pL

)
(used in the plot in Fig. 2.1) become the same in the

limit in which E and pL are much greater than the proton mass and the three-momentum p approximates E .
For smaller particle momenta, however, the transformation between η and y involves a non-trivial Jacobian.
As a consequence, the pseudorapidity and rapidity distributions d Nch/dη and d Nch/dy have different shapes.
In ultra-relativistic heavy ion collisions, d Nch/dη looks somewhat trapezoidal, with an approximately flat
plateau around η ∼ 0 as in Fig. 2.1, while d Nch/dy is closer to Gaussian in shape. In these high energy
collisions, it is a reasonable rule of thumb that one can estimate d Nch/dy at y = 0 by multiplying d Nch/dη
at η = 0 by about 1.1. When one plots data for all charged hadrons, as in Fig. 2.1, only pseudorapidity can be
defined since the rapidity of a hadron with a given polar angle θ depends on the hadron mass. When one plots
data for identified protons, pseudorapidity can be converted into rapidity.
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temperature T . The results in Fig. 2.6a show that this is a very good approximation
at top RHIC energies and at the LHC.

2.2 Flow

2.2.1 Introduction and motivation

The word “flow” refers here to a suite of experimental observables in heavy ion
physics that utilize the experimentalists’ ability to select events in which the impact
parameter of the collision lies within some specified range and use these events to
study how the matter produced in the collision flows collectively. The basic idea is
simple. Suppose we select events in which the impact parameter is comparable to
the nuclear radius. Now, imagine taking a beam’s eye view of one of these colli-
sions. The two Lorentz-contracted nuclei (think circular “pancakes”) collide only
in an “almond-shaped” region, see Fig. 2.7. The fragments of the nuclei outside
the almond that did not collide (“spectator nucleons”) fly down the beam pipes. All
the few thousand particles at mid-rapidity in the final state must have come from the
few hundred nucleon–nucleon collisions that occurred within the almond. If these
few thousand hadrons came instead from a few hundred independent nucleon–
nucleon collisions, just by the central limit theorem the few thousand final state
hadrons would be distributed uniformly in azimuthal angle φ (angle around the
beam direction). This null hypothesis, which we shall make quantitative below, is
ruled out by the data as we shall see. If, on the other hand, the collisions within the
almond yield particles that interact, reach local equilibrium, and thus produce some
kind of fluid, our expectations for the “shape” of the azimuthal distribution of the
final state hadrons is quite different. The hypothesis that is logically the opposite
extreme to pretending that the thousands of partons produced in the hundreds of
nucleon–nucleon collisions do not see each other is to pretend that what is produced
is a fluid that flows according to the laws of ideal, zero viscosity, hydrodynamics,
since this extreme is achieved in the limit of zero mean free path. In hydrodynam-
ics, the almond is thought of as a drop of fluid, with zero pressure at its edges and a
high pressure at its center. This droplet of course explodes. And, since the pressure
gradients are greater across the short extent of the almond than they are across its
long direction, the explosion is azimuthally asymmetric. The first big news from
the RHIC experimental program, now also seen at LHC energies, was the discov-
ery that these azimuthal asymmetries can be large: the explosions can blast with
summed transverse momenta of the hadrons that are twice as large in the short
direction of the almond as they are in the long direction. Moreover, while the form
of the nuclear overlap is almond-shaped if averaged over many events (left-hand
side of Fig. 2.7), the initial distributions of individual collisions are expected to
show event-wise fluctuations that deviate from an almond shape (right-hand side
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x

y

φ

ψ2

Figure 2.7 Sketch of the collision of two nuclei, shown in the transverse plane
perpendicular to the beam. Left: the event-averaged overlap of the two nuclei is
limited to an interaction almond with φ → φ + π symmetry in the center of the
transverse plane. Figure taken from Ref. [661]. Right: individual collisions show
fluctuations around the event-averaged distribution. The yellow and orange circles
depict spectator nucleons that do not participate in the collision. Participating
nucleons are in violet color. Figure taken from Ref. [588].

of Fig. 2.7). As we shall see, it turns out that ideal hydrodynamics does a surpris-
ingly good job of describing these asymmetric explosions of the matter produced
in heavy ion collisions with nonzero impact parameter. Even the deviations from
an almond-shaped distribution of final hadronic fragments are consistent with the
fluid dynamic propagation of initial event-wise fluctuations like the ones shown in
Fig. 2.7. This phenomenological success of fluid dynamics has implications which
are sufficiently interesting that they motivate our describing this story in consider-
able detail over the course of this entire section. We close this introduction with a
sketch of these implications.

First, the agreement between data and ideal hydrodynamics teaches us that the
shear viscosity η of the fluid produced in heavy ion collisions must be low; η

enters in the dimensionless ratio η/s, with s the entropy density, and it is η/s that
is constrained to be small. A fluid that is close to the ideal hydrodynamic limit,
with small η/s, requires strong coupling between the fluid constituents. Small η/s
means that momentum is not easily transported over distances that are long com-
pared to ∼ s−1/3, which means that there can be no well-defined quasiparticles
with long mean free paths in a low viscosity fluid since, if they existed, they would
transport momentum and damp out shear flows. No particles with long mean free
paths means strongly coupled constituents. We shall return to this implication of the
smallness of η/s at many points in this book, including in particular in Section 6.3.

Second, we learn that the strong coupling between partons that results in
approximate local equilibrium and fluid flow close to that described by ideal
hydrodynamics must set in very soon after the initial collision. If partons moved
with significant mean free paths for many fm of time after the collision, delaying
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equilibration for many fm, the almond would circularize to a significant degree dur-
ing this initial period of time and the azimuthal momentum asymmetry generated
by any later period of hydrodynamic behavior would be less than that observed.
When this argument is made quantitative, the conclusion is that RHIC collisions
produce strongly coupled fluid in approximate local thermal equilibrium within
close to or even somewhat less than 1 fm after the collision [543]. Reaching
approximate local thermal equilibrium and hence hydrodynamic behavior within
less than 1 fm after a heavy ion collision has been thought of as “rapid equilibra-
tion”, since it is rapid compared to weak coupling estimates [102]. This observation
has launched a large effort (that we shall not review) towards explaining equilibra-
tion as originating from weakly coupled processes that arise in the presence of
the strong color fields that are present in the initial instants of a heavy ion col-
lision. Recent calculations that we shall describe in Chapter 7 indicate, however,
that the observed equilibration time may not be so rapid after all. We shall see
in that chapter that when initially far-from-equilibrium matter thermalizes in a
strongly coupled theory, for a very wide variety of initial states it does so on a
time scale that is of order the inverse of the temperature in the final equilibrated
state. Furthermore, we shall also see that in a strongly coupled field theory with
a dual gravitational description, when two sheets of energy density with a finite
thickness collide at the speed of light a hydrodynamic description of the plasma
that results becomes reliable only ∼ 3 sheet-thicknesses after the collision. And,
a Lorentz-contracted incident gold nucleus at RHIC has a maximum thickness
of only 0.14 fm. So, if the equilibration processes in heavy ion collisions could
be thought of as strongly coupled throughout, perhaps local thermal equilibrium
and hydrodynamic behavior would set in even more rapidly than is indicated by
the data.

We can begin to see that the circle of ideas that emerge from the analysis of flow
data is what makes heavy ion collisions of interest to the broader community of
theoretical physicists. These analyses justify the conclusion that only 1 fm after
the collision the matter produced can be described by using the language of ther-
modynamics and hydrodynamics. And, we have already seen that at this early time
the energy density is well above the hadron–QGP crossover in QCD thermodynam-
ics which is well-characterized in lattice calculations. This justifies the claim that
heavy ion collisions produce quark–gluon plasma. Furthermore, the same analyses
teach us that this quark–gluon plasma is a strongly coupled, low viscosity, fluid
with no quasiparticles having any significant mean free path. Lattice calculations
have recently begun to cast some light on these transport properties of quark–gluon
plasma, but these lattice calculations that go beyond Euclidean thermodynam-
ics are still in their pioneering epoch. Perturbative calculations of quark–gluon
plasma properties are built upon the existence of quasiparticles. The analyses of
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elliptic flow data thus cast doubt upon their utility. And, we are motivated to
study the strongly coupled plasmas with similar properties that can be analyzed
via gauge/gravity duality, since these calculational methods allow many questions
that go beyond thermodynamics to be probed rigorously at strong coupling.

2.2.2 Relating flow observables to spatial asymmetries

We want to study the dependence of collective flow in heavy ion collisions on
the size and anisotropy of the nuclear overlap in the transverse plane, as seen in the
qualitative beam’s eye view sketch in Fig. 2.7. To this end, it is obviously necessary
to bin heavy ion collisions as a function of this impact parameter. This is possible in
heavy ion collisions, since the number of hadrons produced in a heavy ion collision
is anticorrelated with the impact parameter of the collision. For head-on collisions
(conventionally referred to as “central collisions”) the multiplicity is high; the mul-
tiplicity is much lower in collisions with impact parameters comparable to the radii
of the incident ions (often referred to as “semi-peripheral collisions”); the multi-
plicity is lower still in grazing (“peripheral”) collisions. Experimentalists therefore
bin their events by multiplicity, using that as a proxy for impact parameter. The
terminology used refers to the “0%–5% centrality bin” and the “5%–10%” central-
ity bin and . . ., meaning the 5% of events with the highest multiplicities, the next
5% of events with the next highest multiplicity, . . .. The correlation between event
multiplicity and impact parameter is described well by the so-called Glauber the-
ory of multiple scattering [156], which we shall not review here. Suffice to say that
even though the absolute value of the event multiplicities is the subject of much
ongoing research, the question of what distribution of impact parameters corre-
sponds to the 0%–5% centrality bin (namely the most head-on collisions) is well
established. Although experimentalists cannot literally pick a class of events with
a single value of the impact parameter, by binning their data in multiplicity they
can select a class of events with a reasonably narrow distribution of impact para-
meters centered around any desired value. This is possible only because nuclei are
big enough: in proton–proton collisions, which in principle have impact parameters
since protons are not pointlike, there is no operational way to separate variations
in impact parameter from event-by-event fluctuations in the multiplicity at a given
impact parameter.

Suppose that we have selected a class of semi-peripheral collisions. Since these
collisions have a nonzero impact parameter, the impact parameter vector together
with the beam direction define a plane, conventionally called the reaction plane.
The event-averaged almond-shaped nuclear overlap depicted in Fig. 2.7 is then
often characterized roughly in terms of averages of the initial transverse energy
density ρ(x, y)
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ε2 e2 i �2 ≡ −{r2 e2 i φ}
{r2} , {. . . } ≡

∫
dx dy ρ(x, y) . . .∫

dx dy ρ(x, y)
. (2.3)

Here, ε2 and �2 denote the standard participant eccentricity and the participant
plane, respectively. They have a straightforward interpretation as characterizing
the azimuthal orientation and eccentricity ε2 = {y′2}−{x ′2}

{y′2}+{x ′2} of the ellipsoid that best
fits the initial transverse energy density distribution (where x ′, y′ denote trans-
verse coordinates along the main axes of the ellipsoid). However, since event-wise
fluctuations can lead to significant deviations from an elliptic shape, the elliptic
eccentricity ε2 and second order reaction plane �2 are in general not sufficient. For
a more complete characterization of spatial eccentricities from fluctuations in the
initial state, one defines

εn ei n �n ≡ −{rn ei n φ}
{rn} . (2.4)

For a large class of semi-peripheral collisions, the elliptic coefficient ε2 will natu-
rally characterize the dominant spatial asymmetry, as it captures the main features
of the almond-like shape of the event-averaged nuclear overlap. However, in more
central, almost head-on, collisions, when the event-averaged nuclear overlap shows
only small azimuthal asymmetries, higher order terms characterizing fluctuations,
and in particular ε3, can be of the same magnitude if not larger than ε2. We note
that spatial eccentricities are typically defined in a coordinate system that is shifted
in the transverse plane such that (2.4) vanishes for n = 1. This does not imply that
the distribution ρ(x, y) cannot have non-vanishing first moments. It just indicates
that the ansatz (2.4) is too limited to characterize them. A complete ansatz could be
based for instance on the two-parameter set of moments εn,m ≡ −{rn ei mφ}/{rn}
that contains the subset εn ≡ εn,n of (2.4). In this framework, the components
εn,1, n 
= 1 would characterize first harmonics of the spatial distribution, see e.g.
Ref. [778]. A discussion of such refined characterizations of ρ(x, y) lies beyond
our scope.

The central question is now how the dynamics of relativistic heavy ion collisions
propagates the spatial eccentricities of the initial energy density distribution into
the observable momentum spectra. More specifically, as the azimuthal directions
within the transverse plane of Fig. 2.7 are not equivalent, we can ask for example
to what extent the multiplicity and momentum of hadrons flying across the short
direction of the collision almond (in the reaction plane) differs from that of the
hadrons flying along the long direction of the collision almond (perpendicular to
the reaction plane). And if the initial nuclear overlap shows a significant triangu-
larity ε3, or higher moments ε4, ε5, ε6, . . ., we can ask which imprints these have
on the measured spectra.
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20 A heavy ion phenomenology primer

To address this question, we characterize now the dependence on the reaction
plane for the case of the single inclusive particle spectrum d N/d3p of a particular
species of hadron. The three-momentum p of a particle of mass m is parametrized
conveniently in terms of its transverse momentum pT , its azimuthal angle φ, and
its rapidity y which specifies its longitudinal momentum. Specifically,

p =
(

pT cosφ, pT sinφ,

√
p2

T + m2 sinh y

)
. (2.5)

The energy of the particle is E =
√

p2
T + m2 cosh y. The single particle spectrum

can then be written as

dN

d2pt dy
= 1

2πpT

dN

dpT dy
[1 + 2v1 cos(φ − �1) + 2v2 cos 2(φ − �2) + · · · ] ,

(2.6)

where the �n denote explicitly the azimuthal orientations of the corresponding
flow component in the transverse plane. Thus, the azimuthal dependence of particle
production is characterized by the harmonic coefficients

vn ≡ 〈exp [i n (φ − �n)]〉 =
∫

d N
d3p ei n (φ−�n) d3 p∫

d N
d3p d3 p

. (2.7)

The coefficients vn are referred to generically as nth order flow. In particular, v1

is referred to as “directed flow”, v2 as “elliptic flow”, and v3 as “triangular flow”.
In general, the vn can depend on the transverse momentum pT , the rapidity y, the
impact parameter of the collision, and they can differ for different particle species.

We can now make our question about the relation between flow observables and
spatial asymmetries of the initial energy density more precise. We ask how the flow
harmonics vn depend on the spatial eccentricities εn of the initial transverse energy
density distribution. We have two principal reasons to limit this discussion to the
moments n ≥ 2. First, as mentioned already, defining first moments of the spatial
distribution would require going beyond the ansatz (2.4). Second, the measured v1

is known to be sensitive not only to medium response, but also to global constraints
from energy–momentum conservation. For instance, if the total momentum of all
particles in some rapidity window (in some pT range) points along φ = 0 and
defines a positive v1, energy–momentum conservation implies that it must point in
some other rapidity window (in some other pT range) along φ = π , corresponding
to a negative v1. In short, the relation between first moments of the spatial eccen-
tricities of the initial energy density distribution and the observable momentum
spectra is complicated by confounding factors. In principle, these can be analyzed
and controlled, but that requires a more extended analysis than we present that is
not yet standard in comparisons between measurements of v1 and fluid dynamic
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Figure 2.8 Transverse momentum dependence of the elliptic flow v2(pT ) for
different centrality bins. Measurements made by the ALICE Collaboration at
the LHC (colored points) are compared with parametrized data from the STAR
Collaboration at RHIC (gray shaded bands). We see v2 increasing as one goes
from nearly head-on collisions to semi-peripheral collisions. Figure taken from
Ref. [5].

simulations of the type we shall discuss below. We shall therefore only discuss the
dynamical understanding of how the εn are related to the vn for the moments with
n ≥ 2. We shall first consider an event-averaged almond-shaped nuclear overlap
zone (left-hand side of Fig. 2.7), before we turn to a discussion of the novel oppor-
tunities arising from a study of event-by-event fluctuations (like those illustrated
on the right-hand side of Fig. 2.7).

A Discussion for event-averaged spatial asymmetries

In Fig. 2.8, we show data for the transverse momentum dependence of the elliptic
flow v2(pT ) measured for different centrality classes in Au+Au collisions at RHIC
and in Pb+Pb collisions at the LHC. It is striking that the v2(pT ) measured at√

s = 2.76 TeV by ALICE in three different impact parameter bins agrees within
error bars at all values of pT with that measured at

√
s = 200 GeV by the STAR

collaboration at RHIC out to beyond 4 GeV in pT . On a qualitative level, this
indicates that the quark-gluon plasma produced at the LHC is comparably strongly
coupled, with comparably small η/s, to that produced and studied at RHIC.

Heavy ion collisions at both RHIC and the LHC feature large azimuthal asym-
metries. To appreciate the size of the measured elliptic flow signal, we read from
(2.6) that the ratio of d N/d3p in whatever azimuthal direction it is largest to
d N/d3p ninety degrees in azimuth away is (1 + 2v2)/(1 − 2v2), which is a factor

https://doi.org/10.1017/9781009403504.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.002


22 A heavy ion phenomenology primer

of 2 for v2 = 1/6. Thus, a v2 of the order of magnitude seen in semi-peripheral col-
lisions at RHIC and LHC for pT ∼ 2 GeV, as illustrated in Fig. 2.8, corresponds to
collisions that are azimuthally asymmetric by more than a factor of 2. In addition to
being large, this flow signal displays a characteristic centrality dependence, as we
discuss now. The azimuthal asymmetry v2 of the final state single inclusive hadron
spectrum is maximal in semi-peripheral collisions. v2 is less for more central col-
lisions. Therefore, the measured elliptic flow v2 traces the event-averaged spatial
eccentricity of the initial condition at least qualitatively: the initial event-averaged
geometric asymmetry is less for more central collisions since the almond-shaped
collision region becomes closer to circular as the impact parameter is reduced.

One can make the relation between spatial ellipticity and measured elliptic flow
more quantitative by modeling the elliptic eccentricity ε2 of the spatial energy den-
sity distributions, sketched for example in Fig. 2.7. While v2 is measured directly,
the value of ε2 will have some model uncertainty. It turns out, however, that this
uncertainty is relatively small, and ε2 is determined predominantly by the impact
parameter of the collision which in turn is constrained by the event multiplicity
which is directly measurable. As a consequence, one finds strong support for a
model-independent picture according to which the pT -averaged elliptic flow v2

traces the initial elliptic eccentricity ε2. For two different models of ε2, this is shown
in the upper panel of Fig. 2.9. Elliptic flow and initial elliptic eccentricity show an
approximately linear relation for different centrality classes

v2 ∝ ε2 . (2.8)

Here, “approximate” means that the proportionality factor differs by less than a
factor 2 as a function of centrality and model-dependent uncertainties. In the ide-
alized case of zero impact parameter and vanishing initial state fluctuations, v2 due
to collective effects should vanish. The reason that v2 is not even smaller in the
sample of the 5% most head-on collisions is that this sample includes events with
a distribution of impact parameters in the range 0 < b < 3.5 fm. Moreover, event-
by-event fluctuations can introduce ellipticity even in the most central, head-on,
collisions. We turn in the next subsection to experimental information about these
fluctuations.

We mention as an aside that there are azimuthal asymmetries in particle produc-
tion that are not related to flow. For instance, a jet produced at azimuthal angle φ

will often recoil against a jet at angle ∼ (φ + π). Such a dijet event introduces an
azimuthal asymmetry that results obviously from energy–momentum conservation
in the transverse plane, and is not related to collective dynamics. There are several
techniques to disentangle such sources of asymmetry from the signals of collective
dynamics that one is interested in. One option is to use data at high rapidity to deter-
mine the �ns, and then to measure the vn by applying (2.7) to mid-rapidity data.
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Figure 2.9 Top: the centrality dependence of second and third order flow traces
approximately the centrality dependence of the corresponding initial spatial
eccentricities ε2, ε3 although the precise value of εn depends on details of model-
ing (two models εCGC

n and εW
n are shown). Bottom: the centrality-dependence of

pT -averaged flow harmonics v2, v3, v4. Triangular flow is finite if measured with
respect to the third order reaction plane but vanishes if measured with respect to
the second order reaction plane. Figures taken from Ref. [6].

This eliminates the contribution of all statistical fluctuations uncorrelated with the
reaction plane unless these fluctuations introduce correlations between particles in
the mid-rapidity and high rapidity regions of the detector. An alternative method is
to use the fact that particle correlations resulting from a dijet or some other source
of microscopic dynamics affect only a small subset of all particles in a collision,
while an asymmetry resulting from the response to an initial spatial asymmetry can
affect all particles in an event. Therefore, these effects will scale differently with
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event multiplicity in the measured particle correlations. By a suitable so-called
cumulant analysis of 2-, 4-, and 6- particle correlations, it is then possible to dis-
entangle these two effects [177]. The values v2{2}, v2{4} and v3{2}, v3{4} shown
in Figs. 2.8 and 2.9 refer to such an analysis based on 2- and 4-particle correla-
tions, respectively. For practical purposes, results of second order cumulants can
be regarded as being contaminated by a significant (∼ 20%) contribution from
effects that do not arise from collective dynamics (“non-flow” effects). That mea-
surements based on fourth order cumulants, like v2{4} and v3{4} are corrected for
all non-flow effects can be seen from the fact that these values then agree with
those obtained by other complementary techniques for measuring v2.

In summary, the empirical observation that v2 ∝ ε2 shows that the azimuthal
momentum anisotropies have a geometrical origin. The large value of v2 provides
evidence that the underlying collective dynamics is very efficient in translating
initial spatial anisotropies into momentum anisotropies. And, as we shall dis-
cuss further below, a strongly coupled fluid that flows with little dissipation is
needed to explain such an efficient translation of spatial anisotropies into observed
momentum anisotropies.

B Spatial asymmetries including initial event-by-event fluctuations

In the absence of initial event-by-event fluctuations, the collision region of identical
nuclei at mid-rapidity is symmetric under φ → φ+π and all odd spatial eccentric-
ities ε1, ε3, . . . must vanish. Since dynamics cannot break a φ → φ+π asymmetry
of the initial state, all odd flow harmonics should vanish in this case. Measuring
odd flow harmonics at mid-rapidity is therefore direct evidence for initial state
fluctuations. As depicted on the right-hand side of Fig. 2.7, fluctuations in the ini-
tial conditions of individual nucleus–nucleus collisions can break the φ → φ + π

symmetry of the event-averaged almond-like nuclear overlap. Recently, significant
experimental evidence has accumulated that these fluctuations around the event-
averaged distribution are themselves propagated into event-by-event fluctuations
of the final-state momentum anisotropies as the fluid produced in heavy ion col-
lisions expands. Here, we discuss these data and the promise that they represent,
namely the promise of further refining our understanding of hot QCD matter.

As seen in Fig. 2.9, higher harmonics of the flow (v3, v4, . . .) are indeed nonzero
in heavy ion collisions at mid-rapidity. For the most central Pb+Pb collisions at the
LHC, v2 and v3 are of comparable strength and non-vanishing higher harmonics v4,
v5, . . . are needed to account for the measured azimuthal distribution of produced
particles. Consistent with the picture that v3 depends purely on initial state fluctu-
ations, the azimuthal orientation �3 of the measured triangularity is not correlated
with the orientation of the event-averaged almond-like nuclear overlap and there-
fore is not correlated to the orientation �2 of the elliptic flow. Third order flow
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therefore vanishes if reconstructed with respect to the standard participant plane
�2 = �PP, see lower panel of Fig. 2.9. Also, the centrality dependence of higher
flow harmonics is much flatter than that of v2, exactly because higher harmonics
have a stronger dependence on fluctuations and a weaker dependence on changes in
the shape of the almond-like event-averaged nuclear overlap. From model studies
of the event-by-event fluctuations in the initial energy density distribution, one con-
cludes that although the origins of v3 and v2 are different, v3 is nevertheless related
approximately linearly to the third order eccentricity, v3 ∝ ε3, as seen in the upper
panel of Fig. 2.9. This provides a strong indication that collective dynamics is
also very efficient in translating higher order spatial eccentricities into momentum
anisotropies.

While we shall not give a detailed account of the dynamical propagation of
higher order eccentricities in the following, we would like to emphasize here the
generic interest in these studies. In general, any asymmetry in the initial spatial
density distribution translates into pressure gradients that will propagate as per-
turbations. Whether such perturbations are damped out or propagate unattenuated
in a heavy ion collision will depend on the dissipative properties of the QCD
medium through which they propagate. It is widely known from studies of the
cosmic microwave background that the analysis of fluctuations that are propagated
fluid dynamically gives access to measures of the matter content of the Universe.
In close analogy, one expects that in the coming years the analysis of the event-
by-event fluctuations seen in ultra-relativistic heavy ion collisions will provide
stringent and complementary tests of the paradigm that the QCD matter produced
in ultra-relativistic nucleus–nucleus collisions is a strongly coupled almost ideal
liquid and will tighten the determination of the parameter η/s that characterizes
the (small) amount of dissipation that arises as it flows.

2.2.3 Calculating elliptic flow using (ideal) hydrodynamics

We have now seen that the azimuthal asymmetry in space present at the start of the
little explosions created by heavy ion collisions with nonzero impact parameter,
is subsequently converted by collective dynamics into an asymmetry in momentum
space. This conversion of initial spatial anisotropy into final momentum anisotropy
is characteristic of any explosion – one shapes the explosive in order to design
a charge that blasts with greater force in some directions than others. Hydrody-
namics provides the natural language for describing such processes: the initial
spatial anisotropy corresponds to anisotropic pressure gradients. Let us assume
first that event-by-event fluctuations in the initial state are absent and that the
nuclear overlap is almond-shaped. The pressure is then maximal at the center
of the nuclear overlap and zero at its edge, the gradient is greater across the
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almond (in the reaction plane) than along it (perpendicular to the reaction plane).
The elliptic flow v2 measures the extent to which these pressure gradients lead
to an anisotropic explosion with greater momentum flow in the reaction plane;
it characterizes the efficiency of translating initial pressure gradients into col-
lective flow. In the presence of initial state fluctuations, the same logic applies
to higher order flow harmonics vn and their relation to higher order initial spa-
tial eccentricities εn . For concreteness, we focus in the following only on elliptic
flow, which was also historically the first example of azimuthal anisotropy that
was analyzed. By doing hydrodynamic calculations and comparing the calculated
v2 to that in the data (and also comparing the final state radial flow velocity
to that determined from the single-particle spectra as described in the previ-
ous section) one can constrain the input quantities that go into a hydrodynamic
description.

The starting point in any hydrodynamic analysis is to consider the limit of ideal,
zero viscosity, hydrodynamics. In this limit, the hydrodynamic description is spec-
ified entirely by an equation of state, which relates the pressure and the energy
density, and by the initial spatial distribution of energy density and fluid veloc-
ity. In particular, in ideal hydrodynamics one is setting all dissipative coefficients
(shear viscosity, bulk viscosity, and their many higher order cousins) to zero. If the
equation of state is held fixed and viscosity is turned on, v2 must decrease: turning
on viscosity introduces dissipation that has the effect of turning some of the initial
anisotropy in pressure gradients into entropy production, rather than into directed
collective flow. So, upon making some assumption for the equation of state and for
the initial energy density distribution, setting the viscosities to zero yields an upper
bound on the v2 in the final state. Ideal, inviscid, hydrodynamics has therefore
long been used as a calculational benchmark in heavy ion physics. As we shall see
below, in heavy ion collisions at RHIC energies ideal hydrodynamics does a good
job of describing v2(pT ) for pions, kaons and protons for transverse momenta pT

below about 1–2 GeV. This motivates an ongoing research program in which one
begins by comparing data to the limiting case of ideal, inviscid, hydrodynamics and
then turns to a characterization of dissipative effects, asking how large a viscosity
will spoil the agreement with data. In this subsection, we sketch how practition-
ers determine the equation of state and initial energy density profile, and we recall
the basic principles behind the hydrodynamic calculations on which all these stud-
ies rest. In the next subsection, we summarize the current constraints on the shear
viscosity that are obtained by comparing to v2 data.

The equation of state relates the pressure P to the energy density ε. P is a
thermodynamic quantity, and therefore can be calculated by using the methods
of lattice quantum field theory, as we describe in Chapter 3. Lattice calcula-
tions (or fits to them) of P(ε) in the quark–gluon plasma and in the crossover
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regime between QGP and hadron gas are often used as inputs to hydrodynamic
calculations. At lower energy densities, practitioners either use a hadron resonance
gas model equation of state, or match the hydrodynamic calculation onto a hadron
cascade model. One of the advantages of focusing on the v2 observable is that it
is insensitive to the late time epoch of the collision, when all the details of these
choices matter. This insensitivity is easy to understand. v2 describes the conversion
of a spatial anisotropy into anisotropic collective flow. As this conversion begins,
the initial almond-shaped collision explodes with greater momentum across the
short direction of the almond, and therefore circularizes. Once it has circularized,
no further v2 can develop. Thus, v2 is generated early in the collision. By the late
times when a hadron gas description is needed, v2 has already been generated. In
contrast, the final state radial flow velocity reflects a time integral over the pressure
built up during all epochs of the collision.

The discussion above reminds us of a second sense in which the ideal hydro-
dynamic calculation of v2 is a benchmark: ideal hydrodynamics requires local
equilibrium. It therefore cannot be valid from time t = 0. By using an ideal hydro-
dynamic description beginning at t = 0 we must again be overestimating v2, and
so we can ask how long an initial phase during which partons stream freely with-
out starting to circularize the almond-shaped region and generating any momentum
anisotropy, can be tolerated without spoiling the agreement between calculations
and data.

After choosing an equation of state, an initialization time, and viscosities (zero
in the benchmark calculation), the only thing that remains to be specified is the
distribution of energy density as a function of position in the almond-shaped col-
lision region. (The transverse velocities are assumed to be zero initially.) In the
simplest approach, called the Glauber model, this energy density is proportional
to the product of the thickness of the two nuclei at a given point in the trans-
verse plane. It is thus zero at the edge of the almond, where the thickness of one
nucleus goes to zero, and maximum at the center of the almond. The proportional-
ity constant is determined by fitting to data other than v2, see e.g. Ref. [542]. The
assumptions behind this Glauber approach to estimating how much energy density
is created at a given location as a function of the nuclear thickness at that loca-
tion are assumptions about physics of the collision at t = 0. There are alternative
model parametrizations. Here, we mention a second one for which the energy den-
sity rises towards the center of the almond more rapidly than the product of the
nuclear thicknesses. This parametrization is referred to as the CGC initial condi-
tion, since it was first motivated by ideas of parton saturation (called “color glass
condensate”) [456]. The Glauber and CGC models for the initial energy density
distribution are often used as benchmarks in the hope that they bracket nature’s
choice.
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A Hydrodynamics – generalities

We turn now to the formulation of the hydrodynamic equations of motion. Hydro-
dynamics is an effective theory which describes the small frequency and long
wavelength limit of an underlying interacting dynamical theory [355]. It can be
used to describe motions of the fluid that occur on macroscopic length scales and
time scales associated with how the fluid is “stirred”, scales that are long com-
pared to any microscopic scales characterizing the fluid itself. It is a classical field
theory, where the fields can be understood as the expectation values of certain quan-
tum operators in the underlying theory. In the hydrodynamic limit, since the length
scales under consideration are longer than any correlation length in the underlying
theory, by virtue of the central limit theorem all n-point correlators of the under-
lying theory can be factorized into one point functions. The fluctuations on these
average values are small, and a description in terms of expectation values is mean-
ingful. If the underlying theory admits a (quasi)particle description, this statement
is equivalent to saying that the hydrodynamic description involves averages over
many of these fundamental degrees of freedom and is valid only on length scales
that are long enough for this to be an appropriate procedure.

The hydrodynamic degrees of freedom include the expectation values of con-
served currents such as the stress tensor T μν or the currents of conserved charges
JB , which fulfill the conservation equations

dμT μν = 0 , (2.9)

dμ Jμ

B = 0 , (2.10)

where dμ is the covariant derivative. As a consequence of these conservation laws,
long wavelength excitations of these fields can only relax on long timescales, since
their relaxation must involve moving stress–energy or charges over distances of
order the wavelength of the excitation. As a consequence, these conservation laws
lead to excitations whose lifetime diverges with their wavelength. Such excitations
are called hydrodynamic modes.

It is worth pausing to explain why we have introduced a covariant derivative,
even though we will only ever be interested in heavy ion collisions – and thus
hydrodynamics – occurring in flat spacetime. It is nevertheless often convenient
to use curvilinear coordinates with a non-trivial metric. For example, the longitu-
dinal dynamics is more conveniently described using proper time τ = √

t2 − z2

and spacetime rapidity ξ = arctanh(z/t) as coordinates rather than t and z. In
these “Milne coordinates”, the metric is given by gμν = diag(gττ , gxx , gyy, gξξ ) =
(−1, 1, 1, τ 2). These coordinates are useful because boost invariance simply trans-
lates into the requirement that ε, as well as the fluid velocity uμ and �μν , the
contribution to the stress tensor from gradients, must all be independent of ξ ,
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depending on τ only. In particular, if the initial conditions are boost invariant then
the fluid dynamic evolution will preserve this boost invariance, and the numerical
calculation reduces in Milne coordinates to a 2 + 1-dimensional problem. Boost-
invariant initial conditions have often been used as a simplifying assumption for
hydrodynamics ever since they were introduced in this context in Ref. [165], but
fully 3 + 1-dimensional calculations that do not assume boost invariance can also
be found in the literature [455, 424, 654, 710].

If the only long-lived modes are those from conserved currents, then hydrody-
namics describes a normal fluid. However, there can be other degrees of freedom
that lead to long-lived modes in the long wavelength limit. For example, in a phase
of matter in which some global symmetry is spontaneously broken, the Goldstone
boson(s) is (are) also hydrodynamic modes [355]. The classic example of this is
a superfluid, in which a global U (1) symmetry is spontaneously broken. Chiral
symmetry is spontaneously broken in QCD, but there are two reasons why we
can neglect the potential hydrodynamic modes associated with the chiral order
parameter [746]. First, explicit chiral symmetry breaking gives these modes a mass
(the pion mass) and we are interested in the hydrodynamic description of physics
on length scales longer than the inverse pion mass. Second, we are interested in
temperatures above the QCD crossover, at which the chiral order parameter is dis-
ordered, the symmetry is restored, and this question does not arise. So, we need
only consider normal fluid hydrodynamics. Furthermore, as we have discussed in
Section 2.1, the matter produced in ultra-relativistic heavy ion collisions has only
a very small baryon number density, and it is a good approximation to neglect Jμ

B .
The only hydrodynamic degrees of freedom are therefore those described by T μν .

At the length scales at which the hydrodynamic approximation is valid, each
point of space can be regarded as a macroscopic fluid cell, characterized by its
energy density ε, pressure P , and a velocity uμ. The velocity field can be defined
by the energy flow together with the constraint u2 = −1. In the so-called Landau
frame, the four equations

uμT μν = −εuν . (2.11)

determine ε and u from the stress tensor.
Hydrodynamics can be viewed as a gradient expansion of the stress tensor (and

any other hydrodynamic fields). In general, the stress tensor can be separated into
a term with no gradients (ideal) and a term which contains all the gradients:

T μν = T μν

ideal + �μν . (2.12)

In the rest frame of each fluid cell (ui = 0), the ideal piece is diagonal and isotropic
T μν

ideal = diag (ε, P, P, P). Thus, in any frame,

T μν

ideal = (ε + P)uμuν + Pgμν , (2.13)
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where gμν is the spacetime metric.
If there were a nonzero density of some conserved charge n, the velocity field

could either be defined in the Landau frame as above or may instead be defined
in the so-called Eckart frame, with Jμ = nuμ. In the Landau frame, the definition
(2.11) of uμ implies �μνuν = 0 (transversality). Hence, there is no heat flow but
there can be currents of the conserved charge. In the Eckart frame, the velocity
field is comoving with the conserved charge, but there can be heat flow.

Ideal hydrodynamics is the limit in which all gradient terms in T μν are neglected.
Corrections to ideal hydrodynamics – namely the gradient terms in �μν that we
shall discuss shortly – introduce internal length and time scales, including time
scales for relaxation of perturbations away from local thermal equilibrium, and
length scales associated with mean free paths. Hydrodynamics works on longer
length scales than these. Introducing the gradient terms that correct ideal hydrody-
namics also introduces dissipation and introduces the possibility of hydrodynamic
flows in which the pressure is not isotropic. At long enough time scales, how-
ever, gradients become unimportant, hydrodynamics becomes ideal, the pressure
P in the rest frame of each fluid cell becomes isotropic, and ε and P are related
by the equilibrium equation of state. This equation of state can be determined by
studying a homogeneous system at rest with no gradients, for example via a lattice
calculation.

The range of applicability of hydrodynamics can be characterized in terms of the
isotropization scale τiso and the hydrodynamization scale τhydro. The isotropization
scale measures the characteristic time over which an initially anisotropic stress
tensor becomes isotropic in the local fluid rest frame, to within some criterion that
must be defined. The hydrodynamization scale measures the characteristic time
after which the flow of the fluid is well described (again to within some criterion
that must be defined) by the equations of (possibly viscous) hydrodynamics. In
different contexts, the two time scales τiso and τhydro can be ordered in either way.
If τiso < τhydro, as may be the case for a sufficiently weakly coupled plasma [79],
there is a period of time when the plasma is isotropic but is not yet described by
ideal hydrodynamics with P and ε related by the equilibrium equation of state. In
some circumstances [79], ideal hydrodynamics may nevertheless be used during
this period of time, as long as P(ε) is replaced by some non-equilibrium “equation
of state” that will depend on exactly how the system is out of thermal equilibrium.
It is also possible that during this period of time the production of entropy may not
yet have ceased. If τhydro < τiso, on the other hand, there is a period of time when the
way in which the plasma flows is described well by viscous hydrodynamics even
though gradients in the flow remain important, entropy is still being produced, and
the pressure in the local fluid rest frame is not isotropic. We shall return to these
considerations at length in Chapter 7 where we shall see that calculations done
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via gauge/string duality indicate that when a strongly coupled plasma is produced
it hydrodynamizes first and isotropizes later. This conclusion has been reached
for hydrodynamization starting from a wide variety of far-from-equilibrium states.
Although this could in principle have been considered as a possibility beforehand,
in fact it was the analysis using gauge/string duality of many explicit examples in
which this conclusion was manifest that brought it to the fore and that has yielded
the insight that hydrodynamization before isotropization may be a generic feature
of the production of strongly coupled plasma.

B First order dissipative fluid dynamics

Going beyond the infinite wavelength limit requires the introduction of viscosities.
To first order in gradients, the requirement that �μν be transverse means that it
must take the form

�μν = −η(ε)σμν − ζ(ε)�μν ∇ · u , (2.14)

where η and ζ are the shear and bulk viscosities, ∇μ = �μνdν , with dν the
covariant derivative and

�μν = gμν + uμuν , (2.15)

σμν = �μα�νβ
(∇αuβ + ∇βuα

) − 2

3
�αβ ∇ · u . (2.16)

The operator �μν is the projector onto the space components of the fluid rest frame.
Note that in this frame the only time derivatives or spatial gradients that appear in
Eq. (2.14) are spatial gradients of the velocity fields. By symmetry, time derivatives
of the velocity fields and spatial gradients of ε cannot arise in �μν to first order in
gradients. The reason that time derivatives of ε do not appear is that they can be
eliminated in the first order equations by using the zeroth order equation of motion

Dε = −(ε + P)∇μuμ, (2.17)

where D = uμdμ is the time derivative in the fluid rest frame. (Similarly, time
derivatives of the energy density can be eliminated in the second order equations
that we shall give below using the first order equations of motion.)

It is often convenient to phrase the hydrodynamic equations in terms of the
entropy density s. In the absence of conserved charges, i.e. with baryon chemi-
cal potential μB = 0, the entropy density is s = (ε+ P)/T . Using this and another
fundamental thermodynamic relation, DE = T DS − P DV (where E/V ≡ ε)
the zeroth order equation of motion (2.17) becomes exactly the equation of entropy
flow for an ideal isentropic fluid

D s = −s ∇μuμ . (2.18)
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Repeating this analysis at first order, including the viscous terms, one easily derives
from uμ ∇ν T μν = 0 that

D s

s
= − ∇μuμ − 1

s T
�μν ∇νuμ . (2.19)

A similar analysis of the other three hydrodynamic equations then shows that they
take the form

Duα = − 1

T s
�αν

(
∇ν P + ∇μ�

μν

)
. (2.20)

It then follows from the structure of the shear tensor �μν (2.14) that shear viscosity
and bulk viscosity always appear in the hydrodynamic equations of motion in the
dimensionless combinations η/s and ζ/s. The net entropy increase is proportional
to these dimensionless quantities. Gradients of the velocity field are measured in
units of 1/T .

In a conformal theory, ζ = 0 since �μν must be traceless. There are a number
of indications from lattice calculations that as the temperature is increased above
(1.5–2)Tc, with Tc the crossover temperature, the quark–gluon plasma becomes
more and more conformal. The equation of state approaches P = 1

3ε [277, 179].
The bulk viscosity drops rapidly [615]. So, we shall set ζ = 0 throughout the
following, in so doing neglecting temperatures close to Tc. One of the things that
makes heavy ion collisions at the LHC interesting is that in these collisions the
plasma that is created is expected to be better approximated as conformal than is
the case at RHIC, where the temperature at τ = 1 fm is thought to be between
1.5Tc and 2Tc.

Just like the equation of state P(ε), the shear viscosity η(ε) is an input to the
hydrodynamic description that must be obtained either from experiment or from
the underlying microscopic theory. We shall discuss in Section 3.2 how trans-
port coefficients like η are obtained from correlation functions of the underlying
microscopic theory via Kubo formulae.

C Second order dissipative hydrodynamics

Even though hydrodynamics is a controlled expansion in gradients, the first order
expression for the tensor �μν , Eq. (2.14), is unsuitable for numerical computations.
The problem is that the set of equations (2.9) with the approximations (2.14) leads
to acausal propagation. Even though this problem only arises for modes outside of
the region of validity of hydrodynamics (namely high momentum modes with short
wavelengths of the order of the microscopic length scale defined by η), the numer-
ical evaluation of the first order equations of motion is sensitive to the acausality
in these hard modes. This problem is solved by going to one higher order in the
gradient expansion. This is known as second order hydrodynamics.
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There is a phenomenological approach to second order hydrodynamics due
to Müller, Israel and Stewart aimed at explicitly removing the acausal propa-
gation [631, 485, 486]. In this approach, the tensor �μν is treated as a new
hydrodynamic variable and a new dynamical equation is introduced. In its simplest
form this equation is

τ�D�μν = −�μν − ησμν, (2.21)

where τ� is a new (second order) coefficient. Note that as τ� → 0, Eq. (2.21) coin-
cides with Eq. (2.14) with the bulk viscosity ζ set to zero. Eq. (2.21) is such that
�μν relaxes to its first order form in a (proper) time τ�. There are several variants
of this equation in the literature, all of which follow the same philosophy. They
all introduce the relaxation time as the characteristic time in which the tensor �μν

relaxes to its first order value. The variations arise from different ways of fixing
some pathologies of Eq. (2.21), since as written Eq. (2.21) does not lead to a trans-
verse stress tensor (although this is a higher order effect) and is not conformally
invariant. Since in this approach the relaxation time is introduced ad hoc, it may not
be possible to give a prescription for extracting it from the underlying microscopic
theory.

The systematic extraction of second order coefficients demands a similar anal-
ysis of the second order gradients as was done at first order. The strategy is, once
again, to write all possible terms with two derivatives which are transverse and con-
sistent with the symmetries of the theory. As before, only spatial gradients (in the
fluid rest frame) are considered, since time gradients can be related to the former
via the zeroth order equations of motion.

In a conformal theory, second order hydrodynamics simplifies. First, only terms
such that �μ

μ = 0 are allowed. Furthermore, the theory must be invariant under
Weyl transformations

gμν → e−2ω(x)gμν (2.22)
which implies

T → eω(x)T, uμ → eω(x)uμ, T μν → e(d+2)ω(x)T μν, (2.23)

where T is the temperature and d the number of spacetime dimensions. The Weyl
transformation of the stress tensor can be derived from its definition in terms of the
action S, which is Weyl invariant: T μν = (2/

√
g) δS/δgμν . The normalization of

the velocity field, uμuμ = −1, fixes its Weyl transformation. Finally, the transfor-
mation of the stress tensor together with the relation (2.13) and the fact that in a
conformal theory ε ∼ T d yield the Weyl transformation of T .

It turns out that there are only five operators that respect these constraints [107].
The second order contributions to the tensor �μν are linear combinations of these
operators, and can be cast in the form [107, 155]
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�μν = −ησμν − τ�

[
〈 D�μν 〉 + d

d − 1
�μν(∇·u)

]
+ κ

[
R〈μν〉 − (d − 2)uα Rα〈μν〉βuβ

]
+ λ1

η2
�〈μ

λ�
ν〉λ − λ2

η
�〈μ

λ�
ν〉λ + λ3�

〈μ
λ�

ν〉λ . (2.24)

Here, Rμν is the Ricci tensor, the indices in brackets are the symmetrized traceless
projectors onto the space components in the fluid rest frame, namely

〈 Aμν 〉 ≡ 1

2
�μα�νβ(Aαβ + Aβα) − 1

d − 1
�μν�αβ Aαβ ≡ A〈μν〉 , (2.25)

and the vorticity tensor is defined as

�μν ≡ 1

2
�μα�νβ(∇αuβ − ∇βuα) . (2.26)

In deriving (2.24), we have replaced ησμν by �μν on the right-hand side in places
where doing so makes no change at second order. We see from (2.24) that five new
coefficients τ�, κ , λ1, λ2, and λ3 arise at second order in the hydrodynamic descrip-
tion of a conformal fluid, in addition to η and the equation of state which arise at
first and zeroth order respectively. The coefficient κ is not relevant for hydrody-
namics in flat spacetime. The λi coefficients involve nonlinear combinations of
fields in the rest frame and, thus, are invisible in linearized hydrodynamics. Thus,
these three coefficients cannot be extracted from linear response. Of these three,
only λ1 is relevant in the absence of vorticity, as in the numerical simulations that
we will describe in the next subsection. These simulations have also shown that, for
physically motivated choices of λ1, the results are insensitive to its precise value,
leaving τπ as the only phenomenologically relevant second order parameter in the
hydrodynamic description of a conformal fluid. In a generic, nonconformal fluid,
there are nine additional transport coefficients [715].

For more in-depth discussions of second order viscous hydrodynamics and its
applications to heavy ion collisions, see e.g. Refs. [632, 776, 633, 634, 106, 105,
716, 754, 333, 752, 589, 753, 625, 755, 590, 756, 757, 442, 714, 779, 735, 758].

2.2.4 Comparing elliptic flow in heavy ion collisions
and hydrodynamic calculations

For the case of ideal hydrodynamics, the hydrodynamic equations of motion are
fully specified once the equation of state P = P(ε) is given. A second order
dissipative hydrodynamic calculation also requires knowledge of the transport
coefficients η(ε) and ζ(ε) (although in practice the latter is typically set to zero)
and the relaxation time τ� and the second order coefficient λ1 entering Eq. (2.24).
(Note that κ would enter in curved spacetime, and λ2 and λ3 would enter in the
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presence of vorticity.) All these parameters are well-defined in terms of correlation
functions in the underlying quantum field theory. In this sense, the hydrodynamic
evolution equations are model-independent.

The output of any hydrodynamic calculation depends on more than the evolu-
tion equations. One must make model assumptions about the initial energy density
distribution. As we have discussed in Section 2.2.2, there are two benchmark mod-
els for the energy distribution across the event-averaged almond-shaped collision
region. More recent analyses also include initial event-by-event fluctuations around
these event-averaged density profiles [458]. These model variations give us a sense
of the degree to which results are sensitive to our lack of knowledge of the details
of this initial profile. Often, the initial transverse velocity fields are set to zero
and boost invariance is assumed for the longitudinal velocity field and the evolu-
tion. For dissipative hydrodynamic simulations, the off-diagonal elements of the
energy–momentum tensor are additional hydrodynamic fields which must be ini-
tialized. The initialization time τ0, at which these initial conditions are fixed, is an
additional model parameter. It can be viewed as characterizing the isotropization
time, at which hydrodynamics starts to apply but collective flow has not yet devel-
oped. In addition to initial state sensitivity, results depend on assumptions made
about how the system stops behaving hydrodynamically and freezes out. In prac-
tice, freezeout is often assumed to happen as a rapid decoupling: when a specified
criterion is satisfied (e.g. when a fluid cell drops below a critical energy or entropy
density) then the hydrodynamic fields in the unit cell are mapped onto hadronic
equilibrium Bose/Fermi distributions. This treatment assumes that hydrodynamics
is valid all the way down to the kinetic freezeout temperature, below which one has
noninteracting hadrons. Alternatively, at a higher temperature close to the crossover
where hadrons are formed, one can map the hydrodynamic fields onto a hadron
cascade which accounts for the effects of rescattering in the interacting hadronic
phase without assuming that its behavior is hydrodynamic [121, 775]. Indeed,
recent work suggests that hadronization may be triggered by cavitation induced
by the large bulk viscosity in the vicinity of the crossover temperature [702].
As we have discussed, v2 is insensitive to details of how the late-time evolution
is treated because v2 is generated during the epoch when the collision region is
azimuthally anisotropic. Nevertheless, these late-time issues do matter when one
does a global fit to v2 and the single-particle spectra, since the latter are affected by
the radial flow which is built up over the entire history of the collision. Finally, the
validity of results from any hydrodynamic calculation depends on the assumption
that a hydrodynamic description is applicable. This assumption can be checked
at late times by checking the sensitivity to how freezeout is modeled and can be
checked at early times by confirming the insensitivity of results to the values of the
second order hydrodynamic coefficients and to the initialization of the higher order
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Figure 2.10 The elliptic flow v2 versus pT for a large number of identified
hadrons (pions, kaons, protons, �s) showing the comparison between an ideal
hydrodynamic calculation to data from RHIC. Figure taken from Ref. [440].

off-diagonal elements of the energy–momentum tensor: if hydrodynamics is valid,
the gradients must be small enough at all times that second order effects are small
compared to first order effects.

In practice, the dependence of physics conclusions on all these model assump-
tions has to be established by systematically varying the initial conditions and
freezeout prescriptions within a wide physically motivated parameter range, and
comparing to data on both the single-particle spectra (i.e. the radial velocity) and
the azimuthal flow anisotropy coefficients. At the current time, several generic
observations have emerged from pursuing this program in comparison to data from
RHIC and LHC.

(1) Perfect fluid dynamics approximately reproduces the size and centrality depen-
dence of v2

RHIC and LHC data on single inclusive hadronic spectra d3 N/pT dpT dy and
their leading azimuthal dependence v2(pT ) can be reproduced approximately
in magnitude and shape by ideal hydrodynamic calculations, for particles with
pT < (1–2)GeV, see Fig. 2.10. The hydrodynamic picture is expected to
break down for sufficiently small wavelength, i.e. high momenta, consistent
with the observation that significant deviations occur for pT > 2 GeV, see
Fig. 2.10 again. The initialization time for these calculations is τ0 = 0.6–1 fm.
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Figure 2.11 Centrality dependence of the pT -averaged elliptic (v2) and triangular
(v3) flow. The plot compares fluid dynamic simulations to the ratio of data on vn
over eccentricity εn , the latter being calculated in two different models of fluctu-
ating initial conditions (MC-KLN and MC-Glb) that formulate opposite extreme
assumptions about the radial dependence of the initial transverse energy density.
The figures show that data on v2 alone cannot differentiate between these two dif-
ferent assumptions about the initial energy density profile, since each can fit the
v2 data comparably well upon making very different choices for η/s. The analy-
sis indicates that using data on v3 in addition can result in separate constraints on
both η/s and initial conditions. Figure taken from Ref. [701].

If τ0 is chosen larger, the agreement between ideal hydrodynamics and data is
spoiled. This gives significant support to a picture in which thermalization is
achieved within 1 fm after the collision. Historically, the agreement between
ideal hydrodynamic calculations and experimental measurements of v2 pro-
vided the first indication that the shear viscosity of the fluid produced at RHIC
must be small.

(2) The mass ordering of identified hadron spectra
The pT -differential azimuthal asymmetry v2(pT ) of identified single inclu-
sive hadron spectra shows a characteristic mass ordering in the range of
pT < 2 GeV: at small pT , the azimuthal asymmetry of light hadrons is sig-
nificantly more pronounced than that of heavier hadrons, see e.g. Fig. 2.10.
This qualitative agreement between hydrodynamic simulations and experimen-
tal data supports the picture that all hadron species emerge from a single fluid
moving with a common flow-velocity field.

(3) Data on v2 and v3 support small dissipative coefficients such as shear viscosity
Above the crossover temperature, the largest dissipative correction is expected
to arise from shear viscosity η, which enters the equations of motion of
second order dissipative hydrodynamics in the combination η/s, where s is
the entropy density. Figure 2.11 shows a comparison of data on v2 and v3

with model simulations that include the major physics effects considered so
far, including initial event-by-event fluctuations with different initial density
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profiles, viscous hydrodynamic evolution, and the interface between hydro-
dynamic evolution and hadronic freezeout at late times. Viscous corrections
generically decrease the observed v2 or v3 for a given initial eccentricity ε2 or
ε3, because dissipation results in the production of more heat and less collec-
tive flow. So, for example, v2 decreases with increasing η/s. Hydrodynamic
analyses of heavy ion collision data have put increasingly tight constraints on
η/s [589, 475, 756, 757] and most recent analyses favor nonzero but small
values in the range 1/(4π) < η/s < 2/(4π) [701]. Analyses at the current
frontier seek to use data on several vns to constrain how different harmon-
ics are sourced differently by initial state fluctuations and damped differently
by the effects of η/s. It is anticipated that these analyses will further tighten
constraints on η/s in coming years, while at the same time yielding experi-
mental insights into the initial fluctuations. Also, comparison of the analyses
of heavy ion collisions at RHIC and the LHC may begin to teach us about
the temperature dependence of η/s. The smallness of η/s is remarkable, since
almost all other known liquids have η/s > 1 and most have η/s � 1. The one
liquid that is comparably close to ideal is an ultracold gas of strongly coupled
fermionic atoms, whose η/s is also well below 1 and may be comparably small
to that of the quark–gluon plasma produced at RHIC [235]. Both these fluids
are much better described by ideal hydrodynamics than water is. Both have
η/s comparable to the value 1/4π , as we shall comment on below.

We close this section by noting that while hydrodynamic calculations reproduce
elliptic flow, a treatment in which the Boltzmann equation for quark and gluon
(quasi)particles is solved, including all 2 → 2 scattering processes with the cross-
sections as calculated in perturbative QCD, fails dramatically. It results in values of
v2 that are much smaller than in the data. Agreement with data can only be achieved
if the parton scattering cross-sections are increased ad hoc by more than a factor of
10 [624]. With such large cross-sections, a Boltzmann description cannot be reli-
able since the mean free path of the particles becomes comparable to or smaller
than the interparticle spacing. Another way of reaching the same conclusion is to
note that if a perturbative description of the QGP as a gas of interacting quasiparti-
cles is valid, the effective QCD coupling αs describing the interaction among these
quasiparticles must be small, and for small αs perturbative calculations of η/s are
controlled and yield parametrically large values [75]

η

s

∣∣∣∣
perturbatively

∝ 1

α2
s ln

[
1/αs

] . (2.27)

It is not possible to get as small a value of η/s as the data requires from the pertur-
bative calculation without increasing αs to the point that the calculation is invalid.
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In contrast, as we shall see in Section 6.2, any gauge theory with a gravity dual must
have η/s = 1/(4π) in the large-Nc and strong coupling limit and, furthermore, the
plasma fluids described by these theories in this limit do not have any well-defined
quasiparticles. This calculational framework thus seems to do a much better job
of capturing the qualitative features needed for a successful phenomenology of
collective flow in heavy ion collisions.

2.3 Jet quenching

Having learned that heavy ion collisions produce a low viscosity, strongly coupled,
fluid we now turn to experimental observables with which we may study properties
of the fluid beyond just how it flows. There are many such observables available.
In this section and the next we shall describe two classes of observables, selected
because in both cases there is (the promise of) a substantive interplay between
data from RHIC and the LHC and qualitative insights gained from the analysis of
strongly coupled plasmas with dual gravity descriptions.

Jet quenching refers to a suite of experimental observables that together reveal
what happens when a very energetic quark or gluon (with momentum much
greater than the temperature) plows through the strongly coupled plasma. Some
measurements focus on how rapidly the energetic parton loses its energy; other
measurements give access to how the strongly coupled fluid responds to the ener-
getic parton passing through it. These energetic partons are not external probes;
they are produced within the same collision that produces the strongly coupled
plasma itself.

In a small fraction of proton–proton collisions, partons from the incident pro-
tons scatter with a large momentum transfer, producing back-to-back partons in the
final state with transverse momenta of the order of ten or a few tens of GeV. These
“hard” processes are rare, but data samples are large enough that they are neverthe-
less well studied. The high transverse momentum partons in the final state manifest
themselves in the detector as jets. Individual high pT hadrons in the final state come
from such hard processes and are typically found within jets. In addition to copious
data from proton-(anti)proton collisions, there is a highly developed quantitatively
controlled calculational framework built upon perturbative QCD that is used to cal-
culate the rates for hard processes in high energy hadron–hadron collisions. These
calculations are built upon factorization theorems. Consider as an example the sin-
gle inclusive charged hadron spectrum at high pT , see Fig. 2.3. That is, consider the
production cross-section for a single charged hadron with a given high transverse
momentum pT , regardless of what else is produced in the hadron–hadron colli-
sion. This quantity is calculated as a convolution of separate (factorized) functions
that describe different aspects of the process: (i) the process-independent parton
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distribution function gives the probability of finding partons with a given momen-
tum fraction in the incident hadrons; (ii) the process-dependent hard scattering
cross-section gives the probability that those partons scatter into final state partons
with specified momenta; and (iii) the process-independent parton fragmentation
functions that describe the probability that a final state parton fragments into a jet
that includes a charged hadron with transverse momentum pT . Functions (i) and
(iii) are well measured and at high transverse momentum function (ii) is both sys-
tematically calculated and well measured. This body of knowledge provides a firm
foundation, a well-defined baseline with respect to which we can measure changes
if such a hard scattering process occurs instead in an ultra-relativistic heavy ion
collision.

In hard scattering processes in which the momentum transfer Q is high enough,
the partonic hard scattering cross-section (function (ii) above) is expected to be the
same in an ultrarelativistic heavy ion collision as in a proton–proton collision. This
is so because the hard interaction occurs on a timescale and length scale ∝ 1/Q
which is too short to resolve any aspects of the hot and dense strongly interact-
ing medium that is created in the same collision. The parton distribution functions
(function (i) above) are different in nuclei than in nucleons, but they may be mea-
sured in proton–nucleus, deuteron–nucleus, and electron–nucleus collisions. The
key phenomenon that is unique to ultra-relativistic nucleus–nucleus collisions is
that after a very energetic parton is produced, unless it is produced at the edge of
the fireball heading outwards it must propagate through as much as 5–10 fm of
the hot and dense medium produced in the collision. These hard partons therefore
serve as well-calibrated probes of the strongly coupled plasma whose properties
we are interested in. The presence of the medium results in the hard parton losing
energy and changing the direction of its momentum. The change in the direction of
its momentum is often referred to as “transverse momentum broadening”, a phrase
which needs explanation. “Transverse” here means perpendicular to the original
direction of the hard parton. (This is different from pT , the component of the
(original) momentum of the parton that is perpendicular to the beam direction.)
“Broadening” refers to the effect on a jet when the directions of the momenta of
many hard partons within it are kicked; averaged over many partons in one jet, or
perhaps in an ensemble of jets, there is no change in the mean momentum but the
spread of the momenta of the individual partons broadens.

Because the rates for hard scattering processes drop rapidly with increasing pT ,
energy loss translates into a reduction in the number of partons produced with a
given pT . (Partons with the given pT must have been produced with a higher pT ,
and are therefore rarer than they would be in proton–proton collisions; as a con-
sequence, the yield of high pT hadrons is rarer since it results from hadronization
of highly energetic partons.) Transverse momentum broadening, on the other hand,
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Figure 2.12 CMS data showing a highly unbalanced dijet event in a Pb+Pb colli-
sion at

√
sNN = 2.76 TeV. Tower heights denote the sum of transverse energy

deposited in the electromagnetic and hadron calorimeters in a particular seg-
ment of azimuthal angle φ and pseudo rapidity η. The reconstructed jets, in
red, are labeled with their corrected jet transverse momentum. Figure taken from
Ref. [264].

carries part of the jet energy away from the jet axis and thus also leads to a reduc-
tion in the rate of jets observed at a given jet energy. Furthermore, the hard parton
dumps energy into the medium, which motivates the use of observables involving
correlations between soft final state hadrons and a high momentum hadron. Most
generally, “jet quenching” refers to the whole suite of medium-induced modifica-
tions of high pT processes in heavy ion collisions and modifications of the medium
in heavy ion collisions in which a high pT process occurs, all of which have their
origin in the propagation of a highly energetic parton through the strongly coupled
plasma.

As we discuss in the following, one of the most detailed experimental sets of
information about jet quenching is provided by the medium-induced suppression
of single inclusive hadron spectra first discovered at RHIC. A more recent, and
arguably more pictorial, manifestation of jet quenching in heavy ion collisions is
provided by the CMS event display shown in Fig. 2.12. This Pb+Pb event was
selected by triggering on a “leading jet” (i.e. a highly collimated spray of ener-
getic particles that may be thought of as arising from the fragmentation of a single
highly energetic parent parton). By momentum conservation, the total transverse
momentum of this leading jet must be balanced by recoil in the opposite azimuthal
hemisphere. However, the subleading jet seen in Fig. 2.12 in the opposite azimuthal
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hemisphere at �φ ≈ π balances only approximately one third of the momentum
of the leading jet. Since no other jet structure is visible, a total recoil transverse
momentum of 205 − 70 = 135 GeV must have been lost in this particular event by
the recoiling parent parton and must reside in many soft fragments that are, in the
present plot, indistinguishable from the background in a high multiplicity heavy ion
collision. Therefore, qualitatively, Fig. 2.12 illustrates the case of a Pb+Pb collision
at the LHC in which one parton escaped relatively unscathed while its back-to-back
partner was very significantly degraded by the presence of the medium.

We shall limit our presentation to several generic features of jet quenching that
have been established at the LHC and at RHIC.

(1) Characteristic strong centrality dependence of dijet asymmetry AJ

The imbalance between the transverse energy of the leading jet ET 1 and that of
the recoil jet ET 2 can be characterized by measuring the normalized difference
AJ = ET 1−ET 2

ET 1+ET 2
. We caution the reader that Fig. 2.12 does not imply that the

recoiling jet has lost 205−70 = 135 GeV by interactions with the surrounding
medium. Even in the absence of medium effects, one finds in “elementary”
p+p or p+p̄ collisions that dijet events are broadly distributed in AJ . This can
be understood in perturbative QCD as a consequence of perturbative parton
branching processes, due to which the recoil is taken by more than one jet or
due to which energy is put outside the recoiling jet cone. The main finding of
first measurements at the LHC is, however, that the effects of this perturbative
fragmentation are by far not sufficient to understand the distribution of dijet
asymmetries measured in central Pb+Pb collisions at the LHC. More precisely,
by varying the centrality of a heavy ion collision, one changes the typical in-
medium path length over which hard partons produced in these collisions must
propagate through the dense matter. For the most central head-on collisions,
corresponding to the longest in-medium path lengths for the hard partons, the
dijet asymmetry distribution in Pb+Pb collisions is significantly broader than
in the baseline p+p collisions. In contrast, the dijet asymmetry distribution
has a comparable width in p+p and peripheral Pb+Pb collisions [2, 264]. This
establishes that there is jet quenching: a significant fraction of the recoiling jet
energy must be transported outside the jet cone by effects due to the presence
of the medium produced in heavy ion collisions.

(2) Absence of azimuthal decorrelation of dijets
In p+p collisions, momentum conservation dictates that in dijet events the jets
recoil against each other with an angular distribution that peaks at azimuthal
angle �φ = π . Deviations from this back-to-back correlation can arise in
p+p collisions, for instance from the presence of three-jet events. Since the
medium transfers momentum to the dijet system, it is in principle conceivable

https://doi.org/10.1017/9781009403504.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.002


2.3 Jet quenching 43

that this dijet angular correlation broadens, but such an effect is not observed
in Pb+Pb collisions. Indeed, the �φ-distribution in Pb+Pb collisions is inde-
pendent of centrality and comparable in width and shape to the one seen in p+p
collisions [2, 264]. This provides important constraints on the dynamics of jet
quenching. For instance, the recoiling jet cannot lose its energy by radiating
a single high energy particle outside the jet cone, since the recoil from such
radiation would necessarily broaden the �φ-distribution. The additional lost
jet energy must be distributed amongst many soft fragments.

(3) Soft jet fragments transported to large angles outside jet cone
By analyzing the soft background in wide phase-space regions around the sub-
leading jet in dijet events, the CMS collaboration has found the apparently
missing energy that is lost from the recoiling jet [264]. As expected from the
absence of azimuthal decorrelation of dijets, this energy is indeed distributed
over many low energy particles. Furthermore, it is broadly distributed in η and
φ over the azimuthal hemisphere (π/2 < �φ < 3π/2) opposite to the leading
jet. This means, in particular, that the recoiling jet cannot lose its energy by
radiating particles that stay almost collinear with it.

These generic findings show that jet quenching occurs via a mechanism that
degrades the energy of the hardest jet fragments significantly and that transports
this energy into soft fragments moving at large angles relative to the direction
in which the initial parton was propagating through the medium. The quenching
of calorimetrically reconstructed jets is a rapidly progressing subject of ongoing
research in which many further characteristics of medium-modified jet fragmenta-
tion are just becoming available. Further qualitative advances are also expected in
the coming years from the study of jets recoiling against isolated high energy pho-
tons or Z -bosons. In such events, the initial energy (and direction) of the recoiling
jet must be the same as (opposite to) that of the photon or Z -boson – which can-
not be affected by the presence of the strongly coupled plasma since photons and
Z -bosons interact only via the electromagnetic and weak interactions. So, once
statistically significant samples of such events become available they will yield
samples of jets whose initial energy and direction are known with much higher pre-
cision than at present. A more detailed account of these developments lies outside
the scope of this book. In the following, we limit our discussion of jet quenching
mainly to the study of leading hadron spectra and their modeling.

2.3.1 Single inclusive high pT spectra and “jet” measurements

The RHIC and LHC heavy ion programs have established that the measurement of
single inclusive hadronic spectra yields a generic and quantitative manifestation of
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jet quenching. Because the spectra in hadron–hadron collisions are steeply falling
functions of pT , if the hard partons produced in a heavy ion collision lose energy as
they propagate through the strongly coupled plasma shifting the spectra leftward –
to lower energy – is equivalent to depressing them. This effect is quantified via
the measurement of the nuclear modification factor Rh

AB , which characterizes how
the number of hadrons h produced in a collision between nucleus A and nucleus
B differs from the number produced in an equivalent number of proton–proton
collisions:

Rh
AB(pT , η, centrality) =

dN AB→h
medium

dpT dη

〈N AB
coll 〉 dN pp→h

vacuum
dpT dη

. (2.28)

Here, 〈N AB
coll 〉 is the average number of inelastic nucleon–nucleon collisions in A+B

collisions within a specified range of centralities. This number is typically deter-
mined by inferring the transverse density distribution of nucleons in a nucleus from
the known radial density profile of nuclei, and then calculating the average number
of collisions with the help of the inelastic nucleon–nucleon cross-section. This so-
called Glauber calculation can be checked experimentally by independent means,
for instance via the measurement of the nuclear modification factor for photons or
Z -bosons discussed below.

The nuclear modification factor depends in general on the transverse momentum
pT and pseudorapidity η of the particle, the particle identity h, the centrality of the
collision and the orientation of the particle trajectory with respect to the reaction
plane (which is often averaged over). If RAB deviates from 1 this reflects either
medium effects or initial state effects – the parton distributions in A and B need
not be simply related to those in correspondingly many protons. Measurements of
Rp A in proton–A collisions (or Rd A in deuteron–A collisions which is a good proxy
for Rp A) are used to determine whether an observed deviation of RAA from 1 is due
to initial state effects or the effects of parton energy loss in medium.

At mid-rapidity, RHIC data on RAA show the following generic features.

(1) Characteristic strong centrality dependence of RAA

By varying the centrality of a heavy ion collision, one changes the typical in-
medium path length over which hard partons produced in these collisions must
propagate through the dense matter. For the most central head-on collisions
(e.g. 0%–10% centrality), the average L is large. For a peripheral collision
(e.g. 80%–92% centrality), the average L is small. RHIC and LHC data (see
Fig. 2.13) for charged hadrons show that for the most peripheral centrality bin,
the nuclear modification factors are consistent with the absence of medium
effects, while RAA decreases monotonically with increasing centrality and
reaches a suppression of about 0.2 (0.13) at RHIC (LHC) for pT ∼ 5–10 GeV

https://doi.org/10.1017/9781009403504.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.002


2.3 Jet quenching 45

0 – 5%

70 – 80%

pT (GeV/c)
0 5 10 15 20

0 5 10 15 20

R
A

A
R

A
A

0.1

1

sNN = 2.76 TeVPb-Pb  

pT (GeV/c)

0.1

1

sNN = 2.76 TeV (0 – 5%)ALICE Pb-Pb  
sNN = 200 GeV (0 – 5%)STAR Au-Au  

sNN = 200 GeV (0 – 10%)PHENIX Au-Au  

Figure 2.13 RAA for charged hadrons as a function of pT . Top: comparison of
results for central and peripheral collisions at the LHC. Bottom: comparison of
results from RHIC and LHC. Figures taken from [7].
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Figure 2.14 The nuclear modification factor RAA in the range up to transverse

momenta mT =
√

m2 + p2
T of 100 GeV for the 10% most central Pb+Pb col-

lisions at the LHC. Data are shown for charged hadrons, b-quarks identified via
secondary J/ψ-decays, as well as for photons and the electroweak gauge bosons
W and Z . The latter do not interact strongly with the medium and can hence
emerge from heavy ion collisions unsuppressed and without energy loss. Data
were compiled by the CMS collaboration from Refs. [265, 271, 267, 270, 272].

in the most central collisions.The suppression increases mildly with transverse
momentum and persists up to the highest pT experimentally measured so far,
see Fig. 2.14. Figures 2.13 and 2.14 illustrate a direct manifestation of jet
quenching: for RAA = 0.2, 80% of the energetic hadrons that would be seen in
the absence of a medium are gone.

(2) Jet quenching is not observed in Rd Au and RpPb

In deuteron–gold collisions at RHIC, Rd Au is consistent with or greater than 1
for all centralities and all transverse momenta. Jet quenching is not observed.
Very first data for RpPb at the LHC support this conclusion [12]. In fact, the
centrality dependence measured at RHIC is opposite to that seen in gold–
gold collisions, with Rd Au reaching maximal values of around 1.5 for pT =
3–5 GeV/c in the most central collisions [23, 15]. The high pT hadrons are
measured at or near mid-rapidity, meaning that they are well separated from
the fragments of the struck gold nucleus. And, d-Au collisions produce at best
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a much smaller volume of hot matter in the final state. In these collisions, there-
fore, the partons produced in hard scattering processes and tallied in Rd Au do
not have to propagate any significant distance through matter after they are pro-
duced. The fact that Rd Au is consistent with or greater than 1 in these collisions
therefore demonstrates that the jet quenching measured in RAu Au is attributable
to the propagation of the hard partons produced in heavy ion collisions through
the medium that is present only in those collisions.

(3) Photons, Z- and W -bosons are not quenched
For single inclusive photon spectra in heavy ion collisions at RHIC, the nuclear
modification factor shows only mild deviations from Rγ

Au Au ≈ 1 [484]. Within
errors, these are consistent with perturbative predictions that take into account
the nuclear modifications of parton distribution functions (mainly the isospin
difference between protons and nuclei) [64]. These statements apply also to
photons produced in heavy ion collisions at LHC energies and to the elec-
troweak gauge bosons produced in those collisions also, see Fig. 2.14. Since
photons and electroweak gauge bosons, unlike partons or hadrons, do not
interact strongly with the medium, this gives independent support that the jet
quenching observed in heavy ion collisions is a final state effect. And, it pro-
vides experimental evidence in support of the Glauber-type calculation of the
factor 〈N AA

coll 〉 in (2.28) discussed above. (That is, it provides experimental con-
firmation that the p+p data in Fig. 2.3 have indeed been scaled appropriately
in order to use these data as a reference for nucleus–nucleus collisions with
varying impact parameter.)

(4) Species-independent suppression of RAA at high pT

Rh
Au Au is independent of the species of the hadron h [24]. This eliminates the

possibility that hadrons are formed within the medium and then lose energy
upon propagating through the medium, since different hadrons would have
different cross-sections for interaction with the medium. These data support
the picture that the origin of the observed suppression is energy loss by a parton
propagating through the medium prior to its hadronization.

(5) RAA for heavy-flavored and light-flavored hadrons is comparable.
On general grounds in QCD, one expects that light-flavored partons lose more
energy in the medium than heavy quarks [327]. At the time of this writ-
ing, there is no unambiguous experimental evidence for this mass hierarchy
of parton energy loss. It is a matter of ongoing discussion to what extent
the uncertainties in the existing data on the parton-mass dependence of jet
quenching observables are already small enough to put interesting contraints
on models of parton energy loss. More progress can be expected in the near
future, once detector upgrades at RHIC and measurements at the LHC allow
for differentiation of bottom quarks and charm quarks.
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In short, these observations support a picture in which highly energetic par-
tons are produced in high momentum transfer processes in heavy ion collisions
as if they were produced in vacuum, but instead they find themselves propagat-
ing through a strongly coupled medium which causes them to lose a significant
fraction of their initial energy. Jet quenching is a partonic final state effect that
depends on the length of the medium through which the parton must propagate.
It is expected to have many consequences in addition to the strong suppression of
single inclusive hadron spectra, which tend to be dominated by the most ener-
getic hadronic fragments of parent partons. As discussed at the beginning of
this section, the entire parton fragmentation process is expected to be modified,
with consequences for observables including multi-particle jet-like correlations
and for calorimetric jet measurements including the dijet imbalance shown in
Fig. 2.12.

2.3.2 Analyzing jet quenching

For concreteness, we shall focus in this section on those aspects of the analysis of
jet quenching that bear upon the calculation of the nuclear modification factor RAA

defined in (2.28). We shall describe other aspects of the analysis of jet quenching
more briefly, as needed, in subsequent sections. The single inclusive hadron spectra
which define RAA are typically calculated upon assuming that the modification of
the spectra in nucleus–nucleus collisions relative to that in proton–proton collisions
arises due to parton energy loss. This assumption is well supported by data, as we
have described above. But, from a theoretical point of view it is an assumption,
not backed up by any formal factorization theorem. Upon making this assumption,
we write

dσ AA→h+rest
(med) =

∑
f

dσ AA→ f +X
(vac) ⊗ Pf (�E, L , q̂, . . .) ⊗ D(vac)

f →h(z, μ
2
F) . (2.29)

Here, ⊗ denotes convolution in the energy fraction of the parton f and

dσ AA→ f +X
(vac) =

∑
i jk

fi/A(x1, Q2) ⊗ f j/A(x2, Q2) ⊗ σ̂i j→ f +k , (2.30)

where fi/A(x, Q2) are the nuclear parton distribution functions and σi j→ f +k are the
perturbatively calculable partonic cross-sections. The medium dependence enters
via the function Pf (�E, L , q̂, . . .), which characterizes the probability that a
parton f produced with cross-section σi j→ f +k loses energy �E while propagat-
ing over a path length L in a medium. This probability depends of course on
properties of the medium, which are represented schematically in this formula
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by the symbol q̂, the jet quenching parameter. We shall see below that in the
high parton energy limit, the properties of the medium enter Pf only through
one parameter, and in that limit q̂ can be defined precisely. At non-asymptotic
parton energies, q̂ in (2.29) is a place-holder, representing all relevant attributes
of the medium. It is often conventional to refer to the combination of Pf and
D(vac)

f →h together as a modified fragmentation function. It is only in the limit of
high parton energy where one can be sure that the parton emerges from the
medium before fragmenting into hadrons in vacuum that these two functions can
be cleanly separated as we have done in (2.29). This aspect of the ansatz (2.29)
is supported by the data: as we have described above, all hadrons exhibit the
same suppression factor indicating that RAA is due to partonic energy loss, before
hadronization.

The dynamics of how parton energy is lost to the medium is specified in terms
of the probability Pf (�E, L , q̂, . . .). In the high parton energy limit, the par-
ton loses energy dominantly by inelastic processes that are the QCD analog of
bremsstrahlung: the parton radiates gluons as it interacts with the medium. It
is a familiar fact from electromagnetism that bremsstrahlung dominates the loss
of energy of an electron moving through matter in the high energy limit. The
same is true in calculations of QCD parton energy loss in the high energy limit,
as established first in Refs. [421, 98, 817]. The hard parton undergoes multiple
inelastic interactions with the spatially extended medium, and this induces gluon
bremsstrahlung. Here and throughout, by the high parton energy limit we mean the
combined set of limits that can be summarized as:

E � ω � |k|, |q| ≡ |
∑

i

qi | � T ,�QCD, (2.31)

where E is the energy of the high energy projectile parton, where ω and k are
the typical energy and momentum of the gluons radiated in the elementary radia-
tive processes q → qg or g → gg, and where q is the transverse momentum
(transverse to its initial direction) accumulated by the projectile parton due to many
radiative interactions in the medium, and where T and �QCD represent any energy
scales that characterize the properties of the medium itself. This set of approxima-
tions underlies all the pioneering analytical calculations of radiative parton energy
loss [98, 817, 797, 420, 414, 794]. The premise of the analysis is the assumption
that QCD at scales of order |k| and |q| is weakly coupled, even if the medium
(with its lower characteristic energy scales of order T and �QCD) is strongly cou-
pled. We shall spend most of this section on the analysis valid in this high parton
energy limit, in which case all we need to ask of analyses of strongly coupled gauge
theories with gravity duals is insight into those properties of the strongly coupled
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medium that enter into the calculation of jet quenching in QCD. However, the
analysis based upon the limits (2.31) may not be under quantitative control when
applied to data, since gluon radiation outside the eikonal region E � ω � |k| may
be relevant for parton energy loss even at very high parton energies. Moreover, in
Section 8.1 we shall see that for partons with low enough energy E physics at all
scales in the problem up to E is strongly coupled and new approaches are needed.
(This applies for any E in a conformal theory like N = 4 SYM.)

A Gluon production in the eikonal limit and q̂

In the discussion above, we have argued that in the eikonal limit of asymptotic
parton energies, a single jet quenching parameter q̂ may characterize the medium-
modification of gluon radiation. We now discuss an illustrative calculation in which
this relation can be made explicit. We start by considering a high energy par-
ton. In the rest frame of this parton, the target that is spatially extended but of
finite thickness appears Lorentz contracted, so in the projectile rest frame the par-
ton propagates through the target in a short period of time and the transverse
position of the projectile does not change during the propagation. So, at ultra-
relativistic energies, the main effect of the target on the projectile is a “rotation”
of the parton’s color due to the color field of the target. These rotation phases
are given by Wilson lines along the (straight line) trajectories of the propagating
projectile:

W (x) = P exp{i
∫

dz−T a A+
a (x, z−)} . (2.32)

Here, x is the transverse position of the projectile – which does not change as
the parton propagates at the speed of light along the z− ≡ (z − t)/

√
2 lightlike

direction. A+ is the large component of the target color field and T a is the generator
of SU (N ) in the representation corresponding to the given projectile – fundamental
if the hard parton is a quark and adjoint if it is a gluon. The eikonal approach
to scattering treats the (unphysical, in the case of colored projectiles) setting in
which the projectile impinges on the target from outside, after propagating for an
arbitrarily long time and building up a fully developed coherent Coulomb cloud
∼ g xi

x2 of gluons dressing the bare projectile. (This cloud is often referred to as a
non-Abelian Weizsäcker–Williams field). The interaction of this dressed projectile
with the target results in an eikonal phase (Wilson line) for the projectile itself and
for each gluon in the cloud. Gluon radiation then corresponds to the decoherence
of components of the dressed projectile that pick up different phases. Analysis of
this problem yields a calculation of Nprod(k), the number of radiated gluons with
momentum k, with the result:
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Nprod(k) =
αs CF

2π

∫
dx dy eik·(x−y) x · y

x2 y2

[
1 − 1

N 2 − 1
〈Tr

[
W A †(x) W A(0)

]〉
− 1

N 2 − 1
〈Tr

[
W A †(y) W A(0)

]〉
+ 1

N 2 − 1
〈Tr

[
W A †(y) W A(x)

]〉] , (2.33)

where the CF prefactor is for the case where the projectile is a quark in the funda-
mental representation, where the projectile is located at transverse position 0, and
where the 〈. . .〉 denotes averaging over the gluon fields of the target. If the target
is in thermal equilibrium, these are thermal averages. (See Refs. [548, 550] for
details.)

Although the simple result (2.33) is not applicable to the physically relevant
case, as we shall describe in detail below, we can nevertheless glean insights from
it that will prove relevant. We note that the entire medium-dependence of the gluon
number spectrum (2.33) is determined by target expectation values of the form
〈Tr

[
W A †(x) W A(y)

]〉 of two eikonal Wilson lines. The jet quenching parameter q̂
that will appear below defines the fall-off properties of this correlation function in
the transverse direction L ≡ |x − y|:

〈Tr
[
W A(C)

]〉 ≈ exp

[
− 1

4
√

2
q̂ L− L2

]
(2.34)

in the limit of small L , with L− (the extent of the target along the z− direction)
assumed large but finite [582, 584]. Here, the contour C traverses a distance L−

along the light cone at transverse position x, and it returns at transverse position
y. These two long straight light-like lines are connected by short transverse seg-
ments located at z− = ±L−/2, far outside the target. We see from the form of
(2.33) that |k| and L are conjugate: the radiation of gluons with momentum |k| is
determined by Wilson loops with transverse extent L ∼ 1/|k|. This means that in
the limit (2.31), the only property of the medium that enters (2.33) is q̂. Further-
more, inserting (2.34) into (2.33) yields the result that the gluons that are produced
have a typical k2 that is of order q̂ L−. This suggests that q̂ can be interpreted as
the transverse momentum squared picked up by the hard parton per distance L−

that it travels, an interpretation that can be validated more rigorously via other
calculations [251, 317].

B Parton energy loss in a finite medium

The reason that the eikonal formalism cannot be applied verbatim to the problem
of parton energy loss in heavy ion collisions is that the high energy partons we
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wish to study do not impinge on the target from some distant production site. They
are produced within the same collision that produces the medium whose properties
they subsequently probe. As a consequence, they are produced with significant
virtuality. This means that even if there were no medium present, they would
radiate copiously. They would fragment in what is known in QCD as a parton
shower. The analysis of medium-induced parton energy loss then requires under-
standing the interference between radiation in vacuum and the medium-induced
bremsstrahlung radiation. It turns out that the resulting interference resolves lon-
gitudinal distances in the target [98, 817, 797, 420], meaning that its description
goes beyond the eikonal approximation. The analysis of parton energy loss in the
high energy limit (2.31) must include terms that are subleading in 1/E , and there-
fore not present in the eikonal approximation, that describe the leading interference
effects. To keep these O(1/E) effects, one must replace eikonal Wilson lines by
retarded Green’s functions that describe the propagation of a particle with energy E
from position z−

1 , x1 to position z−
2 , x2 without assuming x1 = x2 [817, 544, 798].

(In the E → ∞ limit, x1 = x2 and the eikonal Wilson line is recovered.) It nev-
ertheless turns out that even after Wilson lines are replaced by Green’s functions
the only attribute of the medium that arises in the analysis, in the limit (2.31), is
the jet quenching parameter q̂ defined in (2.34) that already arose in the eikonal
approximation [817, 797].

We shall not present the derivation, but it is worth giving the complete (albeit
somewhat formal) result for the distribution of gluons with energy ω and transverse
momentum k that a high energy parton produced within a medium radiates:

ω
d I

dω dk
= αs CR

(2π)2 ω2
2Re

∫ ∞

ξ0

dyl

∫ ∞

yl

d ȳl

∫
du e−ik·u exp

[
−1

4

∫ ∞

ȳl

dξ q̂(ξ) u2

]

× ∂

∂x
· ∂

∂u

∫ u≡r(ȳl )

x≡r(yl )≡0
Dr exp

[∫ ȳl

yl

dξ

(
i ω

2
ṙ2 − 1

4
q̂(ξ)r2

)]
. (2.35)

We now walk through the notation in this expression. The Casimir operator CR is
in the representation of the projectile parton. The integration variables ξ , yl and ȳl

are all positions along the z− lightcone direction. ξ0 is the z− at which the projec-
tile parton was created in a hard scattering process. Since we are not taking this to
−∞, the projectile is not assumed on shell. The projectile parton was created at the
transverse position x = 0. The integration variable u is also a transverse position
variable, conjugate to k. The path integral is over all possible paths r(ξ) going from
r(yl) = 0 to r(ȳl) = u. The derivation of (2.35) proceeds by writing d I/dω dk in
terms of a pair of retarded Green’s functions in their path-integral representations,
one of which describes the radiated gluon in the amplitude, radiated at yl , and the
other of which describes the radiated gluon in the conjugate amplitude, radiated at

https://doi.org/10.1017/9781009403504.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.002


2.3 Jet quenching 53

ȳl . The expression (2.35) then follows after a lengthy but purely technical calcu-
lation. The properties of the medium enter (2.35) only through the jet quenching
parameter q̂(ξ). There are many, closely related formulations of parton energy loss.
The first works on this subject are by Baier, Dokshitzer, Mueller, Peigné, Schiff
(BDMPS) [98] and independently by Zakharov (Z) [817]. The expression (2.35)
was derived in the so-called path-integral approach in Refs. [817, 797]. This and
related approaches to parton energy loss in QCD have been developed by many
authors [101, 414, 795, 76, 97, 551, 422, 796, 710, 821, 592, 700, 818, 122, 68, 13,
790, 463, 276, 591, 236]. Recent reviews include [251, 799].

The result (2.35) is both formal and complicated. However, its central qualitative
consequences can be characterized almost by dimensional analysis. For simplicity,
we consider first the case that the jet quenching parameter does not depend on the
position in the medium, q̂ = q̂(ξ) (for a generalization, see the next subsection).
All dimensionful quantities can be scaled out of (2.35) if ω is measured in units of
the so-called characteristic gluon energy

ωc ≡ q̂(L−)2 , (2.36)

and the transverse momentum k2 in units of q̂ L− [724]. In a numerical analysis
of (2.35), one finds that the transverse momentum distribution of radiated glu-
ons scales indeed with q̂ L−, as expected for the transverse momentum due to
the Brownian motion in momentum space that is induced by multiple small angle
scatterings. If one integrates the gluon distribution (2.35) over transverse momen-
tum and takes the upper limit of the k-integration to infinity, one recovers [724]
an analytical expression first derived by Baier, Dokshitzer, Mueller, Peigné and
Schiff [98]:

ω
d IBDMPS

dω
= 2αsCR

π
ln

∣∣∣∣cos

[
(1 + i)

√
ωc

2ω

]∣∣∣∣ , (2.37)

which yields the limiting cases

ω
d IBDMPS

dω
� 2αsCR

π

{ √
ωc
2ω

for ω � ωc ,

1
12

(
ωc
ω

)2
for ω � ωc ,

(2.38)

for small and large gluon energies. In the soft gluon limit, the BDMPS spectrum
(2.37) displays the characteristic 1/

√
ω dependence, which persists up to a gluon

energy of the order of the characteristic gluon energy (2.36). Hence, ωc can be
viewed as an effective energy cut-off, above which the contribution of medium-
induced gluon radiation is negligible. These analytical limits provide a rather
accurate characterization of the full numerical result. In particular, one expects
from the above expressions that the average parton energy loss 〈�E〉, obtained by
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integrating (2.35) over k and ω, is proportional to ∝ ∫ ωc

0 dω
√
ωc/ω ∝ ωc. One

finds indeed

〈�E〉BDMPS ≡
∫ ∞

0
dωω

d IBDMPS

dω
= αsCR

2
ωc = αsCR

2
q̂
(
L−)2

. (2.39)

This is the well-known (L−)2-dependence of the average radiative parton energy
loss [99, 98, 817]. In summary, the main qualitative properties of the medium-
induced gluon energy distribution (2.35) are the scaling of k2 with q̂ L− dictated by
Brownian motion in transverse momentum space, the 1/

√
ω dependence of the k-

integrated distribution characteristic of the non-Abelian Landau–Pomerantschuk–
Migdal (LPM) effect, and the resulting (L−)2-dependence of the average parton
energy loss.

C From medium-induced gluon radiation to jet quenching models

We now discuss how to relate calculations of medium-induced gluon radiation to
data on jet quenching in heavy ion collisions. To this end, we recall first how in
QCD in the vacuum, partons produced with high transverse energy in hadronic
collisions evolve into hadronic fragments. Such highly energetic partons typically
undergo a so-called parton shower, that is a series of partonic 1 → 2 splittings in
which they degrade their high initial virtuality. It is only at the end of this parton
shower that hadronization, i.e. the transition from partonic to hadronic degrees of
freedom, sets in. This vacuum parton shower is calculable in QCD perturbation the-
ory and it is theoretically well-understood. It determines, for instance, the so-called
scale dependence of fragmentation functions (i.e. the μ2

F dependence in Eq. (2.29)),
as well as many characteristics of the distribution of the hadronic fragments of jets.
Most generally, the phenomenology of jet quenching aims at modeling how the
passage through dense matter affects this QCD parton shower and what it reveals
about the properties of the matter through which it passes. The theorist’s task is
therefore to formulate a medium-modified parton shower that is consistent with
QCD-based calculations of parton energy loss. Since the theoretical understanding
of jet quenching is still incomplete, this task requires elements of phenomeno-
logical modeling to relate QCD-based calculations to jet quenching data. Here,
we discuss one particularly simple and widely used jet quenching model in some
detail. We then comment on open challenges and further developments.

As explained above, the basic building block of a QCD parton shower in the
vacuum is the elementary partonic 1 → 2 splitting function. The splittings of
a quark into a quark and a gluon (q → q g) and of a gluon into two gluons
(g → g g) dominate kinematically. Both processes can be viewed as gluon radia-
tion of a parent parton in the vacuum. One particularly simple way of formulating
a medium-modified parton shower is then to replace the 1 → 2 splitting in the
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vacuum by a calculation of medium-induced 1 → 2 splitting. In particular, our
derivation (2.35) of medium-induced gluon radiation of a quark or gluon can be
used in this set-up as a medium-induced 1 → 2 splitting. This idea has been imple-
mented in several Monte Carlo programs that simulate the entire parton shower,
see e.g. [818, 67]. A discussion of the complexity of Monte Carlo programs for
final state parton showers and the technical and conceptual differences in exist-
ing Monte Carlo implementations lies outside the scope of this book. Instead, we
restrict our discussion to a version of such jet quenching models that is limited to
describing single inclusive hadron spectra in nucleus–nucleus collisions. As seen
from expression (2.29), the quenching of such spectra can be descibed by the prob-
ability P(�E) that the initial parton loses a fraction �E/E of its total energy via
medium effects. We now sketch how the resulting P(�E) in (2.29) can be esti-
mated. If gluons are emitted independently, P(�E) is the normalized sum of the
emission probabilities for an arbitrary number of n gluons which carry away the
total energy �E [103]:

P(�E) = exp

[
−
∫ ∞

0
dω

d I

dω

] ∞∑
n=0

1

n!

[
n∏

i=1

∫
dωi

d I (ωi )

dω

]
δ

(
�E −

n∑
i=1

ωi

)
.

(2.40)

Here, the factor exp
[− ∫ ∞

0 dω d I
dω

]
denotes the probability that no energy loss occurs.

This factor ensures that P(�E) is properly normalized, namely
∫

d�E P(�E)=1.
Equation (2.40) thus resums the effects that arbitrarily many independent medium-
induced gluon radiations (2.35) have on the energy of the most energetic parton in
the shower. On average, this parton will suffer an additional medium-induced mean
energy loss

〈�E〉 =
∫

d�E (�E) P(�E) =
∫

dωω
d I

dω
, (2.41)

which is consistent with (2.39) above.
The phenomenological strategy for constraining the jet quenching parameter q̂

is then based on comparing the single inclusive hadron spectrum (2.29) in nucleus–
nucleus collisions to data. Here, the jet quenching parameter q̂ enters via the
probability P(�E) that the initial parton loses a fraction �E/E of its total energy
via medium effects. We note, however, that such a program of determining q̂ has
to control various complications.

In particular, as seen from Fig. 2.3, single inclusive hadron spectra are distri-
butions which fall steeply with pT . Since P(�E) is a very broad distribution, not
peaked around its mean, the modifications which parton energy loss induce on
spectra cannot be characterized by an average energy loss. Rather, what matters for
a steeply falling distribution is not how much energy a parton loses on average, but
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which fraction of all the partons escapes with much less than the average energy
loss [103]. This so-called trigger-bias effect is quantitatively very important, and
can be accounted for by the probability distribution (2.40). However, this trigger-
bias effect is also a surface-bias effect: those partons that escape with the smallest
in-medium path length have the highest probability of contributing to the single
inclusive hadron spectrum. As a consequence, it is important that jet quenching
models embed the propagation of the highly energetic parton in a realistic spatial
and temporal structure of a heavy ion collision. This includes a suitable probability
distribution of the production points of the hard partons in the transverse plane, and
a resulting realistic distribution of the in-medium path lengths L− over which the
parton propagates through the medium.

Another important aspect is that as a consequence of longitudinal and transverse
flow, the density of the medium degrades significantly during this time period L−,
and approximating q̂(ξ) by a constant value q̂ is not a good approximation. In
general, this motivates the formulation of jet quenching models for which the prob-
ability of interactions between the medium and the jet decreases with time. For the
medium-induced gluon radiation (2.35), analytical solutions in the saddle point
approximation are known if one approximates the ξ dependence of the jet quench-
ing parameter as q̂(ξ) = q̂0 (ξ0/ξ)

α [100] with α between 1 and 3. This range of
αs scans the range of phenomenologically relevant cases between one-dimensional
longitudinal expansion (α = 1; “Bjorken expansion”) and scenarios which also
account for the transverse expansion 1 < α < 3. Remarkably, one finds that irre-
spective of the value of α, for fixed in-medium path length L−/

√
2 the transverse

momentum integrated gluon energy distribution (2.35) has the same ω-dependence
if q̂(ξ) is simply replaced by a constant given by the linear line-averaged transport
coefficient [723]

〈q̂〉 ≡ 1

2 L−2

∫ ξ0+L−

ξ0

dξ (ξ − ξ0) q̂(ξ) . (2.42)

In practice, this means that comparisons of different parton energy loss calculations
to data can be performed as if the medium were static. The line-averaged transport
coefficient 〈q̂〉 determined in this way can then be related via (2.42) to the trans-
port coefficient at a given time, once a model for the expansion of the medium is
specified. Hence, we can continue our discussion for the case q̂(ξ) = q̂ without
loss of generality.

Historically, the first class of jet quenching models proceeded by implementing
P(�E) in a model in which hard scattering events are distributed with suitable
probability at locations in the transverse plane, and are then propagated through
the medium. To this end, the expanding and cooling plasma was given either by
a simple parametrization, or it was modeled hydrodynamically. The jet quenching
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parameter was assumed for instance to be given in terms of the time-dependent
energy density ε,

q̂ = 2K ε3/4 , (2.43)

and the parameter K was then obtained by comparing jet quenching calculations to
data. For a weakly coupled quark–gluon plasma, Baier had argued that K ≈ 1 [97].
In contrast, in fitting to data from PHENIX and STAR at RHIC, several studies
obtained significantly larger values. For instance, the PHENIX collaboration [20]
use the jet quenching model from Ref. [305] and quote a jet quenching parameter
which is constrained by the experimental data to lie within the range 13.2+2.1

−3.2 or
13.2+6.3

−5.2 GeV2/fm at the one or two standard deviation levels, respectively. This
translates into the estimate

K = 4.1 ± 0.6 , (2.44)

at one standard deviation. It is important to realize that the quoted errors arise
only from the experimental uncertainties and do not incorporate the “systematic
uncertainty” arising from the choices made in the formulation of the theoretical
model to which the PHENIX authors compare their data. We will compare the
result (2.44) to calculations done for strongly coupled plasmas in gauge theories
with dual gravitational descriptions in Section 8.5.

As mentioned already, we have limited our presentation in this section to one
particularly simple jet quenching model in order to showcase an example of an
explicit connection between a property of dense QCD matter, namely q̂, and the
measurement of quenched hadron spectra. The large values of q̂ extracted from
several model comparisons with data motivate the need to turn to strong coupling
techniques for describing jet–medium interactions. Theoretical work is currently
under way to improve on significant assumptions of the simple model approach
discussed here, for example the assumption that a calculation of parton energy
loss in the eikonal limit (2.31) can provide sufficiently accurate results for the
phenomenologically relevant kinematics [70] or the assumption that effects of mul-
tiple gluon emission can be taken into account probabilistically via (2.40) without
accounting for (destructive) quantum interference in the emission of more than
one gluon and without tracing the energy loss of the projectile after a gluon emis-
sion. Many of the resulting model uncertainties can only be controlled by going
beyond the kinematical limit (2.31). Going beyond this limit is also required if
one is to assess the possible role of parton energy loss via elastic interactions with
the medium. Another current challenge is to go beyond single inclusive hadron
spectra and to formulate models that can account for the medium-modified frag-
mentation of entire jets as seen in Fig. 2.12. All these open questions are subjects of
ongoing research and they lie outside the scope of the present book. As described
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in this section, the basic problem is to understand how a QCD final state parton
shower is modified in the presence of a hot and dense plasma. In the coming years,
progress on this question can be expected from a tight interplay between theory
and experiment that includes a more and more detailed characterization of parton
fragmentation via a suite of upcoming further measurements including jet fragmen-
tation functions, γ - or Z -triggered jet distributions, heavy flavored single inclusive
hadron spectra and b-tagged jets.

2.4 Quarkonia in hot matter

One way of thinking about the operational meaning of the statement that quark–
gluon plasma is deconfined is to ask what prevents the formation of a meson within
quark–gluon plasma. The answer is that the attractive force between a quark and
an antiquark which are separated by a distance of order the size of a meson is
screened by the presence of the quark–gluon plasma between them. This poses a
quantitative question: how close together do the quark and antiquark have to be
in order for their attraction not to be screened? How close together do they have
to be in order for them to feel the same attraction that they would feel if they
were in vacuum? It was first suggested by Matsui and Satz [609] in 1986 that
measurements of how many quarkonia – mesons made of a heavy quark–antiquark
pair – are produced in heavy ion collisions could be used as a tool with which to
answer this question, because they are significantly smaller than typical mesons or
baryons.

The generic term quarkonium refers to the charm–anticharm or charmonium,
mesons (J/ψ , ψ ′, χc, . . .) and the bottom–antibottom, or bottomonium, mesons
(ϒ , ϒ ′, . . .). The first quarkonium state that was discovered was the 1s state of
the c c̄ bound system, the J/ψ . It is roughly half the size of a typical meson like
the ρ. The bottomonium 1s state, the ϒ , is smaller again by roughly another fac-
tor of two. It is therefore expected that if one can study quark–gluon plasma in a
series of experiments with steadily increasing temperature, J/ψ mesons survive as
bound states in the quark–gluon plasma up to some dissociation temperature that
is higher than the crossover temperature (at which generic mesons and baryons
made of light quarks fall apart) and ϒ mesons survive as bound states up to some
even higher temperature. More realistically, what Matsui and Satz suggested is that
if high energy heavy ion collisions create deconfined quark–gluon plasma that is
hot enough, then color screening would prevent charm and anticharm quarks from
binding to each other in the deconfined interior of the droplet of matter produced in
the collision, and as a result the number of J/ψ mesons produced in the collisions
would be suppressed. However, bottomonium mesons in the ϒ 1s state should
be able to bind, and the rate of production of these mesons should therefore not
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r
Q QQQ

Figure 2.15 Schematic picture of the dissociation of a Q Q̄-pair in hot QCD mat-
ter due to color screening. Figure taken from Ref. [728]. The straight black lines
attached to the heavy Q and Q̄ indicate, that these quarks are external probes,
in contrast to the dynamical quarks within the quark–gluon plasma. Figure taken
from Ref. [728].

be suppressed, until such high temperatures are achieved that the quark–antiquark
attraction is screened even on the short length scale corresponding to the size of
the ϒ meson in its 1s state.

To study this effect, Matsui and Satz suggested comparing the temperature
dependence of the screening length for the quark–antiquark force, which can be
obtained from lattice QCD calculations, with the J/ψ meson radius calculated in
charmonium models. They then discussed the feasibility to detect this effect clearly
in the mass spectrum of e+ e− dilepton pairs. Between 1986, when Matsui and Satz
launched this line of investigation, suggesting it as a quantitative means of charac-
terizing the formation and properties of deconfined matter, and today we know
of no other measurement that has been advocated as a more direct experimental
signature for the deconfinement transition. And, there is hardly any other measure-
ment whose phenomenological analysis has turned out to be more involved. In this
section, we shall describe both the appeal of studying quarkonia in the hot matter
produced in heavy ion collisions and the practical difficulties. The theoretical basis
for the argument of Matsui and Satz has evolved considerably within the last two
decades [728]. Moreover, the debate over how to interpret these measurements is
by now informed by data on J/ψ suppression in nucleus–nucleus collisions at the
CERN SPS [43, 72], at RHIC [19] and at the LHC [1]. There is also a good pos-
sibility that qualitatively novel information will become accessible in future high
statistics runs at RHIC and LHC.

A sketch of the basic idea of Matsui and Satz is shown in Fig. 2.15. In very
general terms, one expects that the attractive interaction between the heavy quark
and antiquark in a putative bound state is sensitive to the medium in which the
heavy particles are embedded, and that this attraction weakens with increasing tem-
perature. If the distance between the heavy quark and antiquark is much smaller
than 1/T , there will not be much quark–gluon plasma between them. Equivalently,
typical momentum scales in the medium are of order the temperature T , and so the
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medium cannot resolve the separation between the quark–antiquark pair if they are
much closer together than 1/T . However, if the distance is larger, then the bound
state is resolved, and the color charges of the heavy quarks are screened by the
medium, see Fig. 2.15. For the temperatures T that one expects to attain in a heavy
ion collision in which quark–gluon plasma with a temperature T is created, only
those quarkonia with radii that are smaller than some length scale of order 1/T can
form. These basic arguments support the idea that quarkonium production rates are
an indicator of whether quark–gluon plasma is produced, and at what temperature.

In Section 3.3, we review lattice calculations of the heavy quark static free
energy FQQ̄(r). This static potential is typically defined via how the correlation
function of a pair of Polyakov loops, namely test quarks at fixed spatial positions
whose worldlines wrap around the periodic Euclidean time direction, falls off as the
separation between the test quarks is increased. This static potential is renormalized
such that it matches the zero temperature result at small distances. Calculations of
FQ Q̄(r) were the earliest lattice results which substantiated the core idea that a
quarkonium bound state, placed in hot QCD matter, dissociates (“melts”) above a
critical temperature. As we now discuss, phenomenological models of quarkonium
in matter are based upon interpreting FQQ̄(r) as the potential in a Schrödinger
equation whose eigenvalues and eigenfunctions describe the heavy Q–Q̄ bound
states. There is no rigorous basis for this line of reasoning, and if pushed too far
it faces various conceptual challenges as we shall discuss in Section 3.3. However,
these models remain valuable as a source of semi-quantitative intuition.

At zero temperature, lattice results for FQ Q̄(r) in QCD without dynamical
quarks are well approximated by the ansatz FQ Q̄(r) = σ r − α

r , where the lin-
ear term that dominates at long distance is characterized by the string tension
σ � 0.2 GeV2 and the perturbative Coulomb term α/r is dominant at short dis-
tances. In QCD with dynamical quarks, beyond some radius rc the potential flattens
because as the distance between the external Q and Q̄ is increased, it becomes
energetically favorable to break the color flux tube connecting them by producing
a light quark–antiquark pair from the vacuum which, in a sense, screens the poten-
tial. With increasing temperature, the distance rc decreases, that is, the colors of Q
and Q̄ are screened from each other at increasingly shorter distances. This is seen
clearly in the Fig. 3.5 in Section 3.3. These lattice results are well parametrized by
a screened potential of the form [728, 521]

FQQ̄(r) = −α

r
+ σ r

(
1 − e−μ r

μ r

)
, (2.45)

where μ ≡ μ(T ) can be interpreted at high temperatures as a temperature-
dependent Debye screening mass. For suitably chosen μ(T ), this ansatz reproduces
the flattening of the potential found in lattice calculations at the finite large distance
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value FQQ̄(∞) = σ/μ(T ). Taking this Q Q̄ free energy FQ Q̄(r, T ) as the poten-
tial in a Schrödinger equation, one may try to determine which bound states in
this potential remain, as the potential is weakened as the temperature increases.
Such potential model studies have led to predictions of the dissociation tempera-
tures Td of the charmonium family, which range from Td(J/ψ) � 2.1 Tc for J/ψ
to Td(ψ

′) � 1.1 Tc for the more loosely bound and therefore larger 2s state. The
deeply bound, small, 1s state of the bottomonium family is estimated to have a
dissociation temperature Td(ϒ(1S))) > 4 Tc, while dissociation temperatures for
the corresponding 2s and 3s states were estimated to lie at 1.6 Tc and 1.2 Tc respec-
tively [728, 521]. Because the leap from the static quark–antiquark potential to a
Schrödinger equation is not rigorously justified, the uncertainties in quantitative
results obtained from these potential models are difficult to estimate. (For more
details on why this is so, see Section 3.3.) However, these models with their inputs
from lattice QCD calculations do provide qualitative support for the central idea of
Matsui and Satz that quarkonia melt in hot QCD matter, and they provide support
for the qualitative expectation that this melting proceeds sequentially, with smaller
bound states dissociating at a higher temperature.

Figure 2.16 shows data of the Upsilon resonances 1s, 2s and 3s in the dimuon
invariant mass distribution measured by the CMS collaboration in p+p and Pb+Pb
collisions at the LHC. While all three resonance states are clearly visible in p+p
collisions, the higher excited 2s and 3s states are strongly suppressed if not absent
in Pb+Pb collisions. These data are the most direct experimental support to date for
the sequential quarkonium suppression pattern which is a generic prediction of all
models of quarkonium suppression, and according to which only the tightly bound
1s state with Td(ϒ(1S)) > 4 Tc is expected to survive in the hot and dense QCD
matter produced at the LHC. A more detailed discussion of these data requires the
understanding of so-called feed-down corrections, which are contributions to the
1s yield from the decay of higher excited states. In proton–proton collisions, a sig-
nificant fraction (∼ 40%) of the observed ϒ(1s) mesons arises from the production
of the excited 2s and 3s states which subsequently decay to ϒ(1s). Therefore, if the
higher excited states melt in the hot matter, one expects that their “feed-down” to
the ϒ(1s) state is absent and the measured yield of ϒ(1s) is reduced accordingly.
Indeed, despite significant experimental uncertainties that still exist for these very
first data, there is already evidence for a reduction in the number of ϒ(1s) mesons
produced in Pb+Pb collisions that can be explained in just this way. The analogous
argument has also been instrumental in interpreting earlier data on the suppres-
sion of the yield of J/ψ mesons in nucleus–nucleus collisions at the CERN SPS
[43, 72] and at RHIC in terms of the dissociation of higher excited states like the
ψ ′ and χc whose decays contribute to the J/ψ yield in proton–proton collisions.
In particular, assuming that directly produced 1s charmonium states survive and
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Figure 2.16 The invariant mass distribution of dimuons in Pb+Pb (above) and
p+p (below) collisions measured by the CMS collaboration. In comparison to the
benchmark measurement in p+p, the higher ϒ resonances are strongly suppressed.
Figures taken from Ref. [269].

higher excited states melt completely at CERN SPS and RHIC energies provides a
natural interpretation for the fact that the suppression of the J/ψ yield and its cen-
trality dependence in nucleus–nucleus collisions at the CERN SPS and RHIC are
comparable. However, since these earlier studies did not have experimental access
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to the excited quarkonium states, their support for a picture of sequential melting
was less direct.

The analysis of data on charmonium has to take into account a significant num-
ber of important confounding effects. Here, we cannot discuss the phenomenology
of these effects in detail, but we provide a list of the most important ones.

(1) Cold nuclear matter effects
The interaction of the heavy quark–antiquark pair with ordinary confined
hadronic matter can be a significant source of quarkonium dissociation [202].
The operational procedure for separating such hadronic phase effects (often
referred to as “cold nuclear matter effects”) is to measure them separately in
proton–nucleus collisions [525], and to establish then to what extent the num-
ber of J/ψ mesons produced in nucleus–nucleus collisions drops below the
yield extrapolated from proton–nucleus collisions [26].

(2) Collective dynamics of the heavy ion collision: “explosive expansion”
Lattice calculations are done for heavy quark bound states that are at rest in
a hot, static, medium. In heavy ion collisions, however, even if the droplet
of hot matter equilibrates rapidly, its temperature drops quickly during the
subsequent explosive expansion. The observed quarkonium suppression must
therefore result from a suitable time average over a dynamical medium. This
is challenging in many ways. One issue that arises is the question of how long
a bound state must be immersed in a sufficiently hot heat bath in order to melt.
Or, phrased better, how long must the temperature be above the dissociation
temperature Td in order to prevent an heavy quark and antiquark produced at
the initial moment of the collision from binding to each other and forming a
quarkonium meson?

(3) Collective dynamics of the heavy ion collision: “hot wind”
Another issue that faces any data analysis is that quarkonium mesons may
be produced moving with significant transverse momentum through the hot
medium. In their own reference frame, the putative quarkonium meson sees
a hot wind. Phenomenologically, the question arises whether this leads to a
stronger suppression since the bound state sees some kind of blue-shifted heat
bath (an idea which we will refine in Section 8.7), or whether the bound state
is less suppressed since it can escape the heat bath more quickly.

(4) Formation of quarkonium bound states
Neither quarkonia nor equilibrated quark–gluon plasma are produced at time
zero in a heavy ion collision. Quarkonia have to form, for instance by a colored
c c̄ pair radiating a gluon to turn into a color-singlet quarkonium state. This
formation process is not fully understood in elementary interactions or in heavy
ion collisions. However, since the formation process takes time, it is a priori
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unclear whether any observed quarkonium suppression is due to the effects of
the hot QCD matter on a formed quarkonium bound state or on the precursor
of such a bound state, which may have different attenuation properties in the
hot medium. And, it is unclear whether the suppression is due to processes
occurring after the liquid-like strongly coupled plasma reaches approximate
local thermal equilibrium or earlier, before equilibration.

(5) Recombination as a novel mechanism of quarkonium formation
QCD is flavor neutral and thus charm is produced in c c̄ pairs in primary inter-
actions. If the average number of pairs produced per heavy ion collision is � 1,
then all charmonium mesons produced in heavy ion collisions must be made
from a c and a c̄ produced in the same primary interaction. At RHIC and even
more so at the LHC, however, more than one c c̄ pair is produced per collision,
raising the possibility of a new charmonium production mechanism in which a
c and a c̄ from different primary c c̄ pairs meet and combine as the quark–
gluon plasma falls apart into hadrons to form a charmonium meson [780].
If this novel quarkonium production mechanism were to become significant,
it could reduce the quarkonium suppression or even turn it into quarkonium
enhancement. Since there are more c and c̄ produced in heavy ion collisions at
LHC energies than at RHIC energies, and more at low transverse momentum
pT than at high pT , and more in central collisions than in peripheral collisions,
one seeks signatures of this recombination mechanism in particular in the low-
pT -dominated total J/ψ yields in sufficiently central heavy ion collisions at
the LHC [1].

As discussed in Section 8.7 and Chapter 9, calculations based on the AdS/CFT
correspondence can provide information relevant for phenomenological modeling,
in particular by calculating heavy quark potentials within a moving heat bath and
by determining meson dispersion relations. The above discussion illustrates the
context in which such information is useful, but it also emphasizes that such infor-
mation is not sufficient. An understanding of quarkonium production in heavy ion
collisions relies on phenomeological modelling as the bridge between experimental
observations and the theoretical analysis of the underlying properties of hot QCD
matter.
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