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Abstract Let Ω be a finite set and let G be a permutation group acting on it. A subset H of G is
called t-intersecting if any two elements in H agree on at least t points. Let SD

n and SB
n be the classical

Coxeter group of type Dn and type Bn, respectively. We show that the maximum-sized (2t)-intersecting
families in SD

n and SB
n are precisely cosets of stabilizers of t points in [n] := {1, 2, . . . , n}, provided n is

sufficiently large depending on t.
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classical coxeter groups

2010 Mathematics subject classification: Primary 05E10
Secondary 20C15

1. Introduction

The classical Erdős–Ko–Rado theorem [6] is a central result in extremal combinatorics.
It has been generalized in many ways, including for permutations.

Let Sn be the symmetric group on [n]. Let t be a positive integer and let t < n. A
subset H ⊂ Sn is called t-intersecting if, for any two permutations σ, π ∈ H, there exist
i1, . . . , it ∈ [n] such that σ(il) = π(il) for l ∈ [t].

In 1977, Deza and Frankl [3] showed that if H ⊂ Sn is 1-intersecting, then |H| �
(n−1)!. Later, Cameron and Ku [1] and Larose and Malvenuto [8] independently proved
that equality holds if and only if H is a coset of the stabilizer of a point. Deza and
Frankl [3] also conjectured that, for n sufficiently large depending on t, the cosets of
stabilizers of t points are maximum-sized t-intersecting subsets of Sn. This has recently
been proved by Ellis et al . [5].

Theorem 1.1 (see Ellis et al . [5]). For n sufficiently large depending on t, if H ⊂ Sn

is t-intersecting, then |H| � (n − t)!. Equality holds if and only if H is a coset of the
stabilizer of t points.
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The classical Coxeter group SB
n is a group of signed permutations of [n]. More specif-

ically, SB
n consists of all permutations w of [±n] := {−n, . . . ,−1, 1, . . . , n} such that

w(−i) = −w(i) for each i ∈ [n]. The group SD
n is a normal subgroup of SB

n consisting of
all those permutations w ∈ SB

n such that |{i ∈ [n] : w(i) /∈ [n]}| is even.
Note that, for any σ, π ∈ SB

n , one has that

2|{i ∈ [n] : σ(i) = π(i)}| = |{i ∈ [±n] : σ(i) = π(i)}|.

We say a subset H ⊂ SB
n is (2t)-intersecting if, for any σ, π ∈ SB

n , |{i ∈ [n] : σ(i) =
π(i)}| � t. In this paper, we deal with the analogues of Theorem 1.1 for classical Coxeter
groups SB

n and SD
n . We state our main theorem below.

Theorem 1.2. For n sufficiently large depending on t, we have the following.

(1) If H ⊂ SB
n is a (2t)-intersecting subset of SB

n , then |H| � 2n−t(n − t)!; equality
holds if and only if H is a coset of the stabilizer of t points in [n].

(2) If H ⊂ SD
n is a (2t)-intersecting subset of SD

n , then |H| � 2n−t−1(n − t)!; equality
holds if and only if H is a coset of the stabilizer of t points in [n].

The case t = 1 of Theorem 1.2 has been proved by Wang and Zhang [14], using
completely combinatorial techniques. We will follow the ideas given by Ellis et al . in [5],
i.e. using the representation theory of groups to prove Theorem 1.2. This method was
also used by Godsil and Meagher to prove the case t = 1 of Theorem 1.1 in [7].

The paper has the following structure. In § 2, we give a sketch of the proof of Theo-
rem 1.2. In § 3, we prove some necessary results and lemmas pertaining to representations
and characters of SB

n and SD
n . In § 4, we prove Theorem 1.2 for SD

n . In § 5, we prove The-
orem 1.2 for SB

n . In § 6, we give some comments on the generalization of Theorem 1.2 to
imprimitive reflection groups.

In the following sections of this paper, we always assume that t is a fixed positive
integer and that n > 3t + 1 is a large enough positive integer depending on t.

2. Overview of the proof

Readers can refer to [4, § 2] and [5, § 2] for any definition or result on the general repre-
sentation theory of finite groups and Cayley graphs that is not explained herein.

The proof of Theorem 1.2 will rely crucially on the following two lemmas.

Lemma 2.1 (see [4, Theorem 4]). Let G be a finite group, let X be an inverse-
closed, conjugation-invariant subset of G and let Γ be the normal Cayley graph on G

generated by X. Let A be the adjacency matrix of Γ . Let V1, . . . , Vk be a complete set
of non-isomorphic irreducible modules of G. For each i ∈ [k], let Ui denote the sum
of all submodules of the group algebra CG that are isomorphic to Vi. Then, Ui is the
eigenspace of A, and the corresponding eigenvalue is

λVi =
∑

x∈X χVi(x)
dim(Vi)

.
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Note that the eigenvalues of the adjacency matrix A of the graph Γ are usually referred
to as eigenvalues of Γ .

Lemma 2.2 (see [5, Theorem 12]). Let Γ = (V, E) be an N -vertex graph. Let
Γ1, . . . , Γk be regular, spanning subgraphs of Γ , all having {v1, v2, . . . , vN} as an orthog-
onal system of eigenvectors (where v1 is the all-1′ vector). For i ∈ [N ] and j ∈ [k], let λj

i

be the eigenvalue of vi in Γj . Let β1, β2, . . . , βk ∈ R and take

λi =
k∑

j=1

βjλ
j
i .

If λmin = min{λi}i∈[N ] and I is an independent set in Γ , then

|I|
|V | � −λmin

λ1 − λmin
.

And equality implies that

1I ∈ span({v1} ∪ {vi : λi = λmin}).

We think of the λi above as eigenvalues of the linear combination of graphs

Υ =
k∑

j=1

βjΓj .

The corresponding linear combination of adjacent matrices

A =
k∑

j=1

βjAj

is a so-called pseudo-adjacent matrix for Γ (see [5, Theorem 12] for the definition).
We give a sketch of the proof of Theorem 1.2. Take SD

n as an example. We will proceed
in the following manner.

First, we bound the size of a (2t)-intersecting subset of SD
n . Let ΓFPFt be the Cayley

graph on SD
n generated by the set

FPFt = {σ ∈ SD
n : σ has fewer than t fixed points in [n]}.

Following [5], we will choose various subgraphs of ΓFPFt and construct a pseudo-
adjacency matrix A for ΓFPFt that is a suitable real linear combination of the adjacency
matrices of these subgraphs, such that the minimal eigenvalue λmin of A is

� := − 1
2tn(n − 1) · · · (n − t + 1) − 1

,

and the eigenvalue of the all-1′ eigenvector is λ1 = 1. Most of the work of the proof is
in showing that such a suitable linear combination exists, which turns out to be more
difficult to handle than in [5]. We then apply Lemma 2.2 to this linear combination and
obtain the following.
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Theorem 2.3. For t fixed and n sufficiently large depending on t, if I ⊂ SD
n is (2t)-

intersecting, then |I| � 2n−t−1(n − t)!.

Next, we will characterize the maximum-sized (2t)-intersecting subset of SD
n . Let Ut

be the direct sum of all submodules of group algebra CSD
n that are isomorphic to the

irreducible modules V , where the eigenvalue λV of the pseudo-adjacency matrix A con-
structed above is λ1 or λmin. We will then show the following.

Theorem 2.4. Ut is spanned by the characteristic functions of the cosets of the
stabilizer of t points in [n].

Now, apply Lemma 2.2 again to that linear combination (constructed above); we see
that the characteristic function of a maximum-sized (2t)-intersecting subset of SD

n is
spanned by those of the cosets of stabilizers of t points in [n]. We will complete our proof
by showing the following.

Theorem 2.5. If 1I is spanned by the characteristic functions of the cosets of stabi-
lizers of t points in [n], where I is a maximum-sized (2t)-intersecting subset of SD

n , then
I is a coset of the stabilizer of t points in [n].

3. Representation theory of SB
n and SD

n

3.1. Basic results on the representations of SB
n and SD

n

Readers can refer to [5, § 3] for any definition and basic result regarding the representation
theory of Sn that is not explained herein.

Each element w ∈ SB
n is a product of disjoint cycles w = θ1 · · · θh, where

θi =

(
bi1 bi2 · · · bili

(−1)ki1bi2 (−1)ki2bi3 · · · (−1)kili bi1

)
(bij ∈ [n], kij ∈ {0, 1}). (3.1)

Define l(θi) := li. Define

τ(θi) :=
li∑

j=1

kij and τ(w) :=
h∑

i=1

τ(θi).

A cycle θi of w is called positive if τ(θi) ≡ 0 (mod 2), and it is called negative if τ(θi) ≡ 1
(mod 2). We associate with each w ∈ SB

n a double partition (α, β) of n, which is denoted
by Ty(w), such that the length of each positive cycle of w is assigned to be a part of α,
and the length of each negative cycle of w is assigned to be a part of β (where a double
partition (α, β) of n is an ordered pair of partitions α and β such that |α|+ |β| = n). We
have the following.
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Proposition 3.1 (see [11]).

(1) Two elements w, w′ ∈ SB
n are conjugate if and only if Ty(w) = Ty(w′).

(2) Let w = θ1 · · · θh ∈ SD
n be a product of disjoint cycles. Set

d(w) = gcd(τ(θ1), . . . , τ(θh), l(θ1), . . . , l(θh), 2).

The conjugacy class of SB
n containing w then splits into the union of d(w) conjugacy

classes in SD
n .

Let T be a subgroup of SB
n generated by {

(
i

−i

)
: i ∈ [n]}. Then, SB

n = Sn�T . Let (α, β)
be a double partition of n. Set |α| = a and |β| = b. Let SB

a be a subgroup of SB
n of signed

permutations of {1, 2, . . . , a} and let SB
b be a subgroup of SB

n of signed permutations
of {a + 1, a + 2, . . . , n}. Let Sa and Sb be the symmetric groups of permutations of
{1, 2, . . . , a} and {a + 1, a + 2, . . . , n}, respectively. Let Sα be the Specht module for the
symmetric group Sa labelled by the partition α. Extend this module to the group SB

a

by letting the signs, i.e. the elements {
(

i
−i

)
: i ∈ [a]}, act trivially. Let Sβ be the Specht

module for the symmetric group Sb labelled by the partition β. Extend this module to the
group SB

b by letting the elements {
(

i
−i

)
: a+1 � i � n} act by −1 on Sβ . Then, Sα and Sβ

are irreducible modules for the groups SB
a and SB

b , and they are the modules ordinarily
denoted by S(α,∅) and S(∅,β), respectively. Let χ(α,∅) and χ(∅,β) be the characters of the
modules S(α,∅) and S(∅,β), respectively. Let

S(α,β) := IndSB
n

SB
a ×SB

b
(S(α,∅) ⊗ S(∅,β)).

By using the standard formula for induced characters, the character χ(α,β) for S(α,β) is

χ(α,β)(w) =
∑

g−1wg∈SB
a ×SB

b

χ(α,∅)(g−1wg)χ(∅,β)(g−1wg), (3.2)

where the sum is over coset representatives g of SB
n �(SB

a × SB
b ) such that g−1wg ∈

SB
a × SB

b . Denote g−1wg by wg for simplicity. Write that wg = wg
1 · wg

2 , where wg
1 ∈ SB

a

and wg
2 ∈ SB

b . Then, (3.2) becomes

χ(α,β)(w) =
∑

wg∈SB
a ×SB

b

χ(α,∅)(w
g
1)χ(∅,β)(w

g
2) =

∑
wg∈SB

a ×SB
b

χα(wg
1)χβ(wg

2)(−1)τ(wg
2 ),

(3.3)
where χα, χβ are the characters of the Specht modules Sα, Sβ for the symmetric groups
Sa, Sb, respectively, and, for w ∈ SB

n , there is a unique w̄ ∈ Sn such that w̄(i) = |w(i)|
for each i ∈ [n]. In particular, the dimension of the module S(α,β) is

dim(Sα,β) = χ(α,β)(id) =
|SB

n |
|SB

a × SB
b |χ(α,∅)(id)χ(∅,β)(id) =

(
n

a

)
dim(Sα) dim(Sβ),

(3.4)
where id denotes the identity of the group.

The following proposition describes the irreducible representations of SB
n and SD

n .
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Proposition 3.2 (see [10, Theorem 4.18, Proposition 5.8, Theorem 5.9]).

(1) The modules S(α,β), where (α, β) runs over all double partitions of n, form a com-
plete set of non-isomorphic irreducible representations of SB

n .

(2) For each double partition (α, β) of n, S(α,β) and S(β,α) are isomorphic representa-
tions of SD

n .

(3) If n is even and α is a partition of 1
2n, then S(α,α) is the direct sum of two irre-

ducible submodules, denoted by S(α,α)+ and S(α,α)−
, of SD

n , which have the same
dimensions.

(4) The modules S(α,β), where (α, β) runs over all unordered pairs of partitions of n,
with α �= β, and the modules S(α,α)+ and S(α,α)−

, where α runs over all partitions
of 1

2n, form a complete set of non-isomorphic irreducible representations of SD
n .

Proposition 3.3 (branching rule; see [10, Theorem 4.18]). Let (α, β) be a
double partition of n and let S(α,β) be an irreducible module of SB

n . Then, the induction
rule is

Ind
SB

n+1

SB
n

(S(α,β)) =
⊕
(µ,ν)

S(µ,ν),

where (µ, ν) ranges over all double partitions of n + 1 such that the Young diagram of
µ is equal to that of α or obtained from that of α by adding one box, and the Young
diagram of ν is equal to that of β or obtained from that of β by adding one box.

3.2. Dimensions of certain irreducible representations of SD
n and SB

n

Lemma 3.4 (see [5, Lemma 2]). Let t be fixed. There exists a constant E(t) > 0
depending only on t such that if n is sufficiently large depending on t, for any irreducible
module Sα of Sn, where α is a partition of n such that none of the rows or columns of
α has length at least n − t, dim(Sα) � nt+1E(t).

Based on this lemma and (3.4), we can easily get the following result.

Proposition 3.5. Let t be fixed. There exists a constant C(t) depending only on t

such that if n is sufficiently large depending on t, for any irreducible module S(α,β) of
SB

n , where (α, β) is a double partition of n such that none of the rows or columns of α

or β has length at least n − t, dim(S(α,β)) � nt+1C(t).

As a quick result of the above proposition and Proposition 3.2 (3), we have the follow-
ing.

Proposition 3.6. Let t be fixed. There exists a constant D(t) > 0 depending only on
t such that if n is sufficiently large depending on t, for any irreducible module V of SD

n ,
where V = S(α,β), with (α, β) a double partition of n and α �= β, or V = S(α,α)±

, with
α a partition of 1

2n, such that none of the rows or the columns of α or β has length at
least n − t, dim(V ) � nt+1D(t).
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3.3. Lemmas on representations and characters of SD
n

In this subsection, we will deduce some necessary results on SD
n for the proof of The-

orem 1.2 (2).
Denote by Pn,t the set of partitions λ of n such that the first part of λ is not smaller

than n− t. Given that γ = (b1, b2, . . . , bh) ∈ Pn,t, let C(γ) be the set of double partitions
(α, β) of n such that each part of γ is uniquely assigned as one of the parts of α or β,
with b1 always assigned as the first part of α. Given a double partition (α, β) ∈ C(γ),
let α′ be a partition obtained from α by omitting the first part. Let X(α,β) be the set
of elements w ∈ SD

n such that Ty(wθ−1
1 ) = (α′, β), where θ1 is the only cycle of w with

l(θ1) = b1.
Set ζt = |Pn,t|. We sort the partitions in Pn,t in reverse lexicographical order and define

γ1 = (n) > γ2 > · · · > γζt = (n − t, 1t).
Let γi, γj ∈ Pn,t and let (µ, ν) ∈ C(γi), (α, β) ∈ C(γj). By Lemma 2.1, the eigen-

value of the Cayley graph Cay(SD
n , X(α,β)) (defined on SD

n and generated by X(α,β))
corresponding to the irreducible module S(µ,ν) is

λ
(α,β)
(µ,ν) =

∑
σ∈X(α,β)

χ(µ,ν)(σ)

dim(S(µ,ν))
.

Obviously, X(α,β) is a conjugacy class in SB
n . So χ(µ,ν) is a constant on the set X(α,β).

Let σ(α,β) ∈ X(α,β). By (3.3), we have that

χ(µ,ν)(σ(α,β)) =
∑

(σ(α,β))g∈SB
|µ|×SB

|ν|

χµ((σ(α,β))
g
1)χν((σ(α,β))

g
2)(−1)τ((σ(α,β))

g
2).

Let ξµ, ξν be the characters of the permutation modules Mµ, Mν for the symmetric
groups S|µ|, S|ν|, respectively (see [5, § 3] for the definitions of permutation modules).
We define

ξ(µ,ν)(σ(α,β)) :=
∑

(σ(α,β))g∈SB
|µ|×SB

|ν|

ξµ((σ(α,β))
g
1)ξν((σ(α,β))

g
2)(−1)τ((σ(α,β))

g
2). (3.5)

In the following, we will present a detailed study of the matrix

[ξ(µ,ν)(σ(α,β))](µ,ν)∈C(γi)
(α,β)∈C(γj)

.

Proposition 3.7 (see [5, Lemma 4]). Let α be a partition of n and let σ ∈ Sn.
If ξα(σ) �= 0, then cycle-type(σ) � α. Moreover, if cycle-type(σ) = α = (il11 , il22 , . . . , ilkk ),
then ξα(σ) = l1!l2! · · · lk!.

Lemma 3.8. Let (µ, ν) ∈ C(γi) and let (α, β) ∈ C(γj), 1 � i, j � ζt. Then,
ξ(µ,ν)(σ(α,β)) �= 0 only if γj � γi. In particular, if i = j, (3.5) becomes

ξ(µ,ν)(σ(α,β)) = ξµ(σµ)ξν(σν)
∑

(σ(α,β))g∈SB
|µ|×SB

|ν|

(−1)τ((σ(α,β))
g
2), (3.6)

where σµ, σν ∈ Sn are such that cycle-type(σµ) = µ and cycle-type(σν) = ν.
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Proof. Consider the right-hand side of (3.5). By Proposition 3.7,

ξµ((σ(α,β))
g
1) �= 0

only if cycle-type ((σ(α,β))
g
1) � µ, and

ξν((σ(α,β))
g
2) �= 0

only if cycle-type ((σ(α,β))
g
2) � ν. Then,

ξµ((σ(α,β))
g
1)ξν((σ(α,β))

g
2) �= 0

only if cycle-type ((σ(α,β))g) � γi, where γi is the merge of µ and ν. Hence, γj � γi.
If γi = γj , then cycle-type ((σ(α,β))

g
1) = µ and cycle-type ((σ(α,β))

g
2) = ν. Let σµ, σν ∈

Sn such that cycle-type(σµ) = µ and cycle-type(σν) = ν. Hence, (3.6) follows. �

Lemma 3.9. The matrix

[ξ(µ,ν)(σ(α,β))](µ,ν)∈C(γζt )
(α,β)∈C(γζt )

(3.7)

is invertible.

Proof. Recall that ζt = (n − t, 1t). Let µ = (n − t, 1t−p) and let ν = (1p), where
0 � p � t. Let α = (n − t, 1t−q) and let β = (1q), where 0 � q � t. We will use (3.6) to
compute ξ(µ,ν)(σ(α,β)). Due to Proposition 3.7, ξµ(σµ) = (t − p)!, ξν(σν) = p! and

∑
(σ(α,β))g∈SB

|µ|×SB
|ν|

(−1)τ((σ(α,β))
g
2) =

min{p,q}∑
i=0

(−1)i

(
q

i

)(
t − q

p − i

)
.

Due to a result given in [2], we know that the matrix

[ min{p,q}∑
i=0

(−1)i

(
q

i

)(
t − q

p − i

)]
0�p�t
0�q�t

is invertible. Therefore, the matrix

[ξ(µ,ν)(σ(α,β))](µ,ν)∈C(γζt )
(α,β)∈C(γζt )

=
[
(t − p)!p!

min{p,q}∑
i=0

(−1)i

(
q

i

)(
t − q

p − i

)]
0�p�t
0�q�t

is invertible. �

Lemma 3.10. The matrix

[ξ(µ,ν)(σ(α,β))](µ,ν)∈C(γi)
(α,β)∈C(γi)

(3.8)

is invertible, where 1 � i � ζt.
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Proof. Assume that γi = (n − s, il11 , . . . , ilrr ) ∈ Pn,t, where 0 � s � t, i1 > i2 > · · · >

ir � 1 and
r∑

j=1

ij lj = s.

Let µ = (n−s, il1−p1
1 , . . . , ilr−pr

r ) and let ν = (ip1
1 , . . . , ipr

r ), where 0 � pj � lj and j ∈ [r].
Let α = (n−s, il1−q1

1 , . . . , ilr−qr
r ) and let β = (iq1

1 , . . . , iqr
r ), where 0 � qj � lj and j ∈ [r].

We use (3.6) to compute ξ(µ,ν)(σ(α,β)). Note that

∑
(σ(α,β))g∈SB

|µ|×SB
|ν|

(−1)τ((σ(α,β))
g
2) =

r∏
i=1

( min{pi,qi}∑
ji=0

(−1)ji

(
qi

ji

)(
li − qi

pi − ji

))
.

Then, (3.8) becomes

[
ξµ(σµ)ξν(σν)

r∏
i=1

( min{pi,qi}∑
ji=0

(−1)ji

(
qi

ji

)(
li − qi

pi − ji

))]
(p1,...,pr), with 0�pi�li for any i∈[r]
(q1,...,qr), with 0�qj�lj for any j∈[r]

,

(3.9)
where ξµ(σµ) = (l1 − p1)! · · · (lr − pr)!, ξν(σν) = p1! · · · pr! and the rows and columns
of (3.9) are indexed by r-tuples (p1, . . . , pr) and (q1, . . . , qr), respectively.

Set

D :=
[ r∏

i=1

( min{pi,qi}∑
ji=0

(−1)ji

(
qi

ji

)(
li − qi

pi − ji

))]
(p1,...,pr), with 0�pi�li for any i∈[r]
(q1,...,qr), with 0�qj�lj for any j∈[r]

and

Di :=
[ min{pi,qi}∑

ji=0

(−1)ji

(
qi

ji

)(
li − qi

pi − ji

)]
0�pi�li
0�qi�li

.

Then, D = D1 ⊗ · · · ⊗ Dr and D is invertible, since D1, . . . , Dr are invertible (see [2]).
Therefore, (3.8) is invertible. �

Lemma 3.11. Let (µ, ν) ∈ C(γi) and let (α, β) ∈ C(γj), 1 � j � i � ζt. Then,
ξ(µ,ν)(σ(α,β)) does not depend on n.

Proof. Assume that µ = (n − s, b1, . . . , bl1) and that ν = (bl1+1, . . . , bl). Assume that
α = (n − k, c1, . . . , ch1) and that β = (ch1+1, . . . , ch). Then, s � k � t.

Recall (3.5) for ξ(µ,ν)(σ(α,β)):

ξ(µ,ν)(σ(α,β)) =
∑

(σ(α,β))g∈SB
|µ|×SB

|ν|

ξµ((σ(α,β))
g
1)ξν((σ(α,β))

g
2)(−1)τ((σ(α,β))

g
2).

We will show that both the number of the coset representatives g such that (σ(α,β))g ∈
SB

|µ| × SB
|ν| and the value ξµ((σ(α,β))

g
1)ξν((σ(α,β))

g
2) do not depend on n.
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Since (σ(α,β))
g
2 ∈ SB

|ν| and |ν| � s � t < n − t � n − k (recall that n > 3t + 1), the only
cycles of σ(α,β) that can be permuted by g to lie in SB

|ν| are those short cycles of σ(α,β)

whose lengths are smaller than t. Since the sum of the length of short cycles is
h∑

i=1

ci � t,

there are no more than
(

t
|ν|

)
ways to choose g, which does not depend on n.

Note that ξµ((σ(α,β))
g
1) is the number of µ-tabloids fixed by (σ(α,β))

g
1. To count these,

first note that the numbers in the (n−k)-cycle of (σ(α,β))
g
1 must all lie in the first row of

the µ-tabloid. Then, we are left with a (k − s, b1, . . . , bl1)-‘tabloid’, which we need to fill
with the remaining |µ| − (n − k) elements in such a way that (σ(α,β))

g
1 fixes it. It is easy

to see that the number of ways of doing this are independent of n, as is ξν((σ(α,β))
g
2). �

Following [5, Definition 11], for γ = (b1, b2, . . . , bh) ∈ Pn,t, define split(γ) = (b1 − t −
1, t + 1, b2, . . . , bh). Let C(split(γ)) be the set of double partitions (α, β) of n such that
each part of split(γ) is uniquely assigned as one of the parts of α or β, with b1 − t − 1
and t + 1 always assigned as the first two parts of α. Given that (α, β) ∈ C(split(γ)),
let α′ be a partition obtained from α by omitting the first two parts. Let X(α,β) be the
set of elements w ∈ SD

n such that Ty(wθ−1
1 θ−1

2 ) = (α′, β), where θ1, θ2 are the only two
cycles of w such that l(θ1) = b1 − t − 1, l(θ2) = t + 1.

Lemma 3.12. Let γi, γj ∈ Pn,t and let (u, v) ∈ C(γi), (α, β) ∈ C(split(γj)). Then,
χ(µ,ν) is a constant on the set X(α,β).

Proof. By the construction of X(α,β), the elements in X(α,β) are in two conjugacy
classes of SB

n , which are distinguished by the signs of the two long cycles whose lengths
are greater than t. For w ∈ X(α,β), recall that

χ(µ,ν)(w) =
∑

wg∈SB
|µ|×SB

|ν|

χµ(wg
1)χν(wg

2)(−1)τ(wg
2 ).

Since |ν| � t, both the two long cycles of w should be permuted by a coset representa-
tive g to lie in SB

|µ| and their signs do not affect the right-hand side of the formula. �

Lemma 3.13. Let γi, γj ∈ Pn,t and let (u, v) ∈ C(γi), (α, β) ∈ C(γj). Let α =
(b1, b2, . . . , bk) and let β = (bk+1, . . . , bh), where b1 � n − t. Let α′ = (b1 − t − 1, t +
1, b2, . . . , bk). Let σ ∈ X(α,β) and let σ′ ∈ X(α′,β). Then, ξ(µ,ν)(σ) = ξ(µ,ν)(σ′).

Proof. For an element w ∈ SD
n , recall that

ξ(µ,ν)(w) =
∑

wg∈SB
|µ|×SB

|ν|

ξµ(wg
1)ξν(wg

2)(−1)τ(wg
2 ).

Since |ν| � t, the only cycles of σ that can be permuted by a coset representative to lie in
SB

|ν| are the short cycles, i.e. those with lengths smaller than t. The same thing happens
to σ′. Furthermore, if (σ′)g

1 fixes a µ-tabloid, the numbers in the (b1 − t − 1)-cycle and
the (t+1)-cycle must all lie in the first row of this µ-tabloid. It follows that σg

1 , produced
by merging these two cycles of (σ′)g

1, fixes exactly the same tabloids as (σ′)g
1 does. �

https://doi.org/10.1017/S0013091513000357 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000357


Intersecting families in classical Coxeter groups 897

3.4. ‘Fat’ irreducible representations of SD
n

In this subsection, we give a proof of Theorem 2.4 following that of [4, Theorem 18].
Let U(α,β) be the direct sum of all submodules of group algebra CSD

n isomorphic to
the irreducible module S(α,β), where (α, β) is a double partition of n. Let

Ut =
⊕

α1�n−t

U(α,β),

where α1 is the first part of α.
A coset of the stabilizer of t points in [n] is called a t-coset. Let Bt be the set of ordered

t-tuples (i1, . . . , it), where i1, . . . , it ∈ [±n] and |i1|, . . . , |it| are pairwise distinct. Then,
a t-coset in SD

n can be denoted by T(a,b) = {σ ∈ SD
n : σ(a) = b}, where a = (i1, . . . , it),

b = (j1, . . . , jt) are in Bt and σ(a) = b means σ(i1) = j1, . . . , σ(it) = jt.
Note that we compose permutations from right to left, i.e. if σ, π ∈ SD

n and i ∈ [±n],
then (σπ)(i) = σ(π(i)).

Consider the subspace M t of the group algebra CSD
n , which takes the following vectors

as a basis set: { ∑
σ(n−t+i)=ji

i∈[t]

σ : (j1, . . . , jt) ∈ Bt

}
.

Then, M t is a permutation module of SD
n under natural left multiplication. We have

the following proposition.

Proposition 3.14 (see [9]). M t ∼= IndSD
n

SD
n−t

(S((n−t),∅)), where S((n−t),∅) is the trivial
module of SD

n−t. Furthermore, by the branching rule (Proposition 3.3), we have that

M t ∼=
⊕

α1�n−t

c(α,β)S
(α,β),

where the sum is over all double partitions (α, β) of n such that the first part α1 of α is
not smaller than n − t, and c(α,β) is a positive integer.

Theorem 3.15. We have that

Ut = span{1T(a,b) : a, b ∈ Bt}.

Proof. We follow the argument of [4, Theorem 18] to prove Theorem 3.15. Let W be
the sum of right translates of M t, i.e. the subspace of CSD

n spanned by {1T(a,b) : a, b ∈ Bt}.
We will show that W = Ut.

It is obvious that M t ⊆ Ut. Since Ut is a two-sided ideal of CSD
n , it is closed under

right multiplication of elements of CSD
n . So, W ⊆ Ut.

On the other hand, by a well-known fact from the general representation theory (see [4,
Lemma 17]), the sum of all right translates of M t contains all submodules of CSD

n

isomorphic to S(α,β), with α1 � n − t, i.e. U(α,β) ⊆ W for each double partition (α, β),
with α1 � n − t. So, Ut ⊆ W . �

https://doi.org/10.1017/S0013091513000357 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000357


898 L. Wang

4. Proof of the main theorem for SD
n

Now, we begin to prove Theorem 1.2 for SD
n . Recall that

� = − 1
2tn(n − 1) · · · (n − t + 1) − 1

.

Lemma 4.1. For 1 � j � ζt, let γ̃j ∈ {γj , split(γj)} and let (α, β) ∈ C(γ̃j). Let
Γ(α,β) = Cay(SD

n , X(α,β)). Let λ
(α,β)
(µ,ν) be the eigenvalue of Γ(α,β) corresponding to the

irreducible module S(µ,ν), where (µ, ν) ∈ C(γi), with 1 � i � ζt. Then, there exist
constant values of d(α,β), with d(γ̃ζt ,∅) = 0, such that

∑
(α,β)

d(α,β)λ
(α,β)
(µ,ν) =

{
1, (µ, ν) = ((n), ∅),

�, (µ, ν) ∈ C(γi), with 1 < i � ζt,
(4.1)

where the sum is over all (α, β) ∈ C(γ̃j) and 1 � j � ζt. Furthermore, there exists a
constant E(t) depending only on t such that for any (α, β), |d(α,β)| < E(t)/2n−1(n − 1)!.

Proof. Without loss of generality, let γ̃j = γj for all 1 � j � ζt (Lemmas 3.12 and 3.13
ensure that the following proof also works for other choices of γ̃j). Then, we have that

λ
(α,β)
(µ,ν) =

|X(α,β)|χ(µ,ν)(σ(α,β))
dim(S(µ,ν))

,

where σ(α,β) ∈ X(α,β). Define d′
(α,β) = d(α,β)|X(α,β)|. Then, (4.1) becomes

∑
(α,β)

d′
(α,β)χ(µ,ν)(σ(α,β)) =

{
1, (µ, ν) = ((n), ∅),

� dim(S(µ,ν)), (µ, ν) ∈ C(γi), with 1 < i � ζt.
(4.2)

Using Young’s rule (see [5, Theorem 15]), we rewrite (4.2) as

∑
(α,β)

d′
(α,β)ξ(µ,ν)(σ(α,β))

=

{
1 + �(ξµ(id) − 1), (µ, ν) ∈ C(γ), with ν = ∅ and γ ∈ Pn,t,

�ξ(µ,ν)(id), (µ, ν) ∈ C(γ), with ν �= ∅ and γ ∈ Pn,t.
(4.3)

The coefficient matrix of (4.3),

[ξ(µ,ν)(σ(α,β))] (µ,ν)∈C(γi) and 1�i�ζt

(α,β)∈C(γj) and 1�j�ζt

, (4.4)

is a ζt × ζt block upper-triangle matrix, with blocks indexed by γ1, . . . , γζt (see
Lemma 3.8). Due to Lemma 3.10, each block on the diagonal of (4.4) is invertible, and
so is (4.4). Thus, there indeed exist values of d(α,β) such that (4.1) holds.
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Consider the equations in (4.3) that are labelled by the partitions (µ, ν) ∈ C(γζt
).

Recall that γζt = (n − t, 1t). Set µp = (n − t, 1t−p) and νp = (1p), 0 � p � t. Set
αq = (n − t, 1t−q) and βq = (1q), 0 � q � t. From (4.3), we have that

t∑
q=0

d′
(αq,βq)

min{p,q}∑
i=0

(−1)i

(
q

i

)(
t − q

p − i

)
=

⎧⎪⎨
⎪⎩

1
t!

(1 + �(χµ̄0(1) − 1)), p = 0,

1
(t − p)!p!

�χ(µ̄p,ν̄p)(1), 0 < p � t.

A computation shows that d′
(α0,β0) = 0, which means that d((n−t,1t),∅) = 0.

Due to Lemma 3.11, the coefficients ξ(µ,ν)(σ(α,β)) on the left-hand side of (4.3) do
not depend on n. It can be shown by a direct computation that the coefficients on
the right-hand side of (4.3) also do not depend on n. Then, there exists a constant E′(t)
independent of n such that, for any (α, β), |d′

(α,β)| < E′(t). Also, by a direct computation,
we can show that

|X(α,β)| > (n − 1)!2n−1(1/2t(t!)2).

Let E(t) = E′(t)2t(t!)2. Then, d(α,β) < E(t)/2n−1(n − 1)!, as desired. �

Following [5], an irreducible module S(α,β) of SD
n is called fat if α1 � n − t, where

α1 is the first part of α; it is called thin if S(αt,β) is fat, where αt is the transpose of α

(see [5, Definition 9]). All the other irreducible modules of SD
n are called medium.

Based on the results displayed in Lemma 4.1 and Proposition 3.6, we can follow the
argument of the proof of [5, Theorem 23] to prove the following.

Lemma 4.2. In the setup of Lemma 4.1, let V be a medium irreducible module of
SD

n and let λ
(α,β)
V be the eigenvalue of Γ(α,β) corresponding to V . Let

λV =
∑
(α,β)

d(α,β)λ
(α,β)
V ,

where the sum is over all (α, β) ∈ C(γ̃j) and 1 � j � ζt. Then, |λV | = o(�) is an
infinitesimal of higher order than � when n → ∞.

For γ ∈ Pn,t, define

e(γ) =

{
γ if a permutation with cycle-type γ is even,

split(γ) if a permutation with cycle-type γ is odd,

o(γ) =

{
γ if a permutation with cycle-type γ is odd,

split(γ) if a permutation with cycle-type γ is even.

Theorem 4.3. There exists a linear combination Γe of Cayley graphs on SD
n , each

of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the first line of Table 1.
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Table 1. Eigenvalues.

S((n),∅) fat, �= S((n),∅) S((1n),∅) thin, �= S((1n),∅) medium

Γe 1 � 1 � o(�)
Γo 1 � −1 −� o(�)
Γ 1 � 0 0 o(�)

Proof. Take
Γe =

∑
γ∈Pn,t

∑
(α,β)∈C(e(γ))

d(α,β) Cay(SD
n , X(α,β)),

where the d(α,β) are as described in Lemma 4.1. Then, we have that λ((n),∅) = 1 and
λV = � for each fat V �= S((n),∅). By Lemma 4.2, for each medium V , we have that
|λV | = o(�). Assume that V = S(µt,νt) is thin; then S(µ,ν) is fat. Since χ(µt,νt)(σ) =
sgn(σ̄)χ(µ,ν)(σ) = χ(µ,ν)(σ) (note that σ̄ is even), we have that

λV =
∑
(α,β)

d(α,β)λ
(α,β)
(µt,νt) =

∑
(α,β)

d(α,β)λ
(α,β)
(µ,ν) =

{
1 if V = S((1n),∅),

� if V is thin but �= S((1n),∅),

completing the proof. �

Theorem 4.4. There exists a linear combination Γo of Cayley graphs on SD
n , each

of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the second line of Table 1.

Proof. Take
Γo =

∑
γ∈Pn,t

∑
(α,β)∈C(o(γ))

d(α,β) Cay(SD
n , X(α,β)),

where the d(α,β) are as described in Lemma 4.1. Assume that V = S(µt,νt) is thin; then
S(µ,ν) is fat. This time, we have that χ(µt,νt)(σ) = sgn(σ̄)χ(µ,ν)(σ) = −χ(µ,ν)(σ), since σ̄

is odd. Thus,

λV =
∑
(α,β)

d(α,β)λ
(α,β)
(µt,νt) = −

∑
(α,β)

d(α,β)λ
(α,β)
(µ,ν) =

{
−1 if V = S((1n),∅),

−� if V is thin but �= S((1n),∅).

�

Theorem 4.5. There exists a linear combination Γ of Cayley graphs on SD
n , each

of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the last line of Table 1.

Proof. Take Γ = 1
2Γe + 1

2Γo. �
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Now, we can find the bound of a maximal (2t)-intersecting subset of SD
n , by applying

Lemma 2.2 and Theorem 4.5, which is (−�/(1 − �))|SD
n | = 2n−t−1(n − t)!. This proves

Theorem 2.3. Meanwhile, if I is a maximum-sized (2t)-intersecting subset of SD
n , we have

that 1I ∈ span({v1} ∪ {vi : λi = �}) = Ut. Since we have proved in Theorem 3.15 that
Ut = span{1T(a,b) : a, b ∈ Bt}, we have that

1I ∈ span{1T(a,b) : a, b ∈ Bt}. (4.5)

Let At be the set of ordered t-tuples (i1, . . . , it) such that i1, . . . , it ∈ [n] are pairwise
distinct. For any a = (i1, . . . , it) ∈ Bt, let −a = (−i1, . . . ,−it) ∈ Bt. Then, for any
b = (j1, . . . , jt) ∈ Bt, we have that T(−a,b) = T(a,−b). Therefore, due to (4.5), we can
assume that

1I =
∑

a∈At,b∈Bt

r(a,b)1T(a,b) , where ra,b ∈ R. (4.6)

In the following, we will deduce from (4.6) that I must be a t-coset T(a,b). Without
loss of generality, we assume that id ∈ I.

Theorem 4.6. Assume that

1I =
∑

a∈At,b∈Bt

r(a,b)1T(a,b) ,

where I is a maximal (2t)-intersecting subset of SD
n and id ∈ I. Then, there exists e ∈ At

such that I = T(e,e).

Proof. We first divide SD
n into 2n−1 pairwise disjoint subsets, each of which has size

n!.
Let F be the family of subsets Y of [−n] = {−1, . . . ,−n} such that |Y | is even. Given

that Y = {p1, . . . , p2k} ∈ F , let F{p1,...,p2k} be the set of elements σ ∈ SD
n such that

p1, . . . , p2k are exactly the 2k negative numbers among its images {σ(1), . . . , σ(n)}. For
example, F∅ = Sn. Then, all elements in F{p1,...,p2k} have the same image set

Im F{p1,...,p2k} = {p1, . . . , p2k} ∪ ([n] \ {|p1|, . . . , |p2k|}).

Then,
SD

n =
⋃

{p1,...,p2k}∈F
F{p1,...,p2k}.

Thus, as a function on SD
n ,

1I =
∑

{p1,...,p2k}∈F
1I ↓F{p1,...,p2k} .

Now, restrict both sides of (4.6) to F{p1,...,p2k}:

1I ↓F{p1,...,p2k}=
∑

a∈At,b∈Bt

r(a,b)1T(a,b) ↓F{p1,...,p2k} . (4.7)
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Given {p1, . . . , p2k} ∈ F , let Bp1,...,p2k
t be the set of t-tuples (j1, . . . , jt) ∈ Bt such that

j1, . . . , jt ∈ Im F{p1,...,p2k}. Then, (4.7) is

1I ↓F{p1,...,p2k}=
∑

a∈At,b∈Bp1,...,p2k
t

r(a,b)1T(a,b) ↓F{p1,...,p2k} . (4.8)

We will now follow the argument of the proof of [5, Theorem 27] to show that there
exist non-negative numbers {mp1,...,p2k

(a,b) : a ∈ At, b ∈ Bp1,...,p2k
t } such that

1I ↓F{p1,...,p2k}=
∑

a∈At,b∈Bp1,...,p2k
t

mp1,...,p2k

(a,b) 1T(a,b) ↓F{p1,...,p2k} . (4.9)

The idea is for F{p1,...,p2k} to fulfil the role of Sn in [5, Theorem 27].
From (4.8), we represent 1I ↓F{p1,...,p2k} by a matrix Rp1,...,p2k , whose entry in the

(a, b)-position is r(a,b), where a ∈ At and b ∈ Bp1,...,p2k
t . Let Lp1,...,p2k

t be the set of all
t-lines of Rp1,...,p2k (see [5, Definition 13] for the definition of t-lines). For every t-line
L ∈ Lp1,...,p2k

t , we add a variable xL to each entry on L, and then obtain a new matrix
Mp1,...,p2k , which is still needed to represent the function 1I ↓F{p1,...,p2k} . This means that∑

L∈Lp1,...,p2k
t

xL = 0. (4.10)

All the entries of Mp1,...,p2k are required to be non-negative, i.e.∑
(a,b)∈L

xL + r(a,b) � 0 for each a ∈ At and b ∈ Bp1,...,p2k
t . (4.11)

We see that if (4.10) and (4.11) are both satisfied, then (4.9) is proved by taking

mp1,...,p2k

(a,b) =
∑

(a,b)∈L

xL + r(a,b), where a ∈ At, b ∈ Bp1,...,p2k
t .

By the duality theorem of linear programming, any solution of (4.11) must satisfy the
condition ∑

L∈Lp1,...,p2k
t

xL � −
∑

a∈At,b∈Bp1,...,p2k
t

c(a,b)r(a,b), (4.12)

where C = (c(a,b))a∈At,b∈Bp1,...,p2k
t

is a t-bistochastic matrix (see [5, Definition 14]).
We see that if

−
∑

a∈At,b∈Bp1,...,p2k
t

c(a,b)r(a,b) > 0, (4.13)

then (4.12) will contradict (4.10) and we will fail. So we only need to show that (4.13)
cannot happen.

Since C is a t-bistochastic matrix, by the generalized Birkhoff theorem (see [5, Theo-
rem 29]), there exist non-negative constants q1, . . . , qh, with

∑h
i=1 qi = 1, and elements

σ1, . . . , σh ∈ F{p1,...,p2k} such that

C =
h∑

i=1

∑
a∈At

qiEa,σi(a),
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where Ea,σi(a) is an |At| × |At| matrix unit, whose only non-zero element is 1 in the
(a, σi(a))-position.

Then,

−
∑

a∈At,b∈Bp1,...,p2k
t

c(a,b)r(a,b) = −
h∑

i=1

qi

∑
a∈At

r(a,σi(a)) = −
h∑

i=1

qi1I(σi) � 0.

Therefore, (4.9) is proved. In the following, we will determine the exact values of
{mp1,...,p2k

(a,b) : a ∈ At, b ∈ Bp1,...,p2k
t } in (4.9). We claim that

mp1,...,p2k

(a,b) = 0 for any a ∈ At, b ∈ Bp1,...,p2k
t , with a �= b. (4.14)

We explain (4.14) as follows. Assume that a = (i1, . . . , it) and b = (j1, . . . , jt). Then,
there exists σ ∈ F{p1,...,p2k} such that σ(a) = b and σ does not stabilize any element in
[n]\{i1, . . . , it}. Since a �= b, then σ has fewer than t fixed points in [n], which cannot be
in a (2t)-intersecting subset containing id. Therefore, 1I(σ) = 0, which means that the
right-hand side of (4.9) is zero when acting on σ, i.e.

mp1,...,p2k

(a,b) +
∑

a′∈At,a′ �=a

mp1,...,p2k

(a′,σ(a′)) = 0. (4.15)

Since each term on the left-hand side of (4.15) is non-negative, then mp1,...,p2k

(a,b) = 0.
We also claim that

∃ at most one element a ∈ At ∩ Bp1,...,p2k
t such that mp1,...,p2k

(a,a) �= 0. (4.16)

We explain (4.16) as follows. Assume that a = (i1, . . . , it) ∈ Bp1,...,p2k
t ∩ At, b =

(j1, . . . , jt) ∈ Bp1,...,p2k
t ∩ At and a �= b. Since n is sufficiently large depending on t, there

exist σ1, σ2 ∈ F{p1,...,p2k} such that σ1(a) = a, σ2(b) = b and σ1σ
−1
2 has fewer than t

fixed points in [n]. Therefore, at least one of σ1 and σ2 is not in I. Assume that σ2 /∈ I.
Then, 1I(σ2) = 0, which means that the right-hand side of (4.9) is zero when acting on
σ2:

mp1,...,p2k

(b,b) +
∑

b′∈At,b′ �=b

mp1,...,p2k

(b′,σ2(b′)) = 0. (4.17)

Since each term on the left-hand side of (4.17) is non-negative, then mp1,...,p2k

(b,b) = 0. Apply
this analysis to another pair a, a′ in Bp1,...,p2k

t ∩ At, and we see that at least one of a and
a′, say a′, satisfies mp1,...,p2k

(a′,a′) = 0. Continue in this way, and at last we obtain (4.16).
Now consider 1I ↓Sn . Since id ∈ I and 1I(id) = 1, (4.14) and (4.16) show that there

exists exactly one element e ∈ At such that

1I ↓Sn= 1T(e,e) ↓Sn . (4.18)

Assume that e = (q1, . . . , qt). Then, for any element σ ∈ Sn such that σ(e) = e, we see
by (4.18) that 1I(σ) = 1T(e,e)(σ) = 1. This means that σ ∈ I.

For any {p1, . . . , p2k} ∈ F , consider 1I ↓F{p1,...,p2k} . Choose σ1 ∈ Sn such that σ1(e) = e

and σ1 does not stabilize any element in [n] \ {q1, . . . , qt}. For any a = (i1, . . . , it) ∈
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Bp1,...,p2k
t ∩ At and a �= e, there exists σ2 ∈ F{p1,...,p2k} such that σ2(a) = a and σ2σ

−1
1

has fewer than t fixed points in [n]. Since σ1 ∈ I, we have that σ2 /∈ I and 1I(σ2) = 0.
This forces mp1,...,p2k

(a,a) = 0. Therefore, we claim that the only possible non-zero term on
the right-hand side of (4.9) is mp1,...,p2k

(e,e) 1T(e,e) ↓F{p1,...,p2k} .
According to the above analysis, we obtain that

1I =
∑

{p1,...,p2k}∈F
{q1,...,qt}⊆Im F{p1,...,p2k}

mp1,...,p2k

(e,e) 1T(e,e) ↓F{p1,...,p2k} . (4.19)

Since |I| = 2n−t−1(n − t)! and

∑
{p1,...,p2k}∈F

{q1,...,qt}⊆Im F{p1,...,p2k}

|{σ ∈ F{p1,...,p2k} : σ(e) = e}| = 2n−t−1(n − t)!,

then each term on the right-hand side of (4.19) is non-zero and we have that 1I =
1T(e,e) . �

5. Proof of the main theorem for SB
n

The proof of Theorem 1.2 for SB
n is quite similar to that for SD

n .
Let γ ∈ Pn,t and let (α, β) ∈ C(γ) or C(split(γ)). Let Y(α,β) ⊂ SB

n be the analogue of
X(α,β) ⊂ SD

n . Let Y(α,β) = Y +
(α,β) ∪Y −

(α,β) with τ(w) ≡ 0 (mod 2) for each w ∈ Y +
(α,β) and

τ(w) ≡ 1 (mod 2) for each w ∈ Y −
(α,β). Note that Y +

(α,β) = X(α,β) ⊂ SD
n .

By an argument as in the proof of Lemma 3.12, we have the following.

Lemma 5.1. Let γi, γj ∈ Pn,t and let (u, v) ∈ C(γi), (α, β) ∈ C(γj) or C(split(γ)).
Then, χ(µ,ν) is a constant on the set Y(α,β).

By an argument similar to that in the proof of Lemma 3.13, we have the following.

Lemma 5.2. Let γi, γj ∈ Pn,t and let (u, v) ∈ C(γi), (α, β) ∈ C(γj). Let α =
(b1, b2, . . . , bk) and let β = (bk+1, . . . , bh), where b1 � n − t. Let α′ = (b1 − t − 1, t + 1,

b2, . . . , bk). Let σ ∈ Y ε
(α,β) and let σ′ ∈ Y ε′

(α′,β), where ε, ε′ ∈ {+, −}. Then, ξ(µ,ν)(σ) =
ξ(µ,ν)(σ′).

Lemma 5.3. Let γi, γj ∈ Pn,t and let (u, v) ∈ C(γi). Let γ̃j ∈ {γj , split(γj)} and
let (α, β) ∈ C(γ̃j). Then, Cay(SB

n , Y +
(α,β)), Cay(SB

n , Y −
(α,β)) and Cay(SD

n , X(α,β)) have
the same eigenvalue corresponding to the irreducible module S(µ,ν), which is denoted by
λ

(α,β)
(µ,ν) , as described in Lemma 4.1.

Based on the above lemmas, we have the following.

Lemma 5.4. Lemma 4.1 still holds if we replace the Cayley graph Γ(α,β) =
Cay(SD

n , X(α,β)) by Γ+
(α,β) = Cay(SB

n , Y +
(α,β)) or Γ−

(α,β) = Cay(SB
n , Y −

(α,β)).
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Table 2. Eigenvalues.

left-fat, left-thin, right-fat, right-thin,
S((n),∅) �= S((n),∅) S((1n),∅) �= S((1n),∅) S(∅,(n)) �= S(∅,(n)) S(∅,(1n)) �= S(∅,(1n)) medium

Γ+
e 1 � 1 � 1 � 1 � o(�)

Γ −
e 1 � 1 � −1 −� −1 −� o(�)

Γ+
o 1 � −1 −� 1 � −1 −� o(�)

Γ −
o 1 � −1 −� −1 −� 1 � o(�)

Γ 1 � 0 0 0 0 0 0 o(�)

Let (α, β) be a double partition of n. We call an irreducible module S(α,β) of SB
n left-fat

if α1 � n − t, where α1 is the first part of α; left-thin if S(αt,β) is left-fat; right-fat if
β1 � n − t, where β1 is the first part of β; right-thin if S(α,βt) is right-fat; and medium
for all other cases.

Similarly to Lemma 4.2, we have the following.

Lemma 5.5. Let γ̃j ∈ {γj , split(γj)} and let (α, β) ∈ C(γ̃j), where 1 � j � ζt. Let
λ

(α,β)
V be the eigenvalue of Γ+

(α,β) or Γ−
(α,β) corresponding to a medium module V of SB

n .
Set

λV =
∑
(α,β)

d(α,β)λ
(α,β)
V ,

where the d(α,β) are as described in Lemma 4.1. Then, |λV | = o(�) is an infinitesimal of
higher order than � when n → ∞.

In the following, let FPFt be the set of elements in SB
n that fix fewer than t points in

[n].

Theorem 5.6. There exists a linear combination Γ+
e of Cayley graphs on SB

n , each
of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the first line of Table 2.

Proof. Take
Γ+

e =
∑

γ∈Pn,t

∑
(α,β)∈C(e(γ))

d(α,β) Cay(SB
n , Y +

(α,β)),

where the d(α,β) are as described in Lemma 4.1. Then, λ((n),∅) = 1 and λV = � for each
left-fat V �= S((n),∅) by Lemma 5.4. By Lemma 5.5, for each medium V , we have that
|λV | = o(�).

Assume that V = S(µt,νt) is left-thin; then S(µ,ν) is left-fat. For any σ ∈ Y +
(α,β), we

have that χ(µt,νt)(σ) = sgn(σ̄)χ(µ,ν)(σ) = χ(µ,ν)(σ) (note that σ̄ is even). Hence,

λV =
∑
(α,β)

d(α,β)λ
(α,β)
(µt,νt) =

∑
(α,β)

d(α,β)λ
(α,β)
(µ,ν) =

{
1 if V = S((1n),∅),

� if V is left-thin but �= S((1n),∅).
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Assume that V = S(µ,ν) is right-fat; then S(ν,µ) is left-fat. For any σ ∈ Y +
(α,β), we have

that

χ(µ,ν)(σ) =
∑

σg∈S|µ|×S|ν|

χµ(σg
1)χν(σg

2)(−1)τ(σg
2 )

=
∑

σg∈S|µ|×S|ν|

χµ(σg
1)χν(σg

2)(−1)τ(σg
1 )

= χ(ν,µ)(σ).

Note that (−1)τ(σg
1 ) = (−1)τ(σg

2 ), since τ(σ) ≡ 0 (mod 2). Then,

λV =
∑
(α,β)

d(α,β)λ
(α,β)
(µ,ν) =

∑
(α,β)

d(α,β)λ
(α,β)
(ν,µ) =

{
1 if V = S(∅,(n)),

� if V is right-fat but �= S(∅,(n)).

Assume that V = S(µt,νt) is right-thin; then S(ν,µ) is left-fat. For any σ ∈ Y +
(α,β), since σ̄

is even and τ(σ) ≡ 0 (mod 2), we have that

λV =
∑
(α,β)

d(α,β)λ
(α,β)
(µt,νt) =

∑
(α,β)

d(α,β)λ
(α,β)
(ν,µ) =

{
1 if V = S(∅,(1n)),

� if V is right-thin but �= S(∅,(1n)).

�

Theorem 5.7. There exists a linear combination Γ−
e of Cayley graphs on SB

n , each
of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the second line of Table 2.

Proof. Take
Γ−

e =
∑

γ∈Pn,t

∑
(α,β)∈C(e(γ))

d(α,β) Cay(SB
n , Y −

(α,β)),

where the d(α,β) are as described in Lemma 4.1. We omit the proof since it is similar to
that of Theorem 5.6. �

Theorem 5.8. There exists a linear combination Γ+
o of Cayley graphs on SB

n , each
of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the third line of Table 2.

Proof. Take
Γ+

o =
∑

γ∈Pn,t

∑
(α,β)∈C(o(γ))

d(α,β) Cay(SB
n , Y +

(α,β)),

where the d(α,β) are as described in Lemma 4.1. We omit the proof. �

Theorem 5.9. There exists a linear combination Γ−
o of Cayley graphs on SB

n , each
of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the fourth line of Table 2.

https://doi.org/10.1017/S0013091513000357 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000357


Intersecting families in classical Coxeter groups 907

Proof. Take
Γ−

o =
∑

γ∈Pn,t

∑
(α,β)∈C(o(γ))

d(α,β) Cay(SB
n , Y −

(α,β)),

where the d(α,β) are as described in Lemma 4.1. We omit the proof here. �

Theorem 5.10. There exists a linear combination Γ of Cayley graphs on SB
n , each

of which is generated by a union of conjugacy classes included in FPFt such that its
eigenvalues are as described in the last line of Table 2.

Proof. Take Γ = 1
4Γ+

e + 1
4Γ−

e + 1
4Γ+

o + 1
4Γ−

o . �

Based on Theorem 5.10, we can proceed as in § 4 to give the corresponding versions
of Theorems 3.15 and 4.6 for SB

n , and finally prove Theorem 1.2 for SB
n . Since we need

make no important modifications to previous working to achieve this, we omit the proof.

6. Some comments on imprimitive reflection groups

Let m, n be positive integers and let δ be a fixed mth primitive root of unity. Let
G(m, 1, n) be a group consisting of all permutations w on the set {δki : k ∈ [m], i ∈ [n]}
such that w(δki) = δkw(i). Let p be a positive integer such that p | m. Let G(m, p, n) be
a normal subgroup of G(m, 1, n) which consists of all permutations w ∈ G(m, 1, n) such
that

m∑
i=1

ki ≡ 0 (mod p).

In [12], Shephard and Todd proved that any irreducible imprimitive reflection group is
isomorphic to some G(m, p, n).

Note that, when m � 2, G(m, p, n) ∈ {Sn, SB
n , SD

n }. In the preceding sections of
this paper, we have proved that if n is sufficiently large depending on t, a maximal
(2t)-intersecting subset of SD

n (respectively, SB
n ) is a coset of the stabilizer of t points in

[n], which generalizes the result on Sn given in [5]. It is natural to ask whether we can
further generalize this result to any imprimitive reflection group G(m, p, n).

It seems that this should be possible, but a definite answer depends on whether the
non-singularity of a matrix K can be proved. Let t be fixed as before. Let Λ be the set
of ordered m-tuples u = (u1, . . . , um) such that u1, . . . , um are non-negative integers and

m∑
i=1

ui = t.

Let K be a matrix whose rows and columns are both indexed by elements in Λ. For
u = (u1, . . . , um) ∈ Λ and v = (v1, . . . , vm) ∈ Λ, the entry in the (u, v)-position of K is

Ku,v =
∑

jk
l �0 ∀k∈[m], l∈[m]

j1
l +j2

l +···+jm
l =vl ∀l∈[m]

jk
1 +jk

2 +···+jk
m=uk ∀k∈[m]

m∏
l=1

(
vl

j1
l , j2

l , . . . , jm
l

) m∏
k,l=1

δkljk
l .
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When m = 2 and δ = −1, K is reduced to

[ min{p,q}∑
i=0

(−1)i

(
q

i

)(
t − q

p − i

)]
0�p�t
0�q�t

,

which has been proved invertible in [2]. However, we make the following statements.

Conjecture 6.1. The matrix K described above is invertible.

Conjecture 6.2. Provided n is sufficiently large depending on t, the maximal (mt)-
intersecting subsets of G(m, p, n) are cosets of stabilizers of t points in [n].

The case t = 1 of Conjecture 6.2 has been proved in [13].
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