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1. Introduction

Throughout this paper we will assume that all groups are contained in some
fixed but arbitrary universe. Thus the class £) of all groups becomes a set. If X is
a class of groups then we assume that 1 e X and if H = Ge£ then H eX. German
capitals will be used to denote classes of groups.

We will use an extended form of the notation for closure operators on the
set of all classes of groups introduced by Hall in [1]. If H is any set, let -^(H)
be the set of all subsets of H.

DEFINITION 1.1. If ^ £ 0>{H) for some set H, a map A: & ->• & is called
an operator on & if X c A(X)S A(Y) for all X, Ye&> with X c Y. If also a
is an ordinal number the operators A11 and A* on t? are denned by A°(X) = X,
A\X) = A(u {A\X)\ P < a}) if a > 0 and A*(X) = u {A*(X) | a is an ordinal}
for all l e f . A is called a closure operator if A = A*.

A relation of partial order may be defined on the set of all such operators
on 0> by the rule that A ^ B if and only of A(X) £ B(X) for all Xe0». Then
clearly A1 ^ Aa+i ^ A* for all ordinals a and if, for some a, A" = A'+1 then
A" = Afi = A* for all ft 2: a. From this we see that an operator on ^ is a closure
operator if and only if A = A2. Further since 8P is a set it is clear that there exists
an ordinal a such that A" = A*+ * = A*. Thus it follows that A* is a closure
operator and is the least closure operator B such that A ^ B.

We will use small capitals to denote operators on the set of all classes of
groups (in a given universe) and Roman capitals to denote operators on ^(^(K))
for some set K.

In this paper we are concerned with operators derived from various types
of local systems.
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DEFINITION 1.2. A set £ of subsets of a set H is called a local system for H
if 0 ¥= & and each finite subset of H is contained in some member of 2.. J> is
called weakly upper-directed if for each Q e 1 and each h e H there exists R e J
such that Q u {h} £ R and 2. is called a fower if J2 is well-ordered by inclusion.

DEFINITION 1.3. The operators L, LW, LU, L, are defined by GetX
LUX, LfX, respectively) if and only if G has a local system J of ^-subgroups
(which is weakly upper-directed, upper-directed, a tower, respectively) for all
classes of groups X. The operators L,LW, Lu, Lt on ^(^(K)) are defined similarly
with ^(^(K)) replacing the set of all classes of groups.

We remark that in our definition of a local system we are following Hartley
[2]. In [4] Kuros requires every local system to be upper-directed.

It follows immediately from the definition, that

(1) Lt ^ Lu ^ Lw ^ L

and hence for all ordinals a

(2) h* g L"U ^ i£ S La and L? ^ L* ^ L£ g L* .

It is well known that L = L* and LUX = L*X if X — sX, where GesX if and
only if G is a subgroup of some 3t-group. In [3] Hickin showed that Lu < L*.
The first aim of this paper is to show that the inequalities in (1) and (2) are all
strict, with the exception that Lt* = L* and also that A" < A""1"1 < A* in the
cases where A = L,, LU and LW with some restriction on the cardinality, a | ,
of the ordinals a. These results are given in

THEOREM A. Let cc be an ordinal number. Then:

(i) i4 < L ;
(ii) if \a\ ^ Ko then L"W< L"W

+1 < L* ;

(iii) L* < L* and L" < L £ ;

(iv) (Hickin) if \a\ ^ 2X o then L*u < L*a
+i < L*;

(v) Lu $ t ? , L^ < L^ and L* < L ? + 1 < i* ;

(vi) Lt = C

Thus, in particular, the operators Lt, LU and LW are not closure operators
and Lt* = L* < L * < L* = L . In Section 2 of the paper we prove some purely
set theoretic lemmas required for the proof of Theorem A while in Section 3
we develop the necessary translation into group theory.

This investigation was sparked off by the question as to whether the class
£ s , the class of all groups G in which the set of all serial subgroups of G forms a
complete sublattice of the lattice of all subgroups of G, is L-closed. This question
arose from the work of Hartley in [2] where he showed that fis contains all
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locally finite groups. We have been unable to completely decide this question
but we will prove the following results in Section 4.

THEOREM B. The class fis is Lw*-closed and if X = sX s £ s then LX S £ S .

We remark that no such local theorem can hold for the classes fin, fld or £a,
consisting of all groups in which the set of all subnormal, ascendant or decendant
subgroups, respectively, forms a complete sublattice of the lattice of all sub-
groups, since there exist locally nilpotent groups in which the join of two sub-
normal subgroups is neither ascendant nor descendant — see for example [7,
Appendix D> Exercise 23].

If 3Jtvand 9K^ are the classes of groups with the minimum condition on all
subgroups and all serial subgroups, respectively, then we will deduce the following
extension of Theorem A of [2] as a corollary of Theorem B.

THEOREM C. 2RS
V <= £s and L2RV <= £ s .

It is perhaps worth noting in contrast that an example in [2] shows that
there are groups with the maximum condition on all subgroups which do not
lie in fis.

2. The set theory

We begin this section with

LEMMA 2.1. For each ordinal oc and each set K with \K\^ max{X0,|oc|}

there exists a subset 2. of 0>(K) such that

0 ) 0 e l ;

(ii) L/(J2) = L / ( J ) for all /?;
(iii) L / ( J ) cz LU"(J) = LU*(J2) if p < a.

PROOF, (iii) is just the contents of Lemma 1 of [3], (ii) is easily seen to follow
from the construction in [3] and (i) follows since LU(J u { 0 } ) = LU(J) u {0}
and L w ( i

LEMMA 2.2. / / K is any set with \K\ ^ Ko then there exists a subset

M of @(K) such that 0 e i and

PROOF. Let J5" be the set of all finite subsets of K. Then \&r\ = \K\ since K
is infinite. We now partition K into sets KF, one for each F e J5", with | KF | = | K |
and let

3. = {0} u{FuKF\Fe^},

so that 0 e i £ &>{K). Suppose now that Q, Re£\{0} and 2 £ R. Then
Q = £ U K£ and i? == F U Kr for some E, F e 3?, so K£ £ F u KF and so,
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since | F | < Ko ^ | KE \, KE n Kr # 0 . Thus E = F and so Q = R. Hence
it follows that any weakly upper-directed local system which is contained in St
must have at most one member distinct from 0 , so LW(J) = 2. and so
Lw*(.2) = £. However, 1 is a local system for X and K £ J and so 2. c L(J) ,
as required.

LEMMA 2.3. / / X is any set with \K.\ = Ka /or some non-limit ordinal
a ^ 1 f/iew f/iere exists a set J ^ ^(X) such that 0 e i and

PROOF. We are indebted to the referee for the following proof which is much
shorter than our original. By Theorem 1 on p. 451 of Sierpinski [7] there exists
a set ^ £ &>(K) such that

(1) | ^ | > Ka and \R\ = K, for all Ret%

and

(2) if S, Te@ and S ^ T then |S n T| < K .̂

Now clearly & also satisfies

(3) if S, TUT2,-- are countably many distinct elements of 3& then S $ (J"= I Tn.

For each x e K let 3tx = {Re&|xeR} and let R = {x eK | \@x\< KJ .
Then | u {^x x e £ } | ^ Ka and so by (1) we may replace K by K\R and M
by ^ \ u { ^ x e R) in order to assume

(4) \Stx\ ^ Ka for all xeK.

Let
M = {(x,n) |x6K, n = 0 , 1 , 2 , - } .

Since j Af j = \K\ = Ka we may well-order M = {tp\P <ooa}. Now by using
(4) we may choose, by a transfinite construction, distinct Rpe& for each P <coa

such that xeRp where r̂  = (x, n). We shall write R0 = Rx if t0 = (x, n).
We now define the sets JB for n g <a by

a = i I I ft' I v e ?

and take
« - II 9
•* — U -̂ n •

Thus 0 e J o £ J c ^ and Un<co^n is a weakly upper-directed local system
for K, giving X e Lw(^). But by (2) K $ @ and so 2 a LW(J2) .

It now remains to show that J = LU*(M). Let QuQ2e2 and g t £ Q2.
Then there exist m, n with 0 ^ m,« ^ w and Xj, j , e K for 0 ^ i < m and 0 ^ j<n

https://doi.org/10.1017/S1446788700018061 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018061


430 J. A. Hulse [51

such that

Si = U « - < and Q2 = (J; <„*',-

Then by (3) we must have m S n and xt = yt for 0 ^ i < m. Hence it follows
that LU(J) = 2 and so LU*(J2) = 2, as required.

We remark that it is easy to see that if | K | ^ Xo and J £ ^>(X) then
Lt(^) = Lu(2) = LW(J) and so we certainly require | K | i> Kt for Lemma 2.3
to hold.

3. The group theory

We begin with two lemmas, the first of which is proved in [3] except for the
part concerning the operator LW which follows easily.

LEMMA 3.1. Let K be any set with \K\ = 2No. Then there exist groups
FQfor each Q £ K, where F0 = 1, such that the map

cf>: J <->£! = { G | G s FQfor some Q e J }

is a bijection from the set of all 2. c 0> = 0>(K) with 0e M onto the set of all
classes of groups contained in ^3. Further

for all ordinals a and all 2. with 0 6 J c 0>, and <f) maps Lw(.2) onto a subset

Since, if Q # 0 , the groups fQ are not finitely generated the argument
used by Hickin will not work in full for the operators LW and L . Also, since it
is easy to see that L,(^3) => ty, the method of [3] will not decide precisely where
the sequence L " ( Q ) terminates but only give a lower bound. For these reasons
we establish the following lemma which avoids these difficulties at the expense
of a further restriction on the cardinality of K.

LEMMA 3.2. Let K be a set with \K\ = K o . Then there exist groups AQ

for each Q <= K, with A0 — 1 , such that the map

<f>: J t ^ Q = {G\G S AQfor some Qe2]

is a bijection from the set of all 2, £ & = &>{K) with 0e2 onto the set of all
classes of groups contained in s $ . Further

<t>: Vt ( J ) f

4>: K(2) f-» 4 ( Q ) and

for all ordinals a and all 2 with
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PROOF. Since \K\ = Ko we may assume that K is the set of all prime numbers.
For each k e K let Ck be a cyclic group of order k. If Q £ K let AQ be the restricted
direct product of the groups Ck with k e Q, so that A 0 = 1.

We first show that ^} = L^} . Since s$ is contained in the class of locally finite
Abelian groups so is L*)3. But if G G L ^ J and has a Sylow p-subgroup of order
greater than p then G has a subgroup H of order p2 and so there exists a sub-
group B of G containing H and isomorphic with AQ for some Q. This is a contra-
diction as the Sylow p-subgroup of B has order at most p. So if G e L^S then G
is a locally finite Abelian group with Sylow p-subgroups of order at most p for
each prime p. Thus Ge<P and ty = V<$.

We next show that if C ^ AQ and C ^ AR then g c R and C = AQ. For
if p e Q then the Sylow p-subgroup of C has order p. But the Sylow p-subgroup
of AR has order p or 1 depending on whether p e R or p $ R. Now since C ^ AR

it follows that Q ^ R and C = /1 Q ^ ,4K.
Hence if 3. is a set of ^-subgroups of AR then .2 c {^Q | Q c /?}. it is now

easy to deduce that for each R £ K the map

is a bijection from the set of all local systems J for R with 2. <=, SP onto the set
of all local systems of ^-subgroups for AR which preserves the properties of being
weakly upper-directed, upper-directed and a tower. Thus the lemma holds for
a = 1 and the rest follows by induction.

The corollary below follows immediately from Lemmas 2.1 and 3.2.

COROLLARY 3.3. Let a fee an ordinal with | a | ^ Ko. Then there exists a
class of groups Q a such that L / ( Q J = hJ(Qx)for all 0 and

for all y < a.
Before proving Theorem A we establish one further lemma.

LEMMA 3.4. / / for each ordinal a, Dx is the class of all groups of cardi-
nality at most Ka then L U (O 0 ) = -O and Lt%00) = Da.

PROOF. Since a subgroup of a group G which is generated by a finite or
countable subset is at most countable, the set of all£)0-subgroups of G is an upper-
directed local system for G and so L U (O 0 ) = O .

We prove the second part by induction on a, the result being true by hypo-
thesis if a = 0. Suppose now that a > 0 and L,"(£>0) = fDe for all /? < a. Let
Ge£)a then by the induction hypothesis we may assume that |G = Ka and
so G = {gy\y<a>x}. If 6 <cox let Ge = (gy\y<0} then \Gg < Ka and
so by induction Ge e u { L / ( O0) 10 < at.} . But Ge^G^ if 6 < <j> <cox and
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G = u {Ge | 6 < coa}, so G e Lt"(C0) and so O a £ Lt*(O0). Conversely if G e Lt"(O0)
then there exist an ordinal y and subgroups Ge e u {i/(O0) | /? < a} such that Ge < G^
for all 9 < <t>< y and G = U {G910 < y}. Thus by induction 101 <£ | G91 < X,
for all 0 < y and so | y | ^ Ka.
Hence \G\ ̂  |y|max{|Gel | 0 < y } ^ K* = Xa, so GeO^and s o L , " ( O 0 ) c C r

Thus the lemma holds by induction.
We end this section with the

PROOF OF THEOREM A. (i) L£ < L follows immediately from Lemmas 2.2
and 3.2.

(ii) C < Lw+1 < L* for all a with | a | ̂  Ko follows from Corollary 3.3.
(iii) LU* < LW* follows from Lemmas 2.3 and 3.1 whence it is easy to deduce

that Lu
a < LW" for all ordinals a.

(iv) Lu
a<Lu°t + 1

 < L U * for all a with | a | ̂  2No follows from Lemmas 2.1
and 3.1. Corollary 3.3 would give the result if | a | g N o .

(v) LU $ L", Lt
a < LU" and Lt

a < L," + 1 < t* all follow from Lemma 3.4 and
the existence of groups of arbitrary cardinality.

(vi) We show that if X = L,*(X) then X = L U *(£ ) whence L,* = LU* since
we already have Lt* g LU* . Suppose now that G e LU(X) and S£ is the set of 3£-sub-
groups of G. Now since X = tt*(X), u & e 3C for any nonempty tower 3~ s 3C.
Since G e LU(X) there exists an upper-directed local system 2. for G with J2 S 3C.
Now by Zorn's Lemma G = u i e f and so GeX. Hence LU(X) = X and so
Lu*(£) = 3C, as required.

4. The class £ s

We begin with

PROOF OF THEOREM B. Suppose that a group G has a weakly upper-directed
local system 2. of £s-subgroups, J f is a set of serial subgroups of G and J = <^f >
= <H | H e JP>. We show first that J n Q ser Q for all g e J , i.e. J n Q is a serial
subgroup of Q.

Let g e 2 . and j c e J n Q ^ J . Then there exist Hl,--,HneJ? and finitely
generated subgroups Ht* of each Ht such that xe^Hl*,---,Hn*y. Now since
J is weakly upper-directed there exists Re2 such that

<Q,H1*,-,ff,*>g/i.
Let

iC = (HlnR,-,HnnR}.

Now HjCiRserR for 1 ̂  i ̂  n and Ref i , , so Xseri? and so, since Q ^ R,
KnQ ser Q. But, since Ht* ^ H; n R ^ J , x e X n Q ^ J n g . Thus J O g
is the join of all its subgroups which are serial in Q e 2S and so J n Q ser g . Hence
by Lemma 1 of [2], J ser G. Thus LW(£S) = £ s and so LW*(£S) = fis.
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Finally if X = sX s £s then L£ = LU3£ and S O L J C ^ .

We will require one further lemma for the proof of Theorem C.

LEMMA 4.1. Let 3f be a set of finite ascendant subgroups of a group G.
Then

PROOF. If J = <-?f > and K = <JG> then K is generated by finite ascendant
subgroups of G and so K is locally finite. Thus by Theorem B or Theorem A of
[2], Ke2s and so J ser K. But K is normal in G and so J ser G, as required.

PROOF OF THEOREM C. Suppose that GeSDt*, M1 is a set of serial subgroups
of G and J = <^> . Then each H e Jf is necessarily an ascendant subgroup of
G and there exists a normal subgroup H* of finite index in H and having no
finite quotient groups. Then by Lemma 4.3 of [5] and its Corollary (cf. Lemma 4
of [6]), J* o <J*C> -d G where J* = <#*| t fe J Q .

Suppose now that L = <J*G> and M = <J*y>. Then M <j JL, M ^ J and
J/M is generated by finite ascendant subgroups of JL/M and so by Lemma 4.1,
J ser JL. Further JLjL is generated by finite ascendant subgroups of G/L and so
by Lemma 4.1, JL ser G. Hence J ser G and so 2R^ £ £s .

Finally since 2RV = s9JT, Theorem B shows that L5RV C £,.

References

[1] P. Hall, 'On non-strictly simple groups', Proc. Cambridge Philos. Soc. 59 (1963), 531-553.
[2] B. Hartley, 'Serial subgroups of locally finite groups', Proc. Cambridge Philos. Soc. 71 (1972),

199-201.
[3] K. K. Hickin, 'A class of groups whose local sequence is nonstationary', Proc. Amer. Math.

Soc. 21 (1969), 402-408.
[4] A. G. Kuros, The Theory of Groups, Vol. 2 (Chelsea, New York, 1956).
[5] D. J. S. Robinson, 'On the theory of subnormal subgroups', Math. Zeit. 89 (1965), 30-51.
[6] J. E. Roseblade, 'On certain subnormal coalition classes',/. Algebra 1 (1964), 132-138.
[7] W. Sierpinski, Cardinal and Ordinal Numbers (Monografie Matematyczne, Tom 34, Polish

Scientific Publishers, Warsaw, 2nd Ed. Revised 1965).
[8] H. Zassenhaus, The Theory of Croups, (Chelsea, New York, 2nd Ed. 1958).

Mathematical Institute
University of Edinburgh
Scotland.

https://doi.org/10.1017/S1446788700018061 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018061

