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Abstract

A subgroup H is called a weak second maximal subgroup of G if H is a maximal subgroup of a maximal
subgroup of G. Let m(G,H) denote the number of maximal subgroups of G containing H. We prove
that m(G,H) − 1 divides the index of some maximal subgroup of G when H is a weak second maximal
subgroup of G. This partially answers a question of Flavell [‘Overgroups of second maximal subgroups’,
Arch. Math. 64(4) (1995), 277–282] and extends a result of Pálfy and Pudlák [‘Congruence lattices
of finite algebras and intervals in subgroup lattices of finite groups’, Algebra Universalis 11(1) (1980),
22–27].
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1. Introduction

All groups considered in this paper are finite.
Let G be a group and let H be a proper subgroup of G. We denote by Max(G,H)

the set of all maximal subgroups of G containing H and by m(G,H) the cardinality of
the set Max(G,H).

A subgroup H is called a second maximal subgroup of G if H is the maximal
subgroup of every member of Max(G,H) and we say that H is a weak second maximal
subgroup of G if H is a maximal subgroup of some member of Max(G,H). A second
maximal subgroup is a weak second maximal subgroup but the converse is not true in
general.

The aim of this paper is to study m(G,H), that is, the number of maximal subgroups
of G containing H, when H is a weak second maximal subgroup of G. The following
is our main result.

Theorem 1.1. Let G be a group and H a weak second maximal subgroup of G such that
G/CoreG(H) is solvable. Then m(G,H) − 1 divides |G : M| for some M ∈Max(G,H).
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If A ≤ B, we write CoreB(A) =
⋂

b∈B Ab, the core of A in B. If CoreA(B) = 1, we call
A core-free in B.

Our motivation comes from Flavell [1, Theorem A], where it is proved that if H is
a second maximal subgroup of a group G, then m(G,H) − 1 is at most

max{|G : X| : X ∈Max(G,H)}.

Flavell asks the natural question: ‘Does the inequality proved in the above result still
hold if second maximal is replaced by weak second maximal?’. As a corollary of
Theorem 1.1, we give an affirmative answer when G/CoreG(H) is solvable.

Corollary 1.2. Let G be a group and H a weak second maximal subgroup of G such
that G/CoreG(H) is solvable. Then m(G,H) is at most

1 + max{|G : X| : X ∈Max(G,H)}.

Pálfy and Pudlák [5, Theorem 3] have shown that if H is a second maximal
subgroup of G such that G/CoreG(H) is solvable, then m(G,H) − 1 is a prime power.
It is well known that the index of every maximal subgroup of a solvable group is a
prime power. Thus, as another corollary of Theorem 1.1, we can extend the result of
Pálfy and Pudlák to weak second maximal subgroups.

Corollary 1.3. Let G be a group and H a weak second maximal subgroup of G such
that G/CoreG(H) is solvable. Then m(G,H) − 1 is a prime power.

2. Preliminaries: modules

We recall some results about modules. The notation and terminology agree with [2,
Ch. 3].

Throughout this section, we assume that F is a field and V is a finite-dimensional
vector space over F, denoted simply by V/F. Let G be a group and φ a representation
of G on V/F. Then V is called a G-module over F (with respect to φ) by the law
v · g = v(gφ), where g ∈ G and v ∈ V , and we say simply that V/F is a G-module.

We sometimes use a more general ‘module’. A G-module V is of mixed
characteristic if V = V1 ⊕ · · · ⊕ Vn, where for each i there exists a field Fi such that
Vi/Fi is a G-module.

Lemma 2.1. Let V be a completely reducible G-module, possibly of mixed
characteristic. Then V is the direct sum of G-modules Vi, 1 ≤ i ≤ r, satisfying the
following conditions:

(a) Vi = Xi1 ⊕ · · · ⊕ Xiti , where Xi j is an irreducible G-submodule for 1 ≤ i ≤ r and
1 ≤ j ≤ ti. Moreover, Xi j, Xi′ j′ are isomorphic G-submodules if and only if i = i′;

(b) any irreducible G-submodule of V lies in Vi for some i;
(c) the number of all irreducible G-submodules of V is the sum of the number of all

irreducible G-submodules of the Vi for 1 ≤ i ≤ r.
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Proof. Part (a) follows from the canonical decomposition of completely reducible
modules and part (b) implies part (c). Hence, it suffices to prove part (b). Let U
be an irreducible G-submodule of V . Observe that

V =

r⊕
i=1

ti⊕
j=1

Xi j.

Thus, U must be G-isomorphic to Xk1 for some k and we will prove that U ⊆ Vk. Let
pi j be the projection of V onto Xi j, where 1 ≤ i ≤ r and 1 ≤ j ≤ ti. It is not difficult
to see that Upi j is a G-submodule of Xi j, which implies that Upi j = 0 or Upi j = Xi j by
the irreducibility of Xi j. Since U is not G-isomorphic to Xi1 if i , k, we must have
Upi j = 0 if i , k. Now

U ⊆
r⊕

i=1

ti⊕
j=1

Upi j =

tk⊕
j=1

Upk j ⊆ Vk,

as desired. �

Suppose that V/F and W/F are G-modules. A homomorphism ψ of V/F into
W/F (that is, a linear transformation of V/F into W/F) is called a G-homomorphism
if (v · g)ψ = (v)ψ · g. We denote the set of all G-homomorphisms of V into W by
HomG(V,W).

Recall that a division ring D is a ring such that all its nonzero elements form a group
under multiplication. We state the following well-known lemmas.

Lemma 2.2. Let V/F be an irreducible G-module and F a finite field. Then HomG(V,V)
is a finite field.

Proof. From [2, Ch. 3, Theorem 5.2], HomG(V, V) is a division ring. Since
HomG(V,V) is finite, HomG(V,V) is a finite field by Wedderburn’s theorem. �

Lemma 2.3. Let F be a finite field and V/F an irreducible G-module. Then
|HomG(V,V)| divides |V |.

Proof. Write E = HomG(V,V). By Lemma 2.2, E is a finite field. Observe that V is a
faithful E-module under the natural action. It follows that V is a vector space of finite
dimension over the field E. Hence, |E| divides |V |, as desired. �

The following lemma due to Green will play an important role in proving
Theorem 1.1.

Lemma 2.4 [2, Theorem 5.6]. Let V be the direct sum of the isomorphic irreducible
G-modules Vi/F, 1 ≤ i ≤ t, where F is a finite field. Then the number of distinct
irreducible G-submodules of V is exactly (qt − 1)/(q − 1), where q = |HomG(V1,V1)|.
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3. Proof of Theorem 1.1

Before proving Theorem 1.1, we start with an easy but useful lemma.

Lemma 3.1. Let G = MN be a group such that M ∩ N = 1 and N is a solvable normal
subgroup of G. Then N is a minimal normal subgroup of G if and only if M is a
maximal subgroup of G.

Proof. Firstly we assume that N is a minimal normal subgroup of G. By hypothesis,
N is abelian. Let M ≤ X < G. It suffices to show that X = M. By Dedekind’s lemma,
X = M(X ∩ N). Since both M and N normalise X ∩ N, it follows that X ∩ N E G.
Observe that X ∩ N < N since X = M(X ∩ N) < G. By the minimality of N, we have
X ∩ N = 1 and clearly X = M.

Conversely, assume that M is a maximal subgroup of G. Let X be a minimal normal
subgroup of G contained in N. Since X � M, it follows that G = XM by the maximality
of M. As N ∩ M = 1, we have N = X(N ∩ M) = X, as desired. �

Lemma 3.4 is the key lemma to deal with weak second maximal subgroups. It
follows easily from two results in [4].

Lemma 3.2 [4, Lemma 1]. Let G be a group and H a subgroup of G. If there
exist M, X ∈ Max(G, H) such that H is maximal in M but not maximal in X, then
CoreG(H) = CoreG(M).

Lemma 3.3 [4, Theorem B]. Let G be a solvable group and H a weak second maximal
subgroup of G. Then there exists at most one member X of Max(G,H) such that H is
not maximal in X.

Lemma 3.4. Let G be a solvable group and H a weak second maximal subgroup of G
with CoreG(H) = 1. Then:

(a) there exists some member of Max(G,H) which is not core-free in G;
(b) if H is not a second maximal subgroup of G, then there exists a unique member

of Max(G,H) which is not core-free in G.

Proof. We first prove part (a). Let N be a minimal normal subgroup of G. If G = NH,
then N ∩ H ≤ CoreG(H) = 1 and it follows from Lemma 3.1 that H is a maximal
subgroup of G, contrary to the hypothesis. Thus, there is a maximal subgroup M of G
containing NH. Clearly N ≤ CoreG(M). Hence, M ∈Max(G,H) and CoreG(M) , 1.

Now we prove part (b). Since H is not a second maximal subgroup of G, by
[4, Theorem B], there exists a unique member X of Max(G,H) such that H is not
maximal in X. Thus, H is maximal in M for every M ∈ Max(G, H) − {X}. It
follows from Lemma 3.2 that CoreG(M) = 1. By part (a), X is the unique member
of Max(G,H) which is not core-free in G, as desired. �

Proof of Theorem 1.1. We may assume that CoreG(H) = 1 and G is solvable.
Suppose that Max(G,H) = {M1, . . . , Mr}, where r = m(G,H). If r = 2, the result is
trivial. Thus, we assume that r ≥ 3. By Lemma 3.4(a), there exists at least one
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member of Max(G,H) which is not core-free in G. Hence, we can prove the theorem
by considering the following two cases.

Case I. There exists a unique member of Max(G,H) which is not core-free in G.
Without loss of generality, we may assume that CoreG(M1) , 1 and CoreG(Mi) = 1

for 2 ≤ i ≤ r. Take a minimal normal subgroup N of G contained in CoreG(M1). Then
G = NMi and N ∩ Mi = 1 for 2 ≤ i ≤ r. In this case, G is a solvable primitive group.
By Galois’ theorem [3, Ch. II, Theorem 3.2], any two complements of N in G are
conjugate by an element of N.

Set X = Max(G,H) − {M1} and consider the action of the group CN(H) on the set X
via conjugation. (This action is well defined since Mx is a core-free maximal subgroup
containing H for every M ∈ X and x ∈ CN(H).) We claim that CN(H) acts transitively
on the set X. In fact, take Mi, M j ∈ X for 2 ≤ i, j ≤ r. Then Mi = Mn

j for some n ∈ N
since all complements of N in G are conjugate in N. Since H ≤ Mi, M j, it follows
that 〈H,Hn〉 ≤ Mi. For any h ∈ H, we have [h, n] = h−1hn ∈ Mi ∩ N = 1 since N EG.
Thus, n ∈ CN(H), as claimed. Hence, CN(H) acts transitively on X and it follows that
|X| divides |CN(H)|. So, m(G,H) − 1 = |X| divides |N| = |G : M2|, as desired.

Case II. There exist at least two members of Max(G,H) which are not core-free in G.
In this case, we may assume that CoreG(Mi) , 1, where i = 1, 2. By Lemma 3.4(b),

H is a second maximal subgroup of G, that is, H is maximal in every member
of Max(G, H). Since CoreG(M1) ∩ CoreG(M2) ≤ M1 ∩ M2 = H, it follows that
CoreG(M1) ∩ CoreG(M2) ≤ CoreG(H) = 1. Let Ni be a minimal normal subgroup of
G contained in CoreG(Mi) for i = 1, 2. Then N1 � M2, N2 � M1 and N1 ∩ N2 = 1.
Moreover, G = N1M2 = N2M1. Since H is maximal in Mi with CoreG(H) = 1, we have
Ni � H and Mi = HNi and we conclude that G = HN1N2.

Write N = N1N2, so that N = N1 × N2 is abelian. It is easy to see that N ∩ H ≤
CH(N) ≤ CoreG(H) = 1. Hence, N can be viewed as a faithful H-module, possibly of
mixed characteristic. Observe that N1,N2 are both irreducible H-modules. Thus, N is
a completely reducible H-module.

Let N denote the set of all irreducible H-submodules of N. We will prove that
|N| = r. Let ϕ be the map from Max(G, H) to N given by ϕ(M) = M ∩ N for
M ∈ Max(G, H). Since M ∩ N E M and H ≤ M, it follows that M ∩ N is an H-
submodule of N and M = (M ∩ N)H since H is maximal in M. By Lemma 3.1, M ∩ N
is a minimal normal subgroup of M. Hence, M ∩ N is an irreducible H-submodule of
N and ϕ is well defined.

To complete the proof, we show that ϕ is bijective. If ϕ(M) = ϕ(K) for some
M, K ∈ Max(G, H), then M ∩ N = K ∩ N. Since H is maximal in both M and K,
M = (M ∩ N)H = (K ∩ N)H = K, which implies that ϕ is injective. For any U ∈ N,
by the complete reducibility of N, we have N = U × U1, where U1 is an H-module.
Since N is the direct product of two irreducible H-modules, U1 is an irreducible H-
module by the Krull–Remak–Schmidt theorem, which implies that U1 is a minimal
normal subgroup of G. Write X = UH. Then G = U1X and U1 ∩ X = 1. It follows
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from Lemma 3.1 that X is maximal in G. Hence, X ∈Max(G,H) and ϕ(X) = U. Thus,
ϕ is surjective.

If N1,N2, as H-modules, are not isomorphic, then it follows from Lemma 2.1 that
N = {N1, N2} and r = |N| = 2, contrary to r ≥ 3. Thus, we may assume that N1, N2
are isomorphic H-modules. Then we can assume that N1, N2 and N are elementary
p-groups for some prime p and so N is an H-module over GF(p). It follows from
Lemma 2.4 that r = |N| = (q2 − 1)/(q − 1) = 1 + q, where q = |HomH(N1, N1)|. Since
N1 is an irreducible H-module over a finite field GF(p), by applying Lemma 2.3, we
see that q divides |N1| = |G : M2|. Thus, r − 1 divides |G : M2| and the theorem is
proved.
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