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POLAR LOCALLY CONVEX TOPOLOGIES
AND ATTOUCH-WETS CONVERGENCE

GERALD BEER

Let X be a Hausdorff locally convex space. We show that convergence of a net
of continuous linear functionals on X with respect to a given polar topology on
its continuous dual X' can be explained in terms of the convergence of the cor-
responding net of its graphs in X X R, and the corresponding net of level sets
at a fixed height in X, with respect to a natural generalisation of Attouch-Wets
convergence in normable spaces.

1. INTRODUCTION

Let X be a real normed linear space and let 3/, yl, 2/2 > 2/3 j • • • be continuous linear
functionals on X. It has been long known that convergence of (yn) to y in the norm
topology can be explained in terms of the convergence of the associated sequence of
graphs (Grt/n) to Gry in X x R, with respect to a metric 6 on the closed linear
subspaces of a normed space given by Kato [10, p.197-204]. For closed subspaces M
and N, this distance may be described by

6{M, N) = inf{e > 0 : M nU cN+eU and NnU C M + eU},

where U is the solid unit ball of the space. Evidently, this notion of distance is not
appropriate for the more general class of closed convex sets. For one thing, such sets
need not hit the unit ball. Furthermore, even for convex sets that do hit the unit ball,
the triangle inequality may fail with respect to this notion of distance.

Recently, it has been shown [4] that norm convergence of a sequence of linear
functionals to a nonzero limit can also be tied to the convergence of the associated
sequence of level sets (j/~1(l)) to y~1(l) with respect to a certain metrisable topology
that may be defined on all closed convex subsets of X. This Attouch-Wets topology
[1], which reduces to the Kato metric topology for closed subspaces, is the topology
of uniform convergence of distance functions on bounded subsets of X. The Attouch-
Wets topology has arguably become the topology of choice for convex sets and convex
functions, identified with their epigraphs. One reason for this is its stability with respect
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34 G. Beer [2]

to duality: the polar map for closed convex sets, and the conjugate map for proper lower
semicontinuous convex functions, are both continuous [5, 14].

In the setting of a normed linear space, other weaker forms of convergence of
sequences of continuous linear functionals correspond to weaker convergence notions
for graphs and level sets [4, 6]. The purpose of this article is to show how convergence
with respect to any polar topology on the continuous dual of a locally convex space
can be explained in terms of convergence of graphs and level sets at a fixed height.
Remarkably, a suitable adaption of Attouch-Wets convergence to locally convex spaces
yields a unified approach.

2. PRELIMINARIES AND NOTATION

In the sequel X will be a (real Hausdorff) locally convex space with continuous
dual X'. We denote the origin of X (respectively X') by 0 (respectively 0'), and U

will be the family of convex balanced neighbourhoods of 0. If x £ X and y £ X', we
write (a;, y) for the value of the linear functional y at x. For y £ X', we write Gry
for the graph of y in X x R: Giy = {(x, a): x £ X and a = (x, y)}.

All seminorms will be assumed nontrivial, that is, not identically zero. If p is a
continuous seminorm on X, and if A is a nonempty subset of X, we write p(x, A)

for inf{p(x,a): a £ A}. Thus, p(x, A) is just the distance of x to A with respect to
the seminorm p. When p is a norm, we write the more usual d(x, A) instead. For a
continuous seminorm p, define p: X' —» [0, oo] by

p(y) = sup (x, y).
i>(x)<i

Each p is an infinite valued norm on X', that is,

(i) for all y, 0 < p\y) < oo;

00 p(v) = 0 i f a n d oniy if y =« ' ;
(iii) p(yi +y2) ^ p(2/i) + p(2/2);
(iv) p[ay) = \a\p\y).

We shall call p[y) the norm of y with respect to the seminorm p. The relation between

p{y) and distances is as follows:

LEMMA 2 . 1 . Let X be a locally convex space, and let y be a nonzero element

of X'. Then if p is a nontrivial continuous seminorm for X', x £ X, and a £ R, we

have

P ( X > J / ( a ) ) = p\y) •

Given a family of (nontrivial) continuous seminorms {p;: % £ / } on X, we say

that the family determinea the topology of X provided the family {aUi: i £ / , a > 0}
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forms a neighbourhood base for the topology of X at 9, where for each i £ I, Ui =

{x: pi(x) < 1}. Note that this differs somewhat from standard usage (see, for example,
[15, p.15]), where only finite intersections of such seminorm balls are required to form
a neighbourhood base for the topology of X at 6. Each seminorm p; gives rise to the
seminorm qi on X x R defined by qi(x, a) = max{pj(s), \a\}. Evidently, if {pt-: i € / }
determines the topology of X, then [qi: i £ / } determines the usual associated locally
convex topology on X x R.

We denote by C(X) the nonempty closed convex subsets of X. If A £ C(X), the
polar of A is this subset of X': A° = {y £ X' : Vo £ A, {a, y) < 1}. Let us write
BC(X) for the family of all closed, bounded, balanced convex subsets B of X. We
call a subfamily B of BC{X) a distinguished class of bounded sets if

(i) it has union X;
(ii) it is directed by inclusion;

(iii) a/? £ B whenever B £ B and a is real.

By a polar topology on X' [15, p.47], we mean a locally convex topology having as
a neighbourhood base at the origin 6' all sets of the form {B°: B £ B}, where B is
a distinguished class of bounded convex sets. Such a topology is simply the topology
of uniform convergence on elements of B. Following [15] we call this the topology of
B-convergence. When B = BC(X), we have the so-called strong topology, that is a
generalisation of the norm topology on X' when X is normable. When B = the
balanced polytopes, we get the weak topology o-(X', X). When B = the o"(X, X')-
compact balanced convex sets, we get the Mackey topology T(X', X).

3. THE ATTOUCH-WETS CONVERGENCE IN A LOCALLY CONVEX SPACE

As mentioned in the introduction, if X is a normed space, then the Attouch-Wets
topology TAW on the nonempty closed convex subsets C(X) is the topology of uniform
convergence of distance functionals (as determined by the norm) on bounded subsets of
X [1, 2, 4, 5, 3, 7, 14, 8]. There are two standard presentations for this topology as a
uniform space. The first most closely reflects the description just given. A base for the
first compatible uniformity for TAW consists of all sets of the form

{{A, C) £ C{X) x C(X): sup \d{x, A) - d(x, C)\ < e}

where B £ BC(X), and e > 0. Evidently, a countable base for this uniformity for TAW
consists of all sets of the form

An = {{A,C)eC{X)xC{X): sup \d(x, A) - d(x, C)\ < -} (n £ Z+).
\\x\Kn n
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Our second description is more intuitive, and indicates the Attouch-Wets topology's
connection to the stronger Hausdorff metric topology [9, 12]. The topology TAW is also
determined by a weaker uniformity with base consisting of all sets of the form

{(4, C) S C{X) x C(X): A n B c C + eU and C D B C A + eU}

where U is the closed unit ball of the normed space X, B 6 BC(X), and e > 0. A
countable base for this second uniformity consists of all sets of the form

Qn = {(A, C)eC{X)xC(X): AHnU CC + -U and CHnU C A + -U} (nEZ+).

It is also from this perspective that one can see most easily that the Attouch-Wets
topology agrees with the Kato metric topology when restricted to closed subspaces.
For a proof that these two uniformities determine the same topology, the reader may
consult [4, Lemma 3.1] or [3, Proposition 2.1]. Evidently, TAW is metrisable, and the
standard proof that the Hausdorff metric topology is completely metrisable when X
is complete goes through with minor modifications to show that TAW is completely
metrisable [2]. Also, when restricted to bounded convex sets, TAW agrees with the
usually stronger Hausdorff metric topology [8, Lemma 3.1]. It is easy to verify that
equivalent norms produce the same hyperspace topologies (see more generally [7]).

There are natural generalisations of both of these constructions to the locally con-
vex setting producing divergent results. Viewed as a locally convex space, the norm
topology is determined by the single seminorm p(x) = \\x\\. Our first uniformity above
for TAW has as a base all sets of the form

A(B, e) = {(A, C) e C(X) x C(X): sup \p(x, A)-p{x, C)\ < e},

where B 6 BC(X), and e > 0. This motivates the following definition in the locally
convex setting.

DEFINITION: Let X be a locally convex space, with a defining family of seminorms
{pi.iel}. Let B C BC(X) be a distinguished class. Then the Attouch-Wett topology
TAW(B) on C(X) is the topology determined by the uniformity with typical subbasic
entourage of the form

A(i, B, e) = {(A, C) e C(X) x C(X): sup \Pi(x, A) - Pi(x, G)\ < e},
igB

where i£ I, B G B(X), and e > 0.

As a uniform topology, TAW(B) is completely regular. Also, this topology is
Hausdorff. To see this, let A and C be distinct elements of C(X). Without loss
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of generality, we may assume Ac n C ^ 0. Choose x&Acr\C,i£l and a > 0
with {x + alii) n A = 0. There exists B 6 B{X) with x G B, and it is clear that
(A,C)£A(i,B,a).

Given a denning family of seminorms {p+: i G /} for X, the well known Haus-
dorff uniform topology [9, p.44] on C(X) is induced by the uniformity with a subbase
consisting of all sets of the form

{(A, C) G C(X) x C(X): Vx G X, \Pi(x, A) - Pi(x, B)\ < e},

where i G / and e > 0. This topology does not depend on the particular choice of the
seminorms, as it is well known that another compatible uniformity has as a base all sets
of the form

{{A, C) G C(X) x C(X): AcC + U and C CA + U}

where U G U. Evidently, the Hausdorff uniform topology is finer than each Attouch-
Wets TAW(B). And with respect to different defining families, we must point out an
unpleasant fact of life: the hyperspace topology TAW{B) depends on the particular set
of seminorms chosen as well as the family B.

EXAMPLE 1. In the plane R2 , if we use B = BC(X) and the single denning seminorm
p(ai, 02) = (a? + a | ) , we get ordinary Attouch-Wets topology on C(X). But
if we include the continuous seminorm p'(ai, 0:2) = |a2| and use {p, p '}, we get a
strictly finer topology on the closed convex sets. In fact, this is the case if we restrict
our attention to hyperplanes. To see this, let C = {(ai, 02): a2 — 1} and Cn =
{(ai, 02): a.2 = a i /n + 1}. Then (Cn) is Attouch-Wets convergence to C in the usual
norm sense. But p'(0, C) = 1, whereas for each n, p'(0, Cn) = 0. Thus, we fail
to get even pointwise convergence of distance functions associated with the family of
seminorms.

Again, let X be a locally convex space with a given distinguished class of bounded
convex sets B. To generalise our second presentation of the Attouch-Wets topology, it
is natural to consider all "basic entourages" of the form

Q[B, U] = {(A, C) G C{X) x C(X): AHBcC + U and C D B C A + U}

where B G B and U G U. But there is one basic problem with this program: such sets
do not in general form a base for a uniformity! We next present a negative result in
this direction.

PROPOSITION 3 . 1 . Let X be an infinite dimensional locally convex space, and
let B be a distinguished class of balanced compact convex sets. Then the filter base of
sets {£l[B, U]: B G B and U G M} does not form a base for a uniformity on C(X).
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PROOF: Let T be the topology for X. As is well-known, if there is a coarsest
uniformity compatible with {X, r ) , then the space must be locally compact (see, for
example, [13, Theorem 6.17]). Let us assume {Sl[B, U]: B 6 B, U G U) is a base for
a uniformity for C(X). Evidently, its trace on X (as identified with {{x}: x G X})

is a compatible uniformity for (X, T) . We claim that this trace must give rise to the
coarse uniformity on (X, T) .

To verify this claim, fix B G B, U G U and let Q'[B, U] = {(Xl, x2) G X x
X: ({xi}, {x2}) G n[B, U)}. It is clear that

n'[B, U] = {(xi, x2): either (xu x2) G (Bc x Bc) or xi - x2 G U}.

Now let T> be any compatible diagonal uniformity for (X, T) . It follows from the
compactness of B that there exists a symmetric entourage D G T> such that for each
b G B, whenever (x, b) G D, we have x — b G U. Suppose (xi, x2) G D is arbitrary.
If (asi, x2) G (Bc X -Bc) n D, then ( i 1 } x2) G ft'[#, i/]. Otherwise, either j , e B and
(xi, 12) £ D or 12 £ ^ and (xi, x2) £ D. In either case, by the choice of D, we
have X! - x2 G *7 and so (xi, x2) G n'[B, CA]. We have shown that Sl'[B, U] D D,

and so the uniformity generated by {J2'[B, U]: B G B, U G U} will be contained in
V. We may now assert that the uniformity generated by {il'[B, U]: B G B, U G U} is
the coarsest compatible uniformity for (X, T) , and we conclude that (X, T) is locally
compact. This implies that X is finite dimensional. D

Still, we may talk about convergence of a net {A\) with respect to this filter base
of sets as follows.

DEFINITION: Let X be a locally convex space, and let B C BC(X) be a dis-
tinguished class. Suppose A G C(X) and (A\)XSA is a net in C(X). We write
A — .AW^Z?)-lim A\ provided for each B G B and U G U, there exists Ao G A such
that for all A ̂  Ao, we have both A D B C Ax + U and AxnB C A + U.

LEMMA 3 . 2 . Let X be a locally convex space, let B C BC(X) be a, distinguished

class, and let {pi: i G / } be a defining family of seminorms for the topology of X.

Then in C(X), TAW{B) convergence as determined by {p<: i G / } ensures AW(B)

convergen ce.

PROOF: Fix B e B and U G U. There exist e > 0 and i G / such that eUi C U.

Suppose A and C are closed convex sets with sup |pt-(z, .A) — Pi(x, C)\ < e, and x G

4 f l 5 . Since p<(x, .4) - 0, we get pi(x, C) < e so that (x+eUi)nC ^ 0. This means
that x G C + e*7;. Thus, AnB C C + eUi C C + *7, and, similarly, C D S C A+tf . D

We note that for the sequence (Cn) of Example 1, we have C = AW(B) — lim Cn,

while C 7̂  TAW{B) — limCn with respect to the defining seminorms p and p' and
B = BC(X).
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We now come to a second, very disappointing, fact of life: AW(B) limits of nets

of (compact) convex sets need not be unique, even if B — BC(X)!

EXAMPLE 2. Consider the function space C(R, R) with topology of compact conver-

gence, with the usual defining family of increasing seminorms {p,: i 6 Z+}, where

Pi{x) = max{|z(t)| : - i < t < i} (i£Z+).

Let xo be the zero function 0 and let x\ be the function that is identically equal to one.
With B = BC(C(R, R)), we produce a net of compact convex sets that is AW{B)-
convergent to each subsegment of conv{xo, xi}. Our directed set will be B x Z+,
where the bounded sets are ordered by inclusion and Z + has the usual order. To define
our net (B, i) —* C(B,\)

 o n this directed set, fix B G B and i E I. There exists an
increasing sequence of integers {rij) such that for each j 6 Z+ and for each t G [—j, j]
and each x G B, we have |x(t)| < rij. Clearly we can construct a positive continuous
function i g such that for each j g Z+ we have

max{xB{t): - j ^ t ^ j } > jn,.

We claim that for each function w in conv{zo, asi, ZB} that does not lie in
convlxo, xi} we have w £ B. We may write w = a^Xi + a2x2 + OC3XB , where
"l + "2 + «3 = 1 and where ai ^ 0, a2 ^ 0 and a3 > 0. Choose j 6 Z+ with
1/j < 03. Choose t G [—J) j] maximising the function XB restricted to that interval.
We have

and x\ ^ X\ inThis shows
conv{xi, Xi

that w
?} such

«3XB(0 ; 1

j
<fc B. Now pick points xj ^ :

that

conv{xo,,xi,xB) Cconv{xJ,

>

Co in

xj, x

Ij) —

conv

B} +

n

b

1
i

Finally, set C(B,i) = conv{xj, xj, XB}, and let C be any subsegment of
conv{xo, xi}. We shall show that the net (B, i) —> C(B,i) is -AW (̂B)-convergent to C.
To this end, fix Bo G B and a neighbourhood U of the origin. There exists i G Z+

with (l/i)tfi C£/\ We have

and C n B 0 C conv{x0, x j C C(Bii) + -l/ j C ^(B.J) + U,

provided (B,j) ^ (Bo,i), that is, provided B D Bo and j ^ i. This establishes
convergence of the net to multiple limits as required.
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4. CONVERGENCE IN A POLAR TOPOLOGY AND ATTOUCH-WETS CONVERGENCE

Our first goal of this section is to show that convergence of continuous linear
functionals with respect to the topology of 2?-convergence corresponds to the AW(B)-
convergence of their level sets at fixed heights (provided the limit function is not 6').

LEMMA 4 . 1 . Let X be a locally convex space, let (yx) be a net in X' and let
y £ X'. Let B £ B, where B is a distinguished subclass of BC(X). Suppose that
y~1(l) = AW(B) — hm2/^"1(l). Then there exists a > 0 and some index Ao such that
for all A ^ Ao, we have both sup{{6, y\) : b £ B} < a and sup{(6, y) : b £ B} < a.

PROOF: Let U be a neighbourhood of the origin that contains B on which y is
bounded. Choose p > 2 such that sup{(x, y) : x £ U} < p. Choose Ao so large
that for all A ̂  Ao, we have y ^ l ) D B C y"^ 1 ) + C1/2?)^- W e c l a i m t h a t f o r aU
A ̂  Ao, sup{(6, y\) : b £ B} < 2p2. Suppose this fails for some such A. Since B is
balanced, there exists x £ (l/2p)B C B such that x £ i/^"1(l). Since A ̂  Ao, there
exists w £ y" 1 ^ ) with w £ x + (l/2p)U. Since x £ (l/p)U, we get w £ (l/p)U.
We conclude that pw £ U and (pw, y) = p, which violates the bound on the linear
functional y restricted to U. U

LEMMA 4 . 2 . Let X be a locally convex space, and let B C BC{X) be a
distinguished class. Let {y\} be a net of nonzero elements of X' and let y ^ 6'
be in X' with y - 1 ( l ) = AW(B) - l imy"1^) . Then for each a ^ 0 we have

PROOF: Let B £ B and let U be a balanced convex neighbourhood of 6. We have

y'^oc) f i l e y^ia) + U and y^fa) !~l B C y-1(a) + U

if and only if

y-^1) n ±B C y^U) + |ijff ^d y^(l) n ±B C y-^l) + -̂ tf.

By the definition of distinguished class, B £ B if and only if (1/ |a|)2? £ B. D

We now come to the main result of this paper.

THEOREM 4 . 3 . Let X be a locally convex space with continuous dual X'. Let
B C BC(X) be a distinguished class. Let (y\) be a net of nonzero elements of X' and
let y ^ 6' be in X'. The following are equivalent:

(i) y-1(l) = AW(B)-]imy;l(l);
(ii) (yy) is convergent to y in the topology of B-convergence for X';

(iii) V a 6 J l , y - 1 ( a ) = ^ ( B ) - l i m t , - 1 ( a ) .

PROOF: (i) => (ii). Fix B £ B and let U be a balanced convex neighbourhood of
the origin for which sup{(x, y) : x £ U} < 1. Let p be the seminorm associated with
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U, so that p(y) < 1. Choose by Lemma 4.1 an index Ao in the underlying directed set
for the net and a > 2 such that for all A J> Ao , we have

sup(6, y) ^ a and sup(6, yx) ^ a.
&s !B

Also, by Lemma 4.2, we may assume that Ao is also chosen so large that for 7 =
1, - 1 , - 1 + (l/2a) and A ̂  Ao , we have

(*) y-1^) n 2B C 2/^(7) + ^U and 3/^(7) 0 2BC y'1^) + ±U.

Fix A Js Ao; we claim that y\ £ y + -B0 - Suppose not. Then for some 6 £ Z?, we
have (6, yx) > {b, y) +1 • We consider two cases for this inequality, the first of which is
simple whereas the second is rather subtle:

Case (a): (b, yx) > 1/2;
C a s e ( b ) : (b,y)< -1/2.

In case (a) there exists /? ^ 2 such that (/?&, j/x) = 1 • Note that we must have
I/a ^ f3 because y\ is bounded by a on B. Using (6, y\) > (6, y) + 1, we have

( / 3 6 , y ) < l - / 3 ^ 1 - ^ .

Since i e U implies |(a;, y)\ < 1, we cannot have /3& £ y~1( l )+(l /a) l / . Since /3 6 G 2B,

this contradicts ^ ( l ) R 2 B c ^"H1) + (l/4a)£T, finishing case (a).

For case (b), since -B C B, there exists /3 with I/a < /3 < 2 and (/96, y) = - 1 .

Clearly, (/3&, y^) > —1 + I / a . By condition (*) with 7 = —1 we get

/96ey-i(_i) + -Ltr.

This means that there exists x £ y ^ ^ - l ) with (3b - x £ (l/4a)E/\ Since (/3&, yA) >
—1 + I / a and (a;, y\) = —1, there exists z on the line segment joining /3b and x
with (z, yx) = - 1 + l /2a . Of course, z £ (3b + (l/4a)U, and since p(y) < 1, we
have (z, j/) < —1 + l /4a. Again since p(y) < 1, for each to £ z + (l/4a){7, we have
(to, y) < —1 + l /4a + l /4a < —1 + l /2a . As a result, the point z does not belong to
y - J ( - l + l/2a) + (l/4a)!7, which contradicts (*) with 7 = - 1 + l /2a . This finishes
case (b).

(ii) => (iii). Let U ^ X be a balanced convex neighbourhood of the origin and let
p be the seminorm determined by U. We have p(y) ^ liminf p{y\) (in fact, this is true
for convergence in the <r(X', X)-topology which is always contained in the topology of
B-convergence). Fix B £ B. Choose an index Ao in the underlying directed set for the
net and a number \i > 0 such that for each A ̂  Ao

(a) Rv) >M and p[yx) > /*;
(b) y - y x

0
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Fix A ̂  Ao. Suppose x £ B (~l y~1(a). By (b), we have |(a;, y\) — a\ ^ //. But by (a),
sup{(u>, y\): w E U} > fi. Thus, there exists w £ U with (w, y\) = a — (x, I/A) • As a
result, x +1« £ i/^"1(a) so that x £ 2/^1(a) + £/• Thus, for all A ^ Ao, we have

and similarly, j / ^ a ) fl JB C i T ^ a ) + £/\

(iii) => (i). This is trivial. D

COROLLARY 4 . 4 . Let X be a locally convex space with continuous dual X'.

Let (y\) be a net of nonzero elements of X' and let y ^ 0' be in X'. The following

are equivalent:

(i) ^^1) = AW(BC(X))-hmy^l);
(ii) (y\) is convergent to y in the strong topology for X';

(iii) \/aeR, y-^a) = AW(BC(X)) -Kmy-^a).

At the opposite extreme, we get a characterisation of <r(X', X) convergence. Weak

convergence of sequences in the normed setting was investigated in [4].

COROLLARY 4 . 5 . Let X be a locally convex space with continuous dual X'.

Let (yx) be a net of nonzero elements of X' and let y ^ 6' be in X'. Then y =

<T(X' , X) — limj/A if and only if for each a £ R, for each convex polytope P in X, and

for each U (zU, there exists an index Xo such that for all A ̂  Ao we Aave both

y-^ct) D P C y ^ ( o ) + U and y^(a) n P C y~\a) + U.

We now turn to convergence of graphs. First, a lemma, which illustrates most

clearly why we need our class B of bounded sets to be a distinguished class.

LEMMA 4 . 6 . Let X be a locally convex space, and B C BC(X) be a dis-

tinguished class. Suppose that (Cx) is a net of nonempty closed convex subsets of

X satisfying C = AW(B) - l i m C j . Then for each xQ G X we have C + x0 =

AW(B) - lim (Cx + xo).

PROOF: Fix B 6 B and U £ U. Since US = X, there exists Bo £ B containing
—Xo (and xo )• Since B is directed by inclusion, there exists B* in B such that B*

contains both IB and 2BQ . Since B* is convex, B* will contain B — XQ .

Now choose Ao so large that for all A ^ Ao we have both

CnB* CCx + U and CxnB* cC + U.

Now fix A ^ A0) and suppose x £ (C + x0) ("I B. Then x - x0 £ C D B*, so that
X-XQ eCx + U. As a result x £ (Cx + x0) + U, and this shows that (C + x0) l~l B C
(Cx + x0) + U. Similarly, {Cx + xo)D B C {C + x0) + U. D
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THEOREM 4 . 7 . Let X be a locally convex space, and let B C BC{X) be a

distinguished class. Let (y\) be a net in X', and let y £ X'. The following are

equivalent:

(i) (y\) is convergent to y in the topology of B-convergence for X';

(ii) Gry = AW (Bo) — limGrj/^, where Bo consists of products of elements

of B with intervals of the form [—a, a ] .

PROOF: We consider auxiliary continuous linear functionals y' and (y'x) on X xR

defined by y'\(x, a) = (x, yx) — a and y'(x, a) = (x, y) — a. Notice that none of

the auxiliary linear functionals is the zero functional. If (i) holds, then (y'x) is clearly

convergent to y' in the topology of Bo-convergence for (X x R) ; so, by the equivalence

of conditions (ii) and (iii) in Theorem 4.3, we get y'1^) = AW(B0) - l imy^-^O).

This in turn means that Giy = AW(B0) - l imGry j . Conversely, if (ii) holds, then

since translation by a fixed vector is continuous, we have Gry + (0, —1) = AW(Bo) —

limGri/A + (6, - 1 ) . This means that y'1^) - AW(B0) - l i m y ^ f l ) , so that by

Theorem 4.3, (y'x) is convergent to y' in the topology of I?o-convergence. Condition

(i) now easily follows. D

We now turn to a search for a mode of convergence for linear functionals cor-

responding to TAW{B) (respectively TAW(BO)) convergence of level sets (respectively

graphs). Theorem 4.3 of [4] points the way. We need this analog of Lemma 4.6, whose

proof is similar and is left to the reader.

LEMMA 4 . 8 . Let X be a locally convex space with a prescribed defining family

of seminorms. Suppose that {Cx) is a net of nonempty closed convex subsets of X with

C = TAW{B)—lim C\. Then for each xo £ X, we have C+XQ = TAW(B)—lim (C\ + io) •

THEOREM 4 . 9 . Let X be a locally convex space, and let {pi: i 6 /} be a family

of seminorms determining the topology. Let (y\) be a net of nonzero elements of X'

and let y ^ 6' be in X'. The following are equivalent:

(i) y-1(l) = rAW(B)-nmy^(l);

(ii) (J/A) is convergent to y in the topology of B-convergence, and for all

i £l, Pi{y) =linapi(yA);

(iii) VaeR, y-1(o)=TA Wr(B)-l imy^1(a).

PROOF: (i) => (ii). We have for each i £ / , Vi(0, y~l(\)) = limpi(0, 2/^(1)) ,

which means by Lemma 2.1 that pi(y) — limply*) • By Lemma 3.2, we have y~1(l) =

AW(B) — h'm2/J"1(l), and so by Theorem 4.3, we have (y\) convergent to y in the

topology of B-convergence.

(ii) =$• (iii). This is immediate from Lemma 2.1.

(iii) => (i). This is trivial. D
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THEOREM 4 . 1 0 . Let X be alocally convex space, andlet {p,-: i 6 / } be a family

of seminorms determining the topology. Let (yx) and y be in X'. The following are

equivalent:

(i) (yx) is convergent to y in the topology of B-convergence, and for all

i e I, Pi(y) =]impi(yx);

(ii) Giy = TAW{BO) — limGry* with respect to the seminorms {g^: i E 1}
on X x R, where for each i, qi(x, a) — max{p,(x), \a\}.

PROOF: Again, we consider auxiliary continuous linear functionals y' and (y'x)

on X x R defined by y'x(x, a) — (x, yx) — ot and y'(x, a) = (x, y) — a. In terms
of the family of defining seminorms {<fr: i £ / } , we have (ji(yx) = Pi(yx) + 1 and
qi(y) = Pi{y) + 1 • The proof now proceeds exactly as in the proof of Theorem 4.7, using
Lemma 4.8. D

Even when B — BC(X), Condition (i) of Theorem 4.10 does not guarantee that

lira pi (yx — y) — 0 for each defining seminorm p,-. We return to the space of Exam-

ple 1, with defining seminorms p and p'. Consider J/, t/i, J/2, • • • in X' defined by

( (a i , a 2 ) , y) - ax + a 2 and {(ai, a 2 ) , yn} = (1 + l / n ) a i + a 2 . Evidently, (j/n) con-

verges to y in the strong topology. We also have p\y) = \/2 — limp(j/n) and for each
n> P*(y) = P*(2/n) — oo. But for each n £ Z + , fi(yn — y) — oo. In particular, for each

n£ Z+ and k 6 Z+, we have

P*(!/n - y) ^ ( ( tn , 0), yn-y) = k{n + l)-kn = k.

Strong convergence of continuous linear functionals plus convergence of the norms

of the functionals as determined by a prescribed family of seminorms on X is not

an infrequent occurrence. For example, we get this mode of convergence with X =

C(R, R), equipped with the seminorms for the topology of compact convergence, when

y,yi,V2,ys, ••• are denned by

f1 f1

(as, y)= x(t)dt, (as, yn) = / x(t)dt (n £ Z+).
Jo Jl/n

On the other hand, Example 1 shows that convergence in this sense is properly

stronger than convergence in the strong topology, as C = y~1( l) and Cn = 2/n1(l)

where ( (a i , a 2 ) , y) = a2 and ((ax, a2), yn) = ( l / n ) a i + <*2 •

The Attouch-Wets topology can be defined for the space of all closed subsets of a

metric space, using either the truncation approach or the function space approach (see,

for example, [7]). As in the less general normed linear space setting, both paths yield

the same (metrisable) topology. In particular, a "metric" Attouch-Wets topology can
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be defined for the closed convex subsets of a metrisable locally convex space, equipped

with a translation invariant metric. Recently, Hola [10] has shown that metric Attouch-

Wets convergence of graphs of linear functionals is stronger than convergence of the

functionals in the strong topology, and that the two notions coincide if and only if X is

normable. The divergence between these results and ours is easily explained: metrically

bounded sets and bounded sets in the topological vector space sense do not in general

coincide.
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