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Abstract

We establish finite analogues of the identities known as the Aoki–Ohno relation and the Le–Murakami
relation in the theory of multiple zeta values. We use an explicit form of a generating series given by Aoki
and Ohno.
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1. Introduction and statement of the results

For an index set of positive integers k = (k1, . . . , kr) with k1 > 1, the multiple zeta value
ζ(k) and the multiple zeta-star value ζ?(k) are defined respectively by the nested series

ζ(k) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

and

ζ?(k) =
∑

m1≥···≥mr≥1

1

mk1
1 · · ·m

kr
r

.

We refer to the sum k1 + · · · + kr, the length r and the number of components ki with
ki > 1 as the weight, depth and height of the index k, respectively.

For given k and s, let I0(k, s) be the set of indices k = (k1, . . . , kr) with k1 > 1 of
weight k and height s. We naturally have k ≥ 2s and s ≥ 1; otherwise I0(k, s) is empty.

Aoki and Ohno proved in [1] the identity∑
k∈I0(k,s)

ζ?(k) = 2
(

k − 1
2s − 1

)
(1 − 21−k)ζ(k). (1.1)
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On the other hand, for ζ(k), the following identity is known as the Le–Murakami
relation [6]: for even k,

∑
k∈I0(k,s)

(−1)dep(k)ζ(k) =
(−1)k/2

(k + 1)!

k/2−s∑
r=0

(
k + 1

2r

)
(2 − 22r)B2rπ

k,

where Bn denotes the Bernoulli number. As Euler discovered, the right-hand side is a
rational multiple of the Riemann zeta value ζ(k).

In this short article, we establish the analogous identities for finite multiple zeta
values.

For an index set of positive integers k = (k1, . . . , kr), the finite multiple zeta value
ζA(k) and the finite multiple zeta-star value ζ?

A
(k) are elements in the quotient ring

A := (
∏

p Z/pZ)/(
⊕

p Z/pZ) (p runs over all primes) represented respectively by( ∑
p>m1>···>mr>0

1

mk1
1 · · ·m

kr
r

(mod p)
)

p
and

( ∑
p>m1≥···≥mr>0

1

mk1
1 · · ·m

kr
r

(mod p)
)

p
.

Studies of finite multiple zeta(-star) values go back at least to Hoffman [2] (the preprint
was available around 2004) and Zhao [10]. But it was only recently that Zagier
proposed (in 2012 to the first-named author) considering them in the (characteristic 0)
ringA ([5], see also [3, 4]). InA, the naive analogue ζA(k) of the Riemann zeta value
ζ(k) is zero because

∑p−1
n=1 1/nk is congruent to 0 modulo p for all sufficiently large

primes p. However, the ‘true’ analogue of ζ(k) inA is considered to be

Z(k) :=
(Bp−k

k

)
p
.

We note that this value is zero when k is even because the odd-indexed Bernoulli
numbers are 0 except B1. It is still an open problem whether Z(k) , 0 for any odd
k ≥ 3.

We now state our main theorem, where the role of Z(k) as a finite analogue of ζ(k)
is evident.

Theorem 1.1. The following identities hold inA:∑
k∈I0(k,s)

ζ?A(k) = 2
(

k − 1
2s − 1

)
(1 − 21−k)Z(k), (1.2)

∑
k∈I0(k,s)

(−1)dep(k)ζA(k) = 2
(

k − 1
2s − 1

)
(1 − 21−k)Z(k). (1.3)

We should note that the right-hand sides are exactly the same. In the next section,
we give a proof of the theorem.
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2. Proof of Theorem 1.1

Let Li?k (t) be the ‘nonstrict’ version of the multiple polylogarithm:

Li?k (t) =
∑

m1≥···≥mr≥1

tm1

mk1
1 · · ·mr

kr
.

Aoki and Ohno [1] computed the generating function

Φ0 :=
∑
k,s≥1

( ∑
k∈I0(k,s)

Li?k (t)
)
xk−2sz2s−2,

and, in view of Li?k (1) = ζ?(k) (if k1 > 1), evaluated it at t = 1 to obtain the identity
(1.1). For our purpose, the function Li?k (t) is useful because the truncated sum∑

p>m1≥···≥mr≥1

1

mk1
1 · · ·m

kr
r

used to define ζ?
A

(k) is the sum of the coefficients of ti in Li?k (t) for i = 1, . . . , p − 1.
In [1, Section 3], Aoki and Ohno showed that

Φ0 =

∞∑
n=1

antn,

where

an =

n∑
l=1

( An,l(z)
x + z − l

+
An,l(−z)
x − z − l

)
and

An,l(z) = (−1)l
(
n − 1
l − 1

)
(z − l + 1) · · · (z − 1)z(z + 1) · · · (z + n − l − 1)

(2z − l + 1) · · · (2z − 1)2z(2z + 1) · · · (2z + n − l)
.

The problem is then to compute the coefficient of xk−2sz2s−2 in
∑p−1

n=1 an modulo p.
We proceed as follows:

p−1∑
n=1

an =

p−1∑
n=1

n∑
l=1

( An,l(z)
x + z − l

+
An,l(−z)
x − z − l

)

=

p−1∑
l=1

p−1∑
n=l

( An,l(z)
x + z − l

+
An,l(−z)
x − z − l

)

=

p−1∑
l=1

p−l−1∑
n=0

( An+l,l(z)
x + z − l

+
An+l,l(−z)
x − z − l

)
.

Writing An+l,l(z) as

An+l,l(z) =
(−1)l

2z
(z − l + 1)l−1

(2z − l + 1)l−1

(l)n(z)n

(2z + 1)nn!
,
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where (a)n = a(a + 1) · · · (a + n − 1), we have

p−l−1∑
n=0

An+l,l(z) =
(−1)l

2z
(z − l + 1)l−1

(2z − l + 1)l−1

p−l−1∑
n=0

(l)n(z)n

(2z + 1)nn!
.

We view the sum on the right as

p−l−1∑
n=0

(l)n(z)n

(2z + 1)nn!
≡ F(−p + l, z; 2z + 1; 1) −

(l)p−l(z)p−l

(2z + 1)p−l(p − l)!
(mod p).

Here, F(a, b; c; z) is the Gauss hypergeometric series

F(a, b; c; z) =

∞∑
n=0

(a)n(b)n

(c)nn!
zn,

where (a)n for n ≥ 1 is as before and (a)0 = 1. Note that if a (or b) is a nonpositive
integer −m, then F(a,b; c; z) is a polynomial in z of degree at most m, and the renowned
formula of Gauss,

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

,

becomes

F(−m, b; c; 1) =
(c − b)m

(c)m
.

Hence

F(−p + l, z; 2z + 1; 1) =
(z + 1)p−l

(2z + 1)p−l
≡

zp−1 − 1
(2z)p−1 − 1

(2z − l + 1)l−1

(z − l + 1)l−1
(mod p).

We also compute

(l)p−l(z)p−l

(2z + 1)p−l(p − l)!
≡ (−1)l−1 z(zp−1 − 1)

(2z)p−1 − 1
(2z − l + 1)l−1

(z − l)l
(mod p).

Since we only need the coefficient of z2s−2, we may work modulo higher powers of z
and, in particular, we may replace (zp−1 − 1)/((2z)p−1 − 1) by 1, assuming p is large
enough. (We may assume this because an identity inA holds true if the p-components
on both sides agree in Z/pZ for all large enough p.) Hence,

p−1∑
n=1

an ≡

p−1∑
l=1

{ (−1)l

2z

( 1
x + z − l

−
1

x − z − l

)
+

1
2

( 1
(x + z − l)(z − l)

−
1

(x − z − l)(z + l)

)}
(mod p).
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By the binomial expansion,
p−1∑
l=1

(−1)l

x + z − l
=

p−1∑
l=1

(−1)l−1

l

∞∑
m=0

( x + z
l

)m

=

p−1∑
l=1

(−1)l−1

l

∞∑
m=0

1
lm

m∑
i=0

(
m
i

)
xm−izi

=
∑

m≥i≥0

(
m
i

)( p−1∑
l=1

(−1)l−1

lm+1

)
xm−izi.

From this we obtain
p−1∑
l=1

(−1)l

2z

( 1
x + z − l

−
1

x − z − l

)
=

∑
m≥2i+1≥0

(
m

2i + 1

)( p−1∑
l=1

(−1)l−1

lm+1

)
xm−2i−1z2i

and, by letting i→ s − 1 and m→ k − 1, the coefficient of xk−2sz2s−2 in this is(
k − 1
2s − 1

) p−1∑
l=1

(−1)l−1

lk
.

This is known to be congruent modulo p to

2
(

k − 1
2s − 1

)
(1 − 21−k)

Bp−k

k

(see, for example, [11, Theorem 8.2.7]). Concerning the other term,
p−1∑
l=1

1
2

( 1
(x + z − l)(z − l)

−
1

(x − z − l)(z + l)

)

=
1
2

p−1∑
l=1

{1
x

( 1
z − l

−
1

x + z − l

)
−

1
x

( 1
z + l

+
1

x − z − l

)}
,

every quantity that appears as a coefficient in the expansion into power series in x and
z is a multiple of a sum of the form

∑p−1
l=1 1/lm, and all are congruent to 0 modulo p.

This concludes the proof of (1.2).
We may prove (1.3) in a similar manner by using the generating series of Ohno and

Zagier [7], but we deduce (1.3) from (1.2) by showing that the left-hand sides of both
formulas are equal up to sign.

Set S k,s :=
∑

k∈I0(k,s)(−1)dep(k)ζA(k) and S ?
k,s :=

∑
k∈I0(k,s) ζ

?
A

(k).

Lemma 2.1. S ?
k,s = (−1)k−1S k,s.

Proof. We use the well-known identity (see, for instance, [8, Corollary 3.16])
r∑

i=0

(−1)iζA(ki, . . . , k1)ζ?A(ki+1, . . . , kr) = 0.
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Taking the sum of this over all k ∈ I0(k, s) and separating the terms corresponding to
i = 0 and i = r, we obtain

S ?
k,s +

∑
k′+k′′=k

s′+s′′=s

( ∑
k′∈I0(k′,s′)

(−1)dep(k′)ζA(
←−
k′)

)( ∑
k′′∈I(k′′,s′′)

ζ?A(k′′)
)

+ (−1)kS k,s = 0.

Here,
←−
k′ denotes the reversal of k′, and the set I(k′′, s′′) consists of all indices

(no restriction on the first component) of weight k′′ and height s′′. We have used
ζA(
←−
k ) = (−1)kζA(k) in computing the last term (i = r). Since the second sum in the

middle is symmetric and hence 0 (by Hoffman [2, Theorem 4.4] and ζA(k) = 0 for all
k ≥ 1), the lemma follows. �

Since Z(k) = 0 if k is even, we see from Lemma 2.1 that the formula for S k,s is the
same as that for S ?

k,s. This concludes the proof of our theorem.

Remark 2.2. Yaeo [9] proved the lemma in the case s = 1 and T. Murakami
(unpublished) in general for all odd k.
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