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Abstract

Catino and Rizzo [‘Regular subgroups of the affine group and radical circle algebras’, Bull. Aust. Math.
Soc. 79 (2009), 103–107] established a link between regular subgroups of the affine group and the radical
brace over a field on the underlying vector space. We propose new constructions of radical braces that
allow us to obtain systematic constructions of regular subgroups of the affine group. In particular, this
approach allows to put in a more general context the regular subgroups constructed in Tamburini Bellani
[‘Some remarks on regular subgroups of the affine group’ Int. J. Group Theory, 1 (2012), 17–23].
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1. Introduction

Let V be a vector space over a field F. Clearly, the group T (V) of all translations
of V and any of its conjugate subgroups by an element of GL(V) are abelian regular
subgroups of the affine group AGL(V). Caranti, Dalla Volta and Sala [3] obtained
a simple description of the abelian regular subgroups of the affine group AGL(V) in
terms of commutative associative radical algebras with the underlying vector space V .
As an application, they provide an example of an abelian regular subgroup of the affine
group over an infinite vector space that trivially intersects the group of translations. It
is well known that such an example cannot be given when the vector space is allowed
to be finite-dimensional. To answer a question which appeared in [10], Hegedűs
[8] constructed regular subgroups of some affine groups over a finite vector space
containing only the trivial translation. Of course, his construction leads to nonabelian
examples. Other examples can be found, for instance, in [7, 17]. A description of
the regular subgroups, not necessarily abelian, of the affine group is obtained by the
first author and Rizzo [4] in terms of radical circle algebras, a generalization of radical
algebras. A vector space V over a field F with a multiplication · is called a (right)
circle algebra if, for all α ∈ F and for all u, v,w ∈ V , the following statements hold:
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Salento. The first author is a member of GNSAGA (INdAM).
c© 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 $16.00

76

https://doi.org/10.1017/S000497271400077X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271400077X


[2] On regular subgroups of the affine group 77

(1) α(u · v) = (αu) · v;
(2) (u + v) · w = u · w + v · w;
(3) u · (v + w + v · w) = u · v + u · w + (u · v) · w.

It is clear that any associative algebra is a circle algebra and that any commutative
circle algebra is an associative algebra. These new structures are very closely related to
(right) braces, introduced by Rump [14] to find nondegenerate involutive set-theoretic
solutions of the Yang–Baxter equation. So, using Rump’s terminology [16], (right)
circle algebras hereafter are called (right) braces over F or F-braces. As in an
ordinary algebra, let us introduce the circle operation in an F-brace V defined by
u ◦ v := u + v + u · v, for all u, v ∈ V . Then (V, ◦) is a semigroup. In particular, if (V, ◦)
is a group, then we say that the F-brace V is radical. The main result of [4] establishes
the following link between regular subgroups of the affine group AGL(V) and F-brace
structures with the underlying vector space V .

Theorem 1.1 [4]. Let V be a vector space over a field F. Denote by RB the class of
radical F-braces with the underlying vector space V and by T the set of all regular
subgroups of the affine group AGL(V).

(1) Let V• be a radical F-brace with underlying vector space V. Then T (V•) =

{τx|x ∈ V}, where τx : V → V, y 7→ y ◦ x is a regular subgroup of the affine group
AGL(V).

(2) The map
f : RB −→ T , V• 7−→ T (V•)

is a bijection. In this correspondence, isomorphism classes of F-braces
correspond to conjugacy classes under the action of GL(V) of regular subgroups
of AGL(V).

We note that a generalization of the above result to the holomorph of an abelian
group has recently been obtained in [12].

The open problem of determining all regular subgroups of an affine group,
formulated in [11], may be replaced by that of determining all radical F-braces.
The new constructions of radical F-braces presented in this paper allow us to obtain
systematic constructions of regular subgroups of the affine group. In particular, this
approach allows to put in a more general context the regular subgroups constructed
in [17].

2. Some preliminary results
Let F be a field and n a positive integer. We use the embedding of AGL(n, F) into

GL(n + 1, F) as a parabolic subgroup corresponding to the partition of n + 1 as (1, n).
Thus, AGL(n, F) acts on the right on the set of affine vectors Ω := {(1, v) | v ∈ Fn}.
Then, if T is a regular subgroup of AGL(n, F), there exists a unique element γv of T
such that the embedding in GL(n + 1, F) has (1, v) as first row, for every v ∈ Fn. Thus,

T =

{(
1 v
0 γv

) ∣∣∣∣∣ v ∈ Fn
}
. (2.1)
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By Theorem 1.1, we note that there is a unique F-brace V• such that T = T (V•).
Moreover, the multiplication on the F-space V is,

∀x, y ∈ V, x · y = x(γv) − x.

Conversely, if V• is an F-brace and γv : V → V, x 7→ x · v + x, then the regular
subgroup T (V•) has the description given for T in (2.1).

These remarks allow a different and more precise version of [17, Corollary 5.3].
Indeed, by the classification of nilpotent associative algebras of dimension 3 over an
arbitrary field [6], we have the following proposition:

Proposition 2.1. Every abelian regular subgroup of AGL(3, F) is conjugate either to
the group of translations or to exactly one of the following subgroups:


1 x1 x2 x3
0 1 x1 0
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣∣∣∣ x1, x2, x3 ∈ F

 ,

1 x1 x2 x3
0 1 x1 x2
0 0 1 x1
0 0 0 1


∣∣∣∣∣∣∣∣∣∣∣ x1, x2, x3 ∈ F

 ,

1 x1 x2 x3
0 1 0 αx1
0 0 1 x2
0 0 0 1


∣∣∣∣∣∣∣∣∣∣∣ x1, x2, x3 ∈ F, α ∈ R

 .
where R ⊆ Ḟ is a transversal of Ḟ/Ḟ2.

Clearly, we may construct nonabelian regular subgroups of AGL(3,F), for any field
F. For example, choosing as an F-brace the (noncommutative) nilpotent algebra A3,5
of [6], we have the subgroup


1 x1 x2 x3
0 1 0 x2
0 0 1 −x1
0 0 0 1


∣∣∣∣∣∣∣∣∣∣∣ x1, x2, x3 ∈ F

 .
Observe that [4, Corollary 2] gives a description of the intersection with the group of

translations of a regular subgroup obtained from an F-brace by means of considering
left annihilators. We state this as our next result:

Proposition 2.2. Let V• be a radical F-brace with the underlying vector space V over
a field F. Let T (V•) = {τx|x ∈ V}, where τx : V → V, y 7→ y ◦ x, and let T (V) be the
group of translations. Then

T (V) ∩ T (V•) = {τx|x ∈ AnnL(V•)}
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where AnnL(V•) is the set of the left annihilators of the radical F-brace V•, that
is, AnnL(V•) := {x | x ∈ V, for all v ∈ V x · v = 0}. In particular, if V• is a radical
associative algebra of finite dimension, then T (V) ∩ T (V•) , 1.

Similarly to the situation in an ordinary algebra, we define the set of right annihilators
of an F-brace V as follows:

AnnR(V) := {x | x ∈ V, ∀v ∈ V, ∀λ ∈ F, v · (λx) = 0}.

The set Ann(V) := AnnL(V) ∩ AnnR(V) will be called the annihilator of the F-brace
V . Of course, this is an ideal of V .

Definition 2.3. Let V be a brace over a field F. Then a subspace I of V is said to be an
ideal of V if, for all a, b ∈ V and x ∈ I, the following properties hold:

(1) x · a ∈ I;
(2) a · (x + b) − a · b ∈ I.

Given a radical brace V over a field F, a subspace I of V is an ideal if and only if
x · a ∈ I and a · x ∈ I, for all a ∈ V and x ∈ I (see [14]).

Proposition 2.4. Let V be a brace over a field F such that (V, ◦) is a monoid. Then
Ann(V) is an ideal of V.

Proof. Note that 0 ∈ Ann(V) since (V, ◦) is a monoid. Let c, d ∈ Ann(V). Then

x · (λ(c + d)) = x · (λc + λd) = x · (λc + λd + (λc) · (λd))
= x · (λc) + x · (λd) + (x · (λc)) · (λd) = 0,

(c + d) · x = c · x + d · x = 0,
x · (λ(−c)) = x · (λ((−1)c)) = x · ((−λ)c) = 0,

for all x ∈ V and λ ∈ F. Now let c ∈ Ann(V) and µ ∈ F. Then

(µc) · x = µ (c · x) = 0

and
x · (λ (µc)) = x · ((λµ) c) = 0,

for all x ∈ V, λ ∈ F, that is, µc ∈ Ann(V). Therefore Ann(V) is a subspace of V .
Moreover, let a, b ∈ V and c ∈ Ann(V). Then

x · (λ(c · a)) = 0,
(c · a) · x = 0,

x · (λ(a · (c + b) − a · b)) = x · (λ(a · (c + b + c · b) − a · b))
= x · (λ(a · c + a · b + (a · c) · b − a · b))
= x · (λ(a · c + (a · c) · b)) = x · (λ0) = 0,

(a · (c + b) − a · b) · x = (a · (c + b + c · b) − a · b) · x
= (a · c + a · b + (a · c) · b − a · b) · x
= (a · c + (a · c) · b) · x = 0 · x = 0,

for all x ∈ V and λ ∈ F. �
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3. Hochschild product

In this section we exhibit a description of all finite-dimensional radical (right)
F-braces with nontrivial annihilator. In this way, we obtain examples of regular
subgroups of the affine group with nontrivial intersection with the translation group.
For this purpose, we introduce some cohomological tools in analogy with the method
employed by de Graaf in [6] for the classification of nilpotent associative algebras
of dimensions 2 and 3 over any field. We translate the concepts of 2-cocycles,
coboundaries and the Hochschild product from the context of associative algebras
into that of F-braces (see [2, 13]).

Definition 3.1. Let A be an F-brace and V a vector space over a field F. A map
θ : A × A→ V with the properties:

(1) (λa + µb, c)θ = λ((a, c)θ) + µ((b, c)θ),
(2) (a, b + c + b · c)θ = (a, b)θ + (a, c)θ + (a · b, c)θ,

for all a, b, c ∈ A and λ, µ ∈ F, is called a 2-cocycle of A with values in V .

Thus 2-cocycles of F-algebras (see [13]) are particular cases of 2-cocycles of
F-braces. But an F-algebra, viewed as F-brace, may have more 2-cocycles, in the
sense of Definition 3.1.

Example 3.2. Let N be the zero algebra of dimension n over a field F and τ an
endomorphism of the additive group of F. Then the map

θ : N × N −→ F,

 n∑
i=1

xiei,

n∑
i=1

yiei

 7−→  n∑
i=1

xi

  n∑
i=1

yi

 τ
is a 2-cocycle of the F-brace N but, in general, not of the F-algebra N. In particular, θ
is a 2-cocycle of the n-dimensional zero algebra if and only if τ is linear.

Definition 3.3. Let A be an F-brace, V an F-vector space and θ : A ⊕ A→ V a 2-
cocycle. Put Aθ := A ⊕ V . For all a, b ∈ A and v,w ∈ V we define

(a + v) · (b + w) := a · b + (a, b)θ.

The F-brace Aθ is called a Hochschild product of A by V , a terminology which refers
to a special case considered by Hochschild [9, proof of Theorem 6.2] (see [2]).

Obviously, different 2-cocycles can lead to Hochschild products that are isomorphic to
each other.

We observe that the passage from A to Aθ preserves the property of being radical.

Proposition 3.4. Let A be a radical F-brace and θ a 2-cocycle of A with values in an
F-vector space V. Then Aθ is radical.
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Proof. Let x ∈ Aθ and a ∈ A, v ∈ V such that x = a + v. Let a− be the inverse of a with
respect to the adjoint operation. Then

y := a− + (−v − θ(a, a−))

is the inverse of x with respect to the adjoint operation in Aθ. �

The following elementary assertion will be useful for the proof of Theorem 3.6.

Lemma 3.5. Let A be an F-brace such that (A, ◦) is a monoid. Then

x · (y + c) = x · y

for all x, y ∈ V and c ∈ Ann(V).

Proof. Let x, y ∈ V and c ∈ Ann(V). Then

x · (y + c) = x · (y + c + y · c) = x · y + x · c + (x · y) · c = x · y. �

Theorem 3.6. Let B be a radical F-brace such that Ann(B) , {0}. Then there exist
an F-brace A, an F-vector space V and a 2-cocycle θ : A × A→ V such that B is
isomorphic to Aθ.

Proof. Let V := Ann(B), A := B/Ann(B) and π : B→ A be the projection map. Choose
a linear map σ : A→ B such that (xσ)π = x, for all x ∈ A. Clearly, σ is injective.
Moreover, we have

(xσ · yσ − (x · y)σ)π = x · y − x · y = 0,

for all x, y ∈ A, that is, xσ · yσ − (x · y)σ ∈ V . Thus we obtain a function θ from A × A
into V by defining

(x, y)θ := xσ · yσ − (x · y)σ.

We prove that θ is a 2-cocycle. It is easy to check that θ is linear in the first variable.
Now let x, y, z ∈ A. Since (y, z)θ ∈ V , by Lemma 3.5, we have

xσ · (yσ + zσ + (y · z)σ) = xσ · (yσ + zσ + (y · z)σ + yσ · zσ − yσ · zσ)

= xσ · (yσ + zσ + yσ · zσ − (yσ · zσ − (y · z)σ))

= xσ · (yσ + zσ + yσ · zσ − (y, z)θ)

= xσ · (yσ + zσ + yσ · zσ)

= xσ · yσ + xσ · zσ + (xσ · yσ) · zσ.

Since (x, y)θ ∈ V , we also obtain

(xσ · yσ) · zσ = −(x, y)θ · zσ + (xσ · yσ) · zσ

= −(xσ · yσ − (x · y)σ) · zσ + (xσ · yσ) · zσ

= (x · y)σ · zσ + (xσ · yσ) · zσ − (xσ · yσ) · zσ

= (x · y)σ · zσ.
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Making use of these two equalities, we obtain
(x, y + z + y · z)θ

= xσ · (y + z + y · z)σ − (x · (y + z + y · z))σ
= xσ · (yσ + zσ + (y · z)σ) − ((x · y)σ + (x · z)σ + ((x · y) · z)σ)
= xσ · yσ + xσ · zσ + (xσ · yσ) · zσ − (x · y)σ − (x · z)σ − ((x · y) · z)σ
= xσ · yσ + xσ · zσ + (x · y)σ · zσ − (x · y)σ − (x · z)σ − ((x · y) · z)σ
= (x, y)θ + (x, z)θ + (x · y, z)θ.

Furthermore, B is isomorphic to Aθ, because
φ : B −→ Aθ, x 7−→ (x + Ann(B), x − (x + Ann(B))σ)

is an isomorphism of F-braces. Obviously θ is bijective and linear.
Let x1, x2 ∈ B and y1 := x1 + Ann(B), y2 := x2 + Ann(B), z1 := x1 − y1σ and z2 :=

x2 − y2σ. Then
(x1φ) · (x2φ) = (y1 + z1) · (y2 + z2) = y1 · y2 + (y1, y2) θ.

This equality and Lemma 3.5 imply that
(x1φ) · (x2φ) = y1 · y2 + (y1, y2)θ

= ((y1 · y2)σ + (y1, y2)θ)φ
= (y1σ · y2σ)φ
= (y1σ · y2σ + z1 · y2σ)φ
= ((y1σ + z1) · y2σ)φ
= ((y1σ + z1) · (y2σ + z2))φ
= (x1 · x2)φ.

This concludes the proof. �

The following result shows that the maps in (3.2) are the unique 2-cocycles of a
one-dimensional zero algebra. Hence, by Theorem 3.6, we obtain all two-dimensional
F-braces with nontrivial annihilator.

Proposition 3.7. Let N be the zero algebra of dimension one over a field F with a basis
(e1) and let θ be a 2-cocycle on N. Then there exists τ ∈ Aut(F+) such that

∀x1, y1 ∈ F, (x1e1, y1e1)θ = x1(y1τ).
Proof. Let

τ : F −→ F, x 7−→ (e1, xe1)θ.
It follows that

(x + y)τ = (e1, (x + y)e1)θ = (e1, xe1 + ye1)θ
= (e1, xe1 + ye1 + (xe1) · (ye1))θ
= (e1, xe1)θ + (e1, ye1)θ + (e1 · xe1, ye1)θ
= (e1, xe1)θ + (e1, ye1)θ + (0, ye1)θ
= (e1, xe1)θ + (e1, ye1)θ = xτ + yτ,
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for all x, y ∈ F, and so τ ∈ Aut(F+). Finally,

(x1e1, y1e1)θ = x1((e1, y1e1)θ) = x1(y1τ),

for all x1, y1 ∈ F. �

Clearly, the previous proposition can also be extended to the zero algebra of
dimension n ≥ 2.

Unfortunately, Theorem 3.6 is not exhaustive because there are examples of F-
braces with trivial annihilator, as shown by the following construction. Let F := R be
the field of real numbers and let ε be a homomorphism from the additive group of R to
its multiplicative group. We define on V the operation

(x1e1 + x2e2) · (y1e1 + y2e2) := x1(y2ε − 1)e1

for all x1, x2, y1, y2 ∈ F. Then V is a radical F-brace. We note that the homomorphism
ε is either the null function or

ε : R −→ R, y 7−→ e(y f ),

where f is an additive endomorphism of R (see [1]). It is easy to check that if ε is not
null, then Ann(V) is trivial.

4. Semidirect products of F-braces

The aim of this section is to exhibit other examples of F-braces by means of a
construction that is a generalization of the semidirect product of braces introduced in
[15]. (See also the version in [5].)

Let A and V be radical F-braces of dimension m and n, respectively. Let α : A◦ →
GL(V) ∩ Aut(V◦) be a group homomorphism. For all v ∈ V , b ∈ A, we set vb := v(bα).
On the vector space A ⊕ V , define the product

(a, v) · (b,w) := (a · b, vb + vb · w − v),

for all a,b ∈ A and v,w ∈ V , giving a radical F-brace. The properties for a radical brace
follow from [5]. Moreover,

λ((a, v) · (b,w)) = λ(a · b, vb + vb · w − v) = (λ(a · b), λ(vb + vb · w − v))

= ((λa) · b, λ(vb) + λ(vb · w) − λv)

= ((λa) · b, λ(vb) + (λvb) · w − λv)

= ((λa) · b, (λv)b + (λv)b · w − λv)
= (λa, λv) · (b,w) = (λ(a, v)) · (b,w),

for all λ ∈ F, a, b ∈ A and v,w ∈ V . We call this radical F-brace a semidirect product
of the F-braces A and V and denote it by A nα V .

Among others, the examples in [17, after (1.2)] may be obtained by means of our
construction of semidirect products of F-braces. Thus, let F be a field and N1, Nn the
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zero algebras on F of dimension 1 and n, respectively. Let i, j ∈ {1, 2, . . . , n}, i , j, and
αx : Nn → Nn such that

∀v ∈ Nn, vαx = v(In + xEi j).

Clearly, αx ∈ GL(Nn) ∩ Aut(N◦n ), for all x ∈ N1. Let

α : N◦1 → GL(Nn) ∩ Aut(N◦n ), x 7→ αx.

We have that

v((x ◦ y)α) = vαx◦y = vαx+y = v(In + (x + y)Ei j)
= v(In + xEi j + yEi j) = (v(In + xEi j))αy

= (vαx)αy = v(xα)(yα),

that is, α is a homomorphism of right braces. Consequently, V := N1 nα Nn is a radical
F-brace of dimension n + 1 on F. Note that

(y,w)γ(x,v) = (y,w) · (x, v) + (y,w) = (y · x,wx · v + wx − w) + (y,w)
= (y · x + y,wx · v + wx) = (y,wx) = (y,w(In + xEhk)).

Therefore the regular subgroup of AGLn+1(V) associated to the radical F-brace N1 nα
Nn is 

 1 x v
0 1 0n

0t
n 0t

n In + xEi j


∣∣∣∣∣∣∣∣ x ∈ F, v ∈ Nn

 .
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