A CHARACTERISATION RESULT FOR MATRIX RINGS

P.R. FUCHS

For a ring R with identity we show that the existence of certain nilpotent elements forces R to be a matrix ring of size ≥ 2 .

In structure theory it is often useful to know whether a given ring R with identity is isomorphic to a matrix ring over some ring S with a more tractable structure. For instance, it is nice to have that S is an integral domain.

A ring R is isomorphic to a matrix ring of size n if and only if there exists a set of matrix units $\{e_{ij} \mid 1 \leq i, j \leq n\} \subseteq R$, that is, $\sum_{i=1}^{n} e_{ii} = 1$ and $e_{ij}e_{kl} = \delta_{jk}e_{il}$ where δ_{jk} is the Kronecker delta. In this case $R \cong M_n(S)$, where $S \cong e_{ii}Re_{ii}$ for all $1 \leq i \leq n$. For this and other well-known facts concerning matrix rings see [2]. In this note we prove the following criterion for R to be a matrix ring. Ann (s) shall denote the left annihilator of an element $s \in R$.

THEOREM 1. For a ring R with identity 1 the following are equivalent:

- (1) $R \cong M_n(S)$ for some ring S and some positive integer $n \ge 2$.
- (2) For some positive integer $n \ge 2$, there exist elements $x, y \in R$ such that $x^{n-1} \ne 0, x^n = y^2 = 0, x + y$ is invertible and Ann $(x^{n-1}) \cap Ry = (0)$.

Moreover if (2) holds and r is the inverse of x + y, then $\{e_{ij} \mid 1 \leq i, j \leq n\}$, where $e_{ij} = r^{n-i}(ry)x^{n-j}$, is a set of matrix units for R. Thus, if e denotes the idempotent $ry = e_{nn}$, then $R \cong M_n(S)$, where $S \cong eRe$.

Condition 2 in Theorem 1 can often be easily verified or rejected. Also, once the inverse r of x + y is known, the matrix units for R are given explicitly. For the proof of Theorem 1 we need two propositions in which we keep the notation of Theorem 1 and assume that condition 2 holds.

PROPOSITION 2. $yr^k y = 0$ for all $2 \leq k \leq n$.

PROOF: Since rx + ry = 1, y = yrx + yry, hence $yrx \in Rx \cap Ry$. But $Rx \subseteq$ Ann (x^{n-1}) , so $Rx \cap Ry = (0)$, that is yrx = 0. Since $x^{n-1} = ryx^{n-1}$, $yr^2yx^{n-1} =$ $yrx^{n-1} = 0$; thus $yr^2y \in$ Ann $(x^{n-1}) \cap Ry = (0)$. Consequently $yr = yr^2x + yr^2y =$

Received 20 April 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

 yr^2x , and hence $yr^2x^2 = yrx = 0$. Now let $2 < k \le n$ and suppose we have shown that $yr^iy = 0$, $yr^ix^j = 0$ for all $2 \le i < k$ and $i \le j$. Then $yr^kyx^{n-1} = yr^{k-1}x^{n-1} = 0$; hence $yr^ky = 0$. Thus $yr^{k-1} = yr^kx + yr^ky = yr^kx$. By our induction hypothesis $yr^{k-1}x^j = 0$ for all $j \ge k-1$; hence $yr^kx^j = 0$ for all $j \ge k$. Our claim now follows.

PROPOSITION 3. $ryx^i r^j ry = \delta_{ij} ry$ for all $0 \le i, j \le n-1$.

PROOF: Let $0 \le i \le n-1$. We show that $ryx^i r^i ry = ry$. In Proposition 2 we have seen that yrx = 0; hence y = yry, that is, ry is idempotent. So our claim is true for i = 0. Since xr + yr = 1, we have $x^{i-1}r^{i-1} = x^ir^i + x^{i-1}yrr^{i-1}$ for $1 \le i \le n-1$, and hence $x^{i-1}r^{i-1}ry = x^ir^iry + x^{i-1}yr^{i+1}y$. Since $i+1 \le n$, $yr^{i+1}y = 0$ by Proposition 2, thus $x^{i-1}r^{i-1}ry = x^ir^iry$. Consequently $x^ir^iry = ry$ for all $0 \le i \le n-1$.

Now let $i \neq j$. If i > j, then $x^{irj}ry = x^{i-j}x^{j}r^{j}ry = x^{i-j}ry$. But since x = xrx + xry, $xry \in Rx \cap Ry = (0)$. Finally suppose that i < j. If i = 0, then $ryx^{i}r^{j}ry = ryr^{j+1}y = 0$, since $j + 1 \leq n$.

Now let i > 0 and $0 < k \leq i$. Then $x^{i-k}r^{j-i}ry = x^{i-k+1}r^{i-k+1}r^{j-i}ry + x^{i-k}yrr^{i-k}r^{j-i}ry$. But since k > 0 and $j \leq n-1$, $j-k+2 \leq n$; hence $yr^{j-k+2}y = 0$ and therefore $x^{i-k}r^{i-k}r^{j-i}ry = x^{i-k+1}r^{i-k+1}r^{j-i}ry$. It now follows that $x^{i}r^{j}ry = x^{i}r^{i}r^{j-i}ry = r^{j-i}ry$, and thus $ryx^{i}r^{j}ry = ryr^{j-i+1}y = 0$.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1: 2 \Rightarrow 1. For $1 \leq i, j \leq n$ let $e_{ij} = r^{n-i}(ry)x^{n-j}$. It is then immediate from Proposition 3 that $e_{ij}e_{kl} = \delta_{jk}e_{il}$. It remains to show that $\sum_{i=1}^{n} e_{ii} = 1$. Since rx + ry = 1, $r^{n-i}x^{n-i} = r^{n-i+1}x^{n-i+1} + r^{n-i}(ry)x^{n-i}$ for all $1 \leq i \leq n-1$. But $r^nx^n = 0$, thus $\sum_{i=1}^{n-1} r^{n-i}(ry)x^{n-i} = \sum_{i=1}^{n-1} e_{ii} = rx$. Since $ry = e_{nn}$, $\sum_{i=1}^{n} e_{ii} = 1$.

 $1 \Rightarrow 2$. Let $\{e_{ij} \mid 1 \leq i, j \leq n\}$ be a set of matrix units for R. If $x := e_{12} + \ldots + e_{n-1n}, y := e_{n1}$, then $x^{n-1} \neq 0, x^n = y^2 = 0$ and x + y is invertible with inverse $r = e_{1n} + e_{21} + \ldots + e_{nn-1}$. Moreover one checks that $\operatorname{Ann}(x^{n-1}) = Rx$ and that $Rx \cap Ry = (0)$.

The following special case of Theorem 1 has also been stated in [1] (Theorem III.2). COROLLARY 4. For a ring R with identity the following are equivalent:

- (1) R is a ring of 2×2 matrices over some ring S.
- (2) There exist elements $x, y \in R$ such that $x^2 = y^2 = 0$ and x + y is invertible.

Corollary 4 follows immediately from Theorem 1 for if $0 \neq sy \in Ann(x) \cap Ry$, then $sy \in Ann(x + y)$ which is a contradiction to the fact that x + y is invertible. [3]

Matrix rings

In a forthcoming paper we give some applications of Theorem 1 in structure theory. For instance, if R is a prime Goldie ring we show how elements x, y satisfying condition 2 can be constructed in the quotient ring of R. In this manner we obtain another proof for the fact that the quotient ring of R is isomorphic to a matrix ring over a division ring.

References

- [1] P.R. Fuchs, C.J. Maxson and G. Pilz, 'On rings for which homogeneous maps are linear', *Proc. Amer. Math. Soc* (to appear).
- [2] L. Rowen, Ring theory, Vol. 1 (Academic Press, 1988).

Institut für Mathematik Johannes Kepler Universität A-4040 Linz Austria