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A CHARACTERISATION RESULT FOR MATRIX RINGS

P.R. FUCHS

For a ring R with identity we show that the existence of certain nilpotent elements
forces R to be a matrix ring of size > 2.

In structure theory it is often useful to know whether a given ring R with identity
is isomorphic to a matrix ring over some ring S with a more tractable structure. For
instance, it is nice to have that 5 is an integral domain.

A ring R is isomorphic to a matrix ring of size n if and only if there exists a set of
n

matrix units {e<j | 1 < i, j ' ^ n} C R, that is, 5Z e« = 1 and ejj-etj = Sjkeu where Sjk
i=i

is the Kronecker delta. In this case R = Mn(S), where 5 = euReu for all 1 < t < n.
For this and other well-known facts concerning matrix rings see [2]. In this note we

prove the following criterion for R to be a matrix ring. Ann (s) shall denote the left

annihilator of an element a £ R.

THEOREM 1 . For a ring R with identity 1 t i e following are equivalent:

(1) R = Mn(S) for some ring S and some positive integer n ^ 2.
(2) For some positive integer n ^ 2, there exist elements x, y G R such that

i " " 1 ^ 0, xn = y2 = 0, x + y is invertible and Ann (z""1) l~l Ry = (0).

Moreover if (2) holds and r is the inverse of x + y, then {eij \ 1 < i, j < n} , where
eij = rn~l(ry)xn~'', is a set of matrix units for R. Thus, if e denotes the idempotent

ry = enn, then R £ Mn(S), where S ^ eRe.

Condition 2 in Theorem 1 can often be easily verified or rejected. Also, once the
inverse r of x + y is known, the matrix units for R are given explicitly. For the proof
of Theorem 1 we need two propositions in which we keep the notation of Theorem 1
and assume that condition 2 holds.

PROPOSITION 2 . yrky = o for all 2 < Jfe < n .

PROOF: Since rx + ry = 1, y = yrx + yry, hence yrx 6 Rx D Ry. But Rx C
Ann (a:**"1), so Rx l~l Ry = (0), that is yrx = 0. Since x""1 = ryz""1, yr2yxn - 1 =
yrx"'1 = 0; thus yr2y € Ann (i""1) D Ry = (0). Consequently yr = yr2x + yr2y =
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yr2x, and hence yr2x2 = yrx = 0. Now let 2 < k ^ n and suppose we have shown that
yrx'y = 0, yrixj = 0 f o r a l l 2 ^ i < J b and i < j . Then yrkyxn~* = yrk~1xn~'1 = 0;
hence yrky = 0. Thus j / r*" 1 = yrkx + yrky = yrkx. By our induction hypothesis
j / r * " 1 * ' = 0 for all j' ^ k — 1; hence yr*a;J = 0 for all j > Jfe. Our claim now
follows. D

PROPOSITION 3 . ryxx'rjry — £;,ry for all 0 < i, j < n - 1.

PROOF: Let 0 ^ i ^ n — 1. We show that ryxxrxry = ry. In Proposition 2 we have
seen that yrx = 0; hence y = yry, that is, ry is idempotent. So our claim is true for
i — 0. Since xr + yr = 1, we have xx~1rx~1 = x*r* + x*~1yrr*~1 for 1 < i < n — 1, and
hence xt~1rt~1ry = xxrxry + xl~1yrt+1y. Since i + 1 < n , yr*+1y = 0 by Proposition
2, thus x ' " 1 ^ " 1 ^ = x W y . Consequently xxrxry —ry for all 0 < i < n — 1.

Now let * ^ j . If i > j , then xxr'ry = xl~ix'r>ry — xx~'ry. But since x =

xrx + xry, xry G Rx C\ Ry = (0). Finally suppose that i < j . If i = 0, then
ryxxr>ry = ryri+1y = 0, since j + 1 < n.

Now let i > 0 and 0 < Jfe < i. Then xx'-kri-kri-iry = xi-k+1ri-k+1r>-iry +
xx~kyrri~kri~iry. But since k > 0 and j < n - l , j - j f c + 2 < n ; hence yW~*+2y = 0
and therefore xi~krx'-krj~iry = a;*-*+1r<~*+1W~Vy. It now follows that xx'rjry =
xxrxr*~xry = r'~xry, and thus ryxxr'ry = ryr'~x+1y = 0. U

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1: 2 => 1. For 1 < i, j < n let eij = rn~x(ry)xn~'. It
is then immediate from Proposition 3 that e^e^i = Sjkeu. It remains to show that

X) eu = 1. Since rx + ry = 1, rn-*'xn-i = P»-<+ix«-<+i + r
n-I(T-y)xn-i for all

»=1 n - l n - 1
1 < t ^ n - 1. But r n x n = 0, thus £ i^-^rj/Jz7*-* = Y, e«» = 7"a;- Since ry = en n ,

n t= l »=1

i = l

1 =>• 2. Let {eij | 1 ^ i, ; ^ n} be a set of matrix units for R. If x :=
ei2 + • • • + en_in, y := eni, then xn~1 / 0, xn = y2 = 0 and x + y is invertible with
inverse r = e\n + en + . . . + en n_i. Moreover one checks that Ann (xn - 1 ) = Rx and
that RxHRy = (0). D

The following special case of Theorem 1 has also been stated in [1] (Theorem III.2).

COROLLARY 4 . For a ring R with identity the following are equivalent:

(1) R is a ring of2x2 matrices over some ring S.

(2) Tiere exist elements x, y £ R such that x2 = y2 = 0 and x + y is

invertible.

Corollary 4 follows immediately from Theorem 1 for if 0 ^ sy £ Ann(x) D Ry,

then sy £ Ann(x + y) which is a contradiction to the fact that x + y is invertible.
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In a forthcoming paper we give some applications of Theorem 1 in structure theory.
For instance, if R is a prime Goldie ring we show how elements x, y satisfying condition
2 can be constructed in the quotient ring of R. In this manner we obtain another proof
for the fact that the quotient ring of R is isomorphic to a matrix ring over a division
ring.
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