
COMPOSITIO MATHEMATICA

A strengthening of the GL(2) converse theorem

Andrew R. Booker and M. Krishnamurthy

Compositio Math. 147 (2011), 669–715.

doi:10.1112/S0010437X10005087

FOUNDATION 

COMPOSITIO 

MATHEMATICA

https://doi.org/10.1112/S0010437X10005087 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X10005087
https://doi.org/10.1112/S0010437X10005087


Compositio Math. 147 (2011) 669–715
doi:10.1112/S0010437X10005087

A strengthening of the GL(2) converse theorem

Andrew R. Booker and M. Krishnamurthy

Dedicated to Ilya Piatetski-Shapiro (1929–2009)

Abstract

We generalize the method of A. R. Booker (Poles of Artin L-functions and the strong
Artin conjecture, Ann. of Math. (2) 158 (2003), 1089–1098; MR 2031863(2004k:11082))
to prove a version of the converse theorem of Jacquet and Langlands with relaxed
conditions on the twists by ramified idèle class characters.
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1. Introduction

The ‘converse theorem’ in the theory of automorphic forms has a long history, beginning with the
work of Hecke [Hec36] and a paper of Weil [Wei67] relating the automorphy relations satisfied
by classical holomorphic modular forms f to analytic properties of the twisted L-functions
L(s, f × χ) for Dirichlet characters χ. Soon after, the classical theory was recast in the modern
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setting of automorphic representations by Jacquet and Langlands [JL70], who generalized Weil’s
result to GL2 representations π over a global field, characterizing them in terms of their twists
L(s, π ⊗ ω) by idèle class characters ω. The converse theorem has since been a cornerstone of the
theory, with its generalizations responsible for some of the most striking results of the Langlands
program.

In this paper we show that one may relax the hypotheses of the Jacquet and Langlands
theorem over number fields by allowing the twisted L-functions L(s, π ⊗ ω) to have essentially
arbitrary poles for all ω that are ramified at a finite place. Our approach is based on that
of [Boo03], where it was shown that twists can be eliminated altogether in the converse theorem
for two-dimensional complex Galois representations ρ over Q; in other words, whenever L(s, ρ) is
holomorphic, as predicted by Artin’s conjecture, there is a modular form f (of either holomorphic
or Maass type) such that L(s, ρ) = L(s, f), as predicted by Langlands’ functoriality conjecture.
The possibility of extending this method to a version of the converse theorem with restrictions
on the twists was alluded to in [Boo03], and the present paper is an attempt to realize that goal
in the case of GL2 over a number field.

The precise result that we prove here is the following.

Theorem 1.1. Let F be a number field, AF its ring of adèles and π =
⊗

v πv an irreducible,
admissible, generic representation of GL2(AF ) with central idèle class character ωπ, such that
πv is unitary for all archimedean places v. For every (unitary) idèle class character ω, suppose
that the complete L-functions

Λ(s, π ⊗ ω) =
∏
v

L(s, πv ⊗ ωv) and Λ(s, π̃ ⊗ ω−1) =
∏
v

L(s, π̃v ⊗ ω−1
v )

(i) converge absolutely and define analytic functions in some right half-plane <(s)> σ;

(ii) continue meromorphically to ratios of entire functions of finite order;

(iii) satisfy the functional equation

Λ(s, π ⊗ ω) = ε(s, π ⊗ ω)Λ(1− s, π̃ ⊗ ω−1),

where ε(s, π ⊗ ω) is as in [JL70, Theorem 11.3];

(iv) are entire whenever ω is unramified at every non-archimedean place.

Then π is an automorphic representation.

Corollary 1.2. Let ρ :WF →GL2(C) be a representation of the Weil group of F . Suppose
that the associated L-functions Λ(s, ρ⊗ ω) are entire for all idèle class characters ω that are
unramified at every non-archimedean place. Then ρ is automorphic, i.e. there is an automorphic
representation π such that πv corresponds to ρv under the local Langlands correspondence for
each place v.

Proof. For each place v, let πv be the representation corresponding to ρv under the local
Langlands correspondence, and form π =

⊗
πv. The analytic properties of the Weil L-functions

Λ(s, ρ⊗ ω) = Λ(s, π ⊗ ω), including hypotheses (i) to (iii) of Theorem 1.1, are summarized
in [JL70, ch. 2, § 12]. In particular, (ii) follows from Brauer’s theory of induced characters and the
properties of Hecke L-functions, and (iii) was shown by Langlands [Lan69] and Deligne [Del73]. 2

Remarks. (i) Note that π need not be cuspidal, since we allow poles. The cuspidality criterion
is Theorem 10.10 of Jacquet and Langlands [JL70].
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(ii) Theorem 1.1 is a direct generalization of Theorem 11.3 of Jacquet and Langlands [JL70],
except for the mild assumption that πv be unitary for archimedean places v. Although this
assumption is unlikely to present an obstacle in applications, one naturally wonders whether it is
necessary. We remark that even without this hypothesis, our method would show that the finite
L-functions

L(s, π ⊗ ω) =
∏
v<∞

L(s, πv ⊗ ωv) and L(s, π̃ ⊗ ω−1) =
∏
v<∞

L(s, π̃v ⊗ ω−1
v )

are entire for all idèle class characters ω that have no finite places of ramification in common
with π; thus, the unitary hypothesis is only needed to preclude the possibility of poles arising
from the L-factors at archimedean places.

(iii) A different approach to weakening the hypotheses of the Jacquet and Langlands theorem
was taken by Piatetski-Shapiro [Pja75] and later by Li [Li79]. In particular, both authors showed
that the automorphy of a given representation is determined by analytic properties of twists by
characters unramified outside of a finite set S of places. In some cases one may take S to be
the set of infinite places, and thus give a stronger result than Theorem 1.1. In fact, Piatetski-
Shapiro’s paper shows that this is the case if F 6= Q has class number 1 and at least one real
embedding. However, it does not seem possible to reduce S to the set of infinite places in general.

(iv) Analogous results are known in some cases for representations of GLn for n > 2. For
instance, Cogdell and Piatetski-Shapiro [CKM04] proved a version of the converse theorem for
GLn over a number field F assuming analytic properties of all twists by unramified GLn−1

representations, provided that F has class number 1. It seems likely that the methods of this
paper will generalize and make it possible to remove the class number restriction; we will
investigate this in future papers.

The outline of the paper is as follows. We conclude the introduction by recalling the standard
notation and conventions for number fields and their rings of adèles. Next, as the arguments
are rather technical in nature, in § 2 we provide a sketch of the proof in classical notation for
holomorphic modular forms over Q; this is based on a version of the argument of [Boo03] due
to Sarnak [Sar02]. There are a few noteworthy differences between the result over Q and the
general case. First, it is not immediately obvious what should play the role of the ‘additive
twists’ from classical analytic number theory, which are important in the proof; we explain the
relevant notion in § 3, as well as its connection to the ‘multiplicative twists’ by Größencharakters
(or, equivalently, idèle class characters). Second, while there are no non-trivial unramified idèle
class characters over Q, there are infinitely many such characters over a number field; thus,
unlike the result of [Boo03], it does not seem possible in general (by these methods) to deduce
automorphy from analytic properties of a single L-function.1 We recall some of the background
on Whittaker functions and Fourier expansions in § 4 before establishing the connection between
analytic properties of twists by unramified characters and automorphy relations in § 5.2. The
proof of Theorem 1.1 takes up the remainder of § 5, relying on some combinatorial identities
presented in the appendix.

1.1 Notation
Let F be a number field and oF its ring of integers. For each place v of F , we denote by Fv the
completion of F at v. To avoid confusion at archimedean places, we will use the symbol ‖ · ‖v to

1 This is in line with Sarnak’s suggestion that over a number field it is most natural to consider a representation
π together with its twists π ⊗ ω by unramified idèle class characters. For a recent example of this phenomenon,
see the results of Diaconu and Garrett [DG09] on moments of GL2 L-functions.
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denote the absolute value on Fv, and reserve | · | for the usual absolute value of real or complex
numbers. Let S∞ denote the set of archimedean places of F , and define

SC = {v ∈ S∞ : Fv = C}, SR = {v ∈ S∞ : Fv = R}.

We will write v|∞ and v <∞ to mean v ∈ S∞ and v /∈ S∞, respectively. For v <∞, we let ov
denote the ring of integers of Fv, pv the unique prime ideal of ov, o×v the group of local units
and qv the cardinality of ov/pv. We write AF for the ring of adèles of F and A×F for its group
of idèles. The symbol AF,f will denote the ring of finite adèles and F∞ will denote

∏
v|∞ Fv, so

that AF = F∞ × AF,f ; we write x∞ and xf for the corresponding components of x ∈ AF .
We regard F as a subring of AF , embedded diagonally, and fix an additive character

ψ =
⊗

v ψv of F\AF whose conductor is the inverse different d−1 of F . Namely, ψ = ψQ ◦ tr,
where tr is the trace map from AF to AQ, and ψQ is the additive character of Q\AQ which is
unramified at all finite primes and whose restriction to R is the exponential function e(x) = e2πix.
Further, let d be a finite idèle such that (d) = d, where, for any t ∈ A×F , we write (t) to denote
the fractional ideal (t) =

∏
v<∞(pv ∩ F )ordv(tv).

Suppose that v|∞ and χv : F×v → C× is a continuous quasi-character. Then, for v ∈ SR, χv
may be written uniquely in the form χv(y) = ‖y‖ν(χv)

v sgnv(y)ε(χv), where sgnv : F×v →{±1} is
the local sign character, ν(χv) ∈ C and ε(χv) ∈ {0, 1}; similarly, for v ∈ SC, we have χv(y) =
‖y‖ν(χv)

v θv(y)k(χv), where θv(y) = y‖y‖−1/2
v , ν(χv) ∈ C and k(χv) ∈ Z.

We fix our choice of Haar measure on the idèle class group as follows. For each finite place v of
F , let d×yv be the Haar measure on F×v such that the volume of o×v is 1. For v|∞, let dyv be the
ordinary Lebesgue measure; we then set d×yv = dyv/2‖yv‖v for v ∈ SR and d×yv = dyv/π‖yv‖v
for v ∈ SC. This choice of local Haar measures yields a unique Haar measure d×y on A×F such
that the volume of

∏
v<∞ o×v is 1. Moreover, the Mellin inversion formula at an archimedean

place v takes the form

f̃(s, ε) =
∫
F×v

f(y) sgnv(y)ε‖y‖s−
1
2

v d×y⇐⇒ f(y) =
∑

ε∈{0,1}

∫
f̃(s, ε) sgnv(y)ε‖y‖

1
2
−s

v
ds

2πi

for v ∈ SR and

f̃(s, k) =
∫
F×v

f(y)θv(y)k‖y‖s−
1
2

v d×y⇐⇒ f(y) =
∑
k∈Z

∫
f̃(s, k)θv(y)−k‖y‖

1
2
−s

v
ds

2πi

for v ∈ SC, where in each case the s-integral is taken along a vertical line to the right of any
poles of the integrand.

Recall that a Größencharakter of conductor q is a multiplicative function χ of non-zero
integral ideals satisfying χ(aoF ) = χf (a)χ∞(a) for associated characters χf : (oF /q)×→ S1 and
χ∞ : F×∞→ S1, with χf primitive and χ∞ continuous, and all a ∈ oF relatively prime to q. By
convention, we set χ(a) = 0 for any ideal a with (a, q) 6= 1. The Größencharakters are in one-to-
one correspondence with idèle class characters ω : F×\A×F → S1, and the correspondence is such
that χ∞ = ω−1

∞ . (Note that by a character we always mean a unitary character, and use the word
quasi-character for the more general notion.)

Let ClF be the class group of F , and h its order. We fix a set {tj}hj=1 of finite idèles such
that the fractional ideals (tj) represent the ideal classes of F .

Finally, we recall the standard notation of analytic number theory; we write f(x) =O(g(x))
or f(x)� g(x) to mean that there is a number C > 0 such that |f(x)|6 Cg(x) for all values
of x, where the set of possible x is taken from context. We write Oy or �y to indicate that the
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number C implied by the notation depends on the variable y; the reader should beware, however,
that this is mainly for emphasis, and we will not necessarily indicate every variable on which a
particular expression depends.

2. The classical case

In this section we sketch the proof of Theorem 1.1 in the classical case of holomorphic modular
forms for Γ0(N). For notational simplicity, we consider only trivial nebentypus character, though
that is not essential to the argument.

Let {an}∞n=1 be a sequence of complex numbers satisfying an =O(nσ) for some σ > 0, and
define f(z) =

∑∞
n=1 ane(nz) for z in the upper half-plane. By Weil’s converse theorem [Wei67],

f ∈Mk(Γ0(N)) for some k ∈ 2Z>0, N ∈ Z>0 if and only if the complete twisted L-functions

Λ(s, f × χ) = (2π)−sΓ(s)
∞∑
n=1

anχ(n)n−s,

which are initially defined for <(s)> σ + 1, continue to entire functions of finite order and satisfy
the functional equation

Λ(s, f × χ) = εχ(N)
τ(χ)2

q
(q2N)k/2−sΛ(k − s, f × χ) (2.1)

for some ε ∈ {±1} and every primitive Dirichlet character χ of conductor q relatively prime to N .
We relax these assumptions by allowing Λ(s, f × χ) to have poles when q > 1, provided that all
twists, including those with (q, N) 6= 1, extend meromorphically to ratios of entire functions of
finite order, and that all poles are confined to a fixed vertical strip {s ∈ C : <(s) ∈ [σ1, σ2]}. This
follows from the hypotheses of Theorem 1.1 in the general setting.

We also consider the additively twisted L-functions

Λ(s, f, α) = (2π|α|)−sΓ(s)
∞∑
n=1

ane(nα)n−s

for α ∈Q×. These are likewise defined initially for <(s)> σ + 1 but, by Proposition 3.1, they can
be expressed in terms of the multiplicative twists Λ(s, f × χ); thus, they also have meromorphic
continuation to C, with poles possible only for <(s) ∈ [σ1, σ2], and are ratios of entire functions
of finite order. Conversely, if χ is a primitive Dirichlet character of conductor q, then

χ(n) =
τ(χ)
q

q∑
a=1

χ(−a)e
(
an

q

)
,

from which it follows that

Λ(s, f × χ) =
τ(χ)
q

q∑
a=1

χ(−a)
(
a

q

)s
Λ
(
s, f,

a

q

)
.

Hence, if we show that all additive twists Λ(s, f, α) are holomorphic for <(s) 6 k/2, then this,
together with (2.1), implies that Λ(s, f × χ) is entire. Since any entire function that can be
expressed as a ratio of functions of finite order must itself have finite order, our hypotheses thus
reduce to those of Weil’s theorem, and the result follows.

Our starting point is an argument that goes back to Hecke. We have assumed that
Λ(s, f × χ) is entire when χ is the trivial character, and hence it must also have finite order,
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as remarked above. Hecke proved that these analytic properties, together with the functional
equation, are equivalent to the automorphy relation

f(z) = ε

(
i√
Nz

)k
f

(
− 1
Nz

)
. (2.2)

Now, let α ∈Q× and set β =−1/Nα. We consider both sides of (2.2) evaluated at z = β + i|β|y
for a small y > 0. Using the Mellin transform identity e−t = (1/2πi)

∫
<(s)=σ′ Γ(s)t−s ds, valid for

any t, σ′ > 0, we have

f(z) =
∞∑
n=1

ane(nβ)e−2πn|β|y =
∞∑
n=1

ane(nβ)
1

2πi

∫
<(s)=σ+2

Γ(s)(2πn|β|y)−s ds.

In view of the bound on an, we may change the order of sum and integral, to get

f(z) =
1

2πi

∫
<(s)=σ+2

(2π|β|y)−sΓ(s)
∞∑
n=1

ane(nβ)n−s ds=
1

2πi

∫
<(s)=σ+2

Λ(s, f, β)y−s ds.

On the other hand, by (2.2), we have

f(z) = ε

(
i√

N(β + i|β|y)

)k
f

(
− 1
N(β + i|β|y)

)
and, substituting

−1
N(β + i|β|y)

= α+ i|α|y − αy2

1− i sgn(α)y
,

this yields

f(z) = ε(−Nα2)k/2
∞∑
n=1

ane(nα)e−2πn|α|y(1− i sgn(α)y)−ke
(
− nαy2

1− i sgn(α)y

)
.

Note that if not for the correction factor (1− i sgn(α)y)−ke(−nαy2/(1− i sgn(α)y)), which
is approximately 1 for small y, the right-hand side could again be expressed simply in terms of
Λ(s, f, α). Our strategy is to expand this factor in a Taylor series and treat each term separately;
to that end, we have

(1− i sgn(α)y)−ke
(
− nαy2

1− i sgn(α)y

)
=
∞∑
j=0

(i sgn(α)y)j(1− i sgn(α)y)−j−k
(−2πn|α|y)j

j!

=
∞∑
j=0

∞∑
`=0

(
j + k + `− 1

`

)
(i sgn(α)y)j+`

(−2πn|α|y)j

j!

=
∞∑
m=0

(i sgn(α)y)m
m∑
j=0

(
m+ k − 1
m− j

)
(−2πn|α|y)j

j!
,

converging absolutely for y < 1. Note further that for any M, K ∈ Z>0 we have∣∣∣∣ ∞∑
m=M

(i sgn(α)y)m
m∑
j=0

(
m+ k − 1
m− j

)
(−2πn|α|y)j

j!

∣∣∣∣
6 (2πn|α|y)−KK!

∞∑
m=M

ym
m∑
j=0

(
m+ k − 1
m− j

)(
j +K

j

)
(2πn|α|y)j+K

(j +K)!
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6 (πn|α|y)−KK!(3/2)k−1
∞∑

m=M

(3y)me2πn|α|y

�k,α,M,K yM (ny)−Ke2πn|α|y,

for y < 1/4, say. Hence, we have

f(z) = ε(−Nα2)k/2
M−1∑
m=0

(i sgn(α))m
m∑
j=0

(
m+ k − 1
m− j

)
yj+m

j!
dj

dyj

∞∑
n=1

ane(nα)e−2πn|α|y

+ O

(
yM−K

∞∑
n=1

|an|n−K
)
.

Choosing K = bσc+ 2, the error term converges and gives the estimate O(yM−K).

Applying Mellin inversion as before, we have

yj+m

j!
dj

dyj

∞∑
n=1

ane(nα)e−2πn|α|y =
yj+m

j!
dj

dyj
1

2πi

∫
<(s)=σ+m+2

Λ(s, f, α)y−s ds

=
1

2πi

∫
<(s)=σ+2

(
−s−m

j

)
Λ(s+m, f, α)y−s ds.

Moreover, by the Chu–Vandermonde identity, we have

m∑
j=0

(
m+ k − 1
m− j

)(
−s−m

j

)
=
(
−s+ k − 1

m

)
= (−1)m

(
s+m− k

m

)
.

Putting everything together, we arrive at

f(z) = ε(−Nα2)k/2
M−1∑
m=0

(−i sgn(α))m
1

2πi

∫
<(s)=σ+2

(
s+m− k

m

)
Λ(s+m, f, α)y−s ds

+ O(yM−K).

Although we have assumed that y < 1/4 throughout this analysis, from the exponential decay
of f(z) and by shifting the contour of the above to the right, we see that the error term decays
rapidly as y→∞. Hence, we can take the Mellin transform of both sides, to get

Λ(s, f, β) = ε(−Nα2)k/2
M−1∑
m=0

(−i sgn(α))m
(
s+m− k

m

)
Λ(s+m, f, α) +Hα,M (s),

where Hα,M (s) is holomorphic for <(s)>K −M . Next, suppose that α= a/q with a, q ∈ Z,
(a, q) = 1, and let λ be a non-zero integer ≡ 1 (mod q). Then e(nα) = e(nλα) for all n ∈ Z, so
that Λ(s, f, λα) = |λ|−sΛ(s, f, α). Replacing α in the above by λα, we have

|λ|s−kΛ(s, f, λ−1β) = ε(−Nα2)k/2
M−1∑
m=0

λ−m(−i sgn(α))m
(
s+m− k

m

)
× Λ(s+m, f, α) + |λ|s−kHλα,M (s).
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Now, let T be a finite subset of (1 + qZ) ∩Q×, and let cλ ∈ C for each λ ∈ T . Then

ε(−Nα2)k/2
M−1∑
m=0

(∑
λ∈T

cλλ
−m
)

(−i sgn(α))m
(
s+m− k

m

)
Λ(s+m, f, α)

−
∑
λ∈T

cλ|λ|s−kΛ(s, f, λ−1β)

is holomorphic for <(s)>K −M .
Fix a non-negative integer m0 <M . From the Vandermonde determinant, we see that as long

as T has cardinality at least M , we may choose the cλ so that∑
λ∈T

cλλ
−m =

{
1 if m=m0,

0 if m 6=m0

for all non-negative integers m<M . Therefore,

ε(−Nα2)k/2(−i sgn(α))m0

(
s+m0 − k

m0

)
Λ(s+m0, f, α)−

∑
λ∈T

cλ|λ|s−kΛ(s, f, λ−1β)

is holomorphic for <(s)>K −M .
Recall that Λ(s+m0, f, α) can only have poles in the strip {s ∈ C : <(s) ∈ [σ1 −m0,

σ2 −m0]}, while the sum over λ ∈ T is holomorphic outside of {s ∈ C : <(s) ∈ [σ1, σ2]}. Choosing
m0 > σ2 − σ1 and M >m0 + max(0, K − σ1), we see that

(
s−k
m0

)
Λ(s, f, α) must be entire. In

particular, since
(
s−k
m0

)
has zeros only at integers > k > k/2, Λ(s, f, α) is holomorphic for

<(s) 6 k/2, and this concludes the proof.

3. Additive and multiplicative twists

In this section we describe the functions that play the role of the additive twists in the preceding
argument, and the transition between those and the multiplicative twists by Größencharakters.
Let λ be a function of integral ideals satisfying λ(a) =O(N(a)K) for some K > 0, so that the
corresponding L-series L(s, λ) =

∑
a λ(a)N(a)−s defines an analytic function for <(s)>K + 1.

Given a Größencharakter χ of conductor q, the multiplicative twist of L(s, λ) by χ is the series

L(s, λ× χ) =
∑

a

λ(a)χ(a)N(a)−s.

Next, let Γq = {ε ∈ o×F : ε≡ 1 (mod q)} and note that, for any z ∈ q−1d−1 ∩ F×, the function
ψ∞(z)χ∞(z) is unchanged if z is replaced by εz for any ε ∈ Γq. Thus, we may define

eq((z), χ∞) =
1

[o×F : Γq]

∑
η∈Γq\o×F

ψ∞(ηz)χ∞(ηz),

which is a function of principal fractional ideals generated by such z. Let {aj}hj=1 be a fixed set
of fractional ideals representing the ideal classes of F . Then, by an additive twist, we mean a
series of the form

Laj (s, λ, α, χ∞) =
∑
a∼aj

λ(a)eq(aa−1
j (α), χ∞)N(a)−s,

where α ∈ ajd
−1q−1 ∩ F× and the sum runs over non-zero integral ideals a in the class of aj .

Note that for given α and χ∞, if q1 and q2 are ideals such that α ∈ ajd
−1q−1

i ∩ F× and χ∞ is
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trivial on Γqi for i= 1, 2 then eq1
(aa−1

j (α), χ∞) = eq2
(aa−1

j (α), χ∞); hence, we are justified in
omitting q from the above notation.

The precise result that we prove in this section is the following.

Proposition 3.1. Let λ be as above, and suppose that L(s, λ) factors into an Euler product
of the form

∏
p(1/fp(N(p)−s)), where fp is a polynomial for each prime ideal p. If χ= χfχ∞

is a Größencharakter then the multiplicative twist L(s, λ× χ) is a C-linear combination∑m
i=1 ciLaji

(s, λ, αi, χ∞) of additive twists. Conversely, any Laj (s, λ, α, χ∞) may be expressed
in the form

∑m
i=1 Di(s)L(s, λ× χi) for certain finite Dirichlet series Di and Größencharakters

χi = χi,fχ∞.

3.1 Multiplicative to additive twists
Let χ be a Größencharakter, as above. For a fixed ideal class j, we choose uj ∈ ajd

−1q−1 −⋃
p|q ajd

−1q−1p and vj ∈ aj −
⋃

p|q ajp. Let a be an integral ideal in the class of aj , so that
a = (γ)aj for some γ ∈ F×; then γ = v−1

j b for some b ∈ oF . Similarly, multiplication by uj defines
an oF -module isomorphism between oF /q and ajd

−1q−1/ajd
−1. Consider the sum∑

α∈ajd
−1q−1/ajd

−1

coset reps. α∈F×

χ((u−1
j α))eq((γα), χ∞).

It will be clear from the discussion below that the summand does indeed factor through
ajd
−1q−1/ajd

−1; for now, we may just consider it as running through any particular set of
non-zero coset representatives. By the above remarks, the sum equals∑

x∈oF /q

χ∞(x)χf (x)eq((γujx), χ∞) =
∑

x∈(oF /q)×

χ∞(x)χf (x)
[o×F : Γq]

∑
η∈Γq\o×F

ψ∞(ηγujx)χ∞(ηγujx).

(3.1)
Note that we may restrict to x ∈ (oF /q)× here, since otherwise χf (x) vanishes.

Changing the order of summation, we get
1

[o×F : Γq]

∑
η∈Γq\o×F

χ∞(ηγuj)
∑

x∈(oF /q)×

χf (x)ψ∞(ηγujx).

We write γ = b/vj with b ∈ oF in the inner sum. Note that the inner sum vanishes unless b is
invertible mod q, in which case we may replace x by (ηb)−1x. We arrive at

1
[o×F : Γq]

∑
η∈Γq\o×F

χ∞(ηbuj/vj)χf (ηb)
∑

x∈(oF /q)×

χf (x)ψ∞(ujx/vj).

Now, for any character ξ on (oF /q)× and z ∈ q−1d−1, let τq(z, ξ) denote the Gauss sum∑
x∈(oF /q)×

ξ(x)ψ∞(xz).

We then recognize the inner sum above as τq(uj/vj , χf ). Since ((uj/vj)qd, q) = 1, it has modulus√
N(q), by [Neu99, VII, Theorem 6.4]; in particular, it is non-zero. Moreover, the fractional ideal

(vj)−1aj is also prime to q, and hence we have

χ∞(ηb)χf (ηb) = χ((ηb)) = χ((b)) =
χ(a)

χ((vj)−1aj)
.
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Thus, the dependence on η disappears, so we get

χ∞(uj/vj)τq(uj/vj , χf )
χ((vj)−1aj)

χ(a) = κjχ(a), (3.2)

where κj is a non-zero number independent of a. Finally, we have

∑
a

λ(a)χ(a)
N(a)s

=
h∑
j=1

κ−1
j

∑
α∈ajd

−1q−1/ajd
−1

coset reps. α∈F×

χ((u−1
j α))

∑
a∼aj

λ(a)eq(aa−1
j (α), χ∞)N(a)−s. (3.3)

Thus, every multiplicatively twisted L-function is indeed a linear combination of additively
twisted ones.

3.2 Additive to multiplicative twists

Next, we need to express each additive twist appearing in (3.3) in terms of multiplicative twists.
To that end, we consider the C-vector space V of Dirichlet series spanned by those of the form
N(m)−sL(s, λ× χ), where χ is any Größencharakter and m is an integral ideal. We will show
that this space is closed under additive twists; in particular, any additive twist of L(s, λ) may
be expressed as a linear combination of multiplicative twists, with coefficients that are Dirichlet
polynomials.

Let χ= χfχ∞ be a Größencharakter, as above. A calculation shows that

eq((z), χ∞) =
1

[o×F : Γq]

∑
η∈Γq\o×F

ψ∞(ηz)χ∞(ηz) =
χ∞(z)
|(oF /q)×|

∑
ξ∈ ̂(oF /q)×

χf ξ|o×
F

=1

τq(z, ξ), (3.4)

where, in the latter sum, ξ runs over all characters of (oF /q)× that are inverse to χf on the
image of o×F .

Now, suppose that q = q1q2 is composite, with (q1, q2) = 1. Then we also have a factorization
of the characters ξ as ξ1ξ2, where ξi is a character on (oF /qi)×; the corresponding
Gauss sums satisfy the identity τq(z, ξ) = τq1

(z1, ξ1)τq2
(z2, ξ2), where zi ∈ q−1

i d−1 satisfy z ≡
zi (mod qiq

−1d−1). Then we have

τqi(zi, ξi) =
∑

x∈(oF /qi)
×

ξi(x)ψ∞(xzi) =
∑

y∈(oF /qi)
×/(o×F /Γqi )

ξi(y)
∑

η∈o×F /Γqi

ξi(η)ψ∞(ηyzi).

Now, since q1 and q2 are relatively prime, we may assume that the coset representatives y ∈ oF
are chosen to lie in qq−1

i . It follows that ψ∞(ηyzi) = ψ∞(ηyz). Moreover, there are characters
χi,∞ : F×∞→ S1 which complete ξ−1

i to Größencharakters, i.e. such that ξ−1
i (ε)χi,∞(ε) = 1 for all

ε ∈ o×F , and we may choose these to satisfy χ1,∞χ2,∞ = χ∞. Thus, we get

τqi(zi, ξi) =
∑

y∈(oF /qi)
×/(o×F /Γqi )

coset reps. y∈qq−1
i

ξi(y)
χi,∞(yz)

∑
η∈o×F /Γqi

ψ∞(ηyz)χi,∞(ηyz).
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Substituting this into (3.4), we have

eq((z), χ∞) =
1

|(oF /q)×|
∑

ξ∈ ̂(oF /q)×

χf ξ|o×
F

=1

∑
y1∈(oF /q1)×/(o×F /Γq1 )

coset reps. y1∈q2

∑
y2∈(oF /q2)×/(o×F /Γq2 )

coset reps. y2∈q1

× ξ1(y1)
χ1,∞(y1)

ξ2(y2)
χ2,∞(y2)

eq1
((y1z), χ1,∞)eq2

((y2z), χ2,∞).

Thus, if
∑

a ν(a)N(a)−s is any Dirichlet series, then the additive twist∑
a∼aj

ν(a)eq(aa−1
j (α), χ∞)N(a)−s

is a linear combination of series of the form∑
a∼aj

ν(a)eq1
(aa−1

j (αy1), χ1,∞)eq2
(aa−1

j (αy2), χ2,∞)N(a)−s.

In other words, the additive twist by eq may be built out of twists by eq1
and eq2

.
Hence, it suffices to show that V is closed under twists by eq with q = pr a prime power.

Suppose that N(m)−s
∑

a ν(a)N(a)−s is a typical basis element of V , so that ν is a multiplicative
function of integral ideals. Then the corresponding additive twist is the series∑

a∼m−1aj

ν(a)epr(maa−1
j (α), χ∞)N(ma)−s

=
∞∑
k=0

ν(pk)
N(p)ks

∑
(b,p)=1

b∼p−km−1aj

ν(b)epr(pkmba−1
j (α), χ∞)N(mb)−s, (3.5)

where α ∈ ajd
−1p−r. We handle first the terms for k < r − ordp(m). Without loss of generality,

we may assume that m is relatively prime to p, for otherwise we may simply replace k by
k + ordp(m) and m by p−ordp(m)m in what follows. For a fixed k, we have p−km−1aj = (β)aj′ for
some β ∈ F× and 1 6 j′ 6 h. Further,

epr(pkmba−1
j (α), χ∞) =

1
[o×F : Γpr ]

∑
η∈Γpr\o×F

χ∞(ηz)ψ∞(ηz), (3.6)

where (z) = pkmba−1
j (α)⊂ pk−rmbd−1 ⊂ pk−rd−1, so that z ∈ pk−rd−1. A calculation shows that

the sum vanishes unless χ∞ is trivial on Γpr−k , in which case we have

epr(pkmba−1
j (α), χ∞) = epr−k(ba−1

j′ (α/β), χ∞).

Now, in the previous section, we derived the identity∑
x∈(oF /q)×

χ∞(x)χf (x)eq((γujx), χ∞) =
χ∞(uj/vj)τq(uj/vj , χf )

χ((vj)−1aj)
χ(a).

It is not hard to see from the proof that this holds even if χf is an imprimitive character mod q.
Hence, we may sum over all χf : (oF /q)×→ S1 such that χf (ε)χ∞(ε) = 1 for all ε ∈ o×F , to obtain

eq(aa−1
j (uj), χ∞) = eq((γuj), χ∞) =

1
|(oF /q)×|

∑
χf∈ ̂(oF /q)×

χfχ∞|o×
F

=1

χ∞(uj/vj)τq(uj/vj , χf )
χ((vj)−1aj)

χ(a)
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for any integral ideal a with (a, q) = 1. Applying this in the present situation with q = pr−k,
j replaced by j′ and uj = α/β (note that α/β ∈ aj′d

−1pk−r − aj′d
−1pk−r+1, since (m, p) = 1),

we see that epr−k(ba−1
j′ (α/β), χ∞) is a linear combination of χ(b) for Größencharakters χ of

conductor dividing pr−k. Thus, the inner sum in (3.5) is a linear combination of multiplicatively
twisted series N(m)−s

∑
b∼aj′

(b,p)=1

ν(b)χ(b)N(b)−s. This in turn is equal to

1
h

∑
ξ∈ĈlF

ξ(aj′)−1N(m)−s
∑

(b,p)=1

ν(b)χ(b)ξ(b)N(b)−s,

where the outer sum ranges over all characters ξ of ClF . Finally, the inner sum is simply the
full series

∑
b ν(b)χ(b)ξ(b)N(b)−s with its Euler factor at p removed; from the hypotheses, that

factor amounts to a polynomial in N(p)−s.
It remains only to treat the terms with k > r − ordp(m) from (3.5). For those, we see from

(3.6) that epr(pkmba−1
j (α), χ∞) is identically zero unless χ∞ is trivial on o×F , i.e. χ∞ is the infinite

part of a Größencharakter χ of conductor oF , in which case it equals χ∞(z). Thus, we have either
zero or the sum ∑

k>r−ordp(m)

∑
(b,p)=1

b∼p−km−1aj

ν(pkb)χ(pkmba−1
j (α))N(pkmb)−s.

Again, by summing over ideal class characters ξ, we arrive at

1
h

∑
ξ∈ĈlF

ξ(aj)−1χ(ma−1
j (α))N(m)−s

∑
k>r−ordp(m)

ν(pk)χ(pk)ξ(pk)
N(p)ks

∑
(b,p)=1

ν(b)χ(b)ξ(b)
N(b)s

.

Now, the sum over k is simply the Euler factor at p of
∑

b ν(b)χ(b)ξ(b)N(b)−s, with the first
r − ordp(m) terms removed. Hence, we have∑

k>r−ordp(m)

ν(pk)χ(pk)ξ(pk)
N(p)ks

∑
(b,p)=1

ν(b)χ(b)ξ(b)
N(b)s

=
∑

b

ν(b)χ(b)ξ(b)
N(b)s

−
( ∑
k<r−ordp(m)

ν(pk)χ(pk)ξ(pk)
N(p)ks

) ∑
(b,p)=1

ν(b)χ(b)ξ(b)
N(b)s

.

As before, the restriction to (b, p) = 1 and the remaining sum over k amount to polynomials in
N(p)−s.

4. Some generalities of the GL2 theory

Let π be as in the statement of Theorem 1.1. We write Vπ to denote the space of π, W (πv, ψv)
the ψv-Whittaker model of πv for each v and W (π, ψ) =

⊗
v W (πv, ψv) the global Whittaker

model of π. Let N be the conductor of π; we have N =
∏
v<∞ p

f(πv)
v , where f(πv) = 0 whenever

πv is unramified and f(πv)> 0 otherwise. Let

K1,v(pf(πv)
v ) =

{
g ∈GL2(ov) : g ≡

(
∗ ∗
0 1

)
mod pf(πv)

v

}
and

K0,v(pf(πv)
v ) =

{
g ∈GL2(ov) : g ≡

(
∗ ∗
0 ∗

)
mod pf(πv)

v

}
.
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Now, set K1(N) =
∏
v<∞ K1,v(p

f(πv)
v ) and K0(N) =

∏
v<∞ K0,v(p

f(πv)
v ). The definition of N is

such that the dimension of the space of K1,v(p
f(πv)
v )-fixed vectors in πv is 1 for each finite v.

Moreover, K0,v(p
f(πv)
v ) acts on this one-dimensional space by the central character ωπv , where

ωπv determines a character of K0,v(p
f(πv)
v ) via (a bc d) 7→ ωπv(d) if f(πv)> 0, and 1 otherwise.

Note that for an archimedean place v, Vπv is by definition a Harish-Chandra module, which
is not equipped with an action of GL2(Fv). Since we consider only unitary representations at
archimedean places, Vπv can be realized as the space of Kv-finite vectors (where Kv is the
standard maximal compact, as defined below) in some unitary representation of GL2(Fv) on
a Hilbert space hv, which is unique up to isomorphism. Further, the space of smooth vectors
h∞v ⊂ hv is the canonical Casselman–Wallach completion of Vπv . Let

V∞π =
⊗
v|∞

h∞v ⊗
⊗
v<∞

Vπv

be the smooth extension of Vπ.
There is an intertwining map, unique up to scalar multiplication, from V∞π onto W (π, ψ),

which we will denote by ξ 7→Wξ. Let Φ(π) denote the set of all functions of the form

φξ(g) =
∑
γ∈F×

Wξ

((
γ

1

)
g

)
with ξ ∈ V∞π , g ∈GL2(AF ).

Then Φ(π) is GL2(AF )-invariant under right translation.

4.1 New vectors at the finite places
For each finite place v there is a unique choice of ξv ∈ Vπv , called the new vector, such that Wξv

transforms via the central character ωπv for the action of K0,v(p
f(πv)
v ) and Wξv((d

−1
v

1
)) = 1, with

d as in § 1.1. It satisfies∫
F×v

Wξv

((
y

1

))
‖y‖s−

1
2

v d×y = ‖dv‖
1
2
−s

v L(s, πv).

4.2 Archimedean Whittaker functions
In this section we review some facts about the representation theory of GL2(Fv) at archimedean
places v, and describe a choice of test vector ξv such that the associated Whittaker function has
Mellin transform L(s, πv ⊗ ωv) for a given local character ωv.

Set Kv = O2(Fv) for v ∈ SR, and Kv = U2(Fv) for v ∈ SC; then Kv is a maximal compact
subgroup of GL2(Fv). The irreducible representations of Kv are indexed by non-negative integers.
(See [Wei71, ch. VIII], for example.) Let ρN , N ∈ Z>0, denote all such representations. Then
the restriction of πv to Kv decomposes into a direct sum of irreducibles. The smallest non-
negative integer N such that 0 6= ρN ⊂ πv|Kv is called the weight of πv, and we will denote it
by k(πv). Moreover, if ρN1 and ρN2 are non-trivial constituents of πv|Kv , then N1 ≡N2 (mod 2)
(cf. [Wei71, ch. VIII]).

4.2.1 Real places. Suppose that v ∈ SR. For any two quasi-characters µ1 and µ2 of F×v = R×,
form the induced representation B(µ1, µ2); it is an admissible (gl2(R), Kv)-module. (See [JL70,
ch. 1, § 5] or [God70, § 2]; the latter provides a concise exposition of such representations.) Let us
write µi = ‖ · ‖νiv sgnεiv , νi ∈ C, εi ∈ {0, 1}, i= 1, 2. Then B(µ1, µ2) is irreducible unless ν1 − ν2 is a
non-zero integer and ε1 6= ε2. When B(µ1, µ2) is reducible, its composition series is of length two
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with a unique infinite-dimensional factor; if we take ν1 − ν2 to be a positive integer (as we may by
swapping µ1 and µ2 if necessary), then this factor is the unique invariant subspace of B(µ1, µ2).
We shall denote by π(µ1, µ2) the representation B(µ1, µ2) if it is irreducible, and by σ(µ1, µ2) the
infinite-dimensional factor in the composition series otherwise. The representation σ(µ1, µ2) is
called a discrete series, while the representation π(µ1, µ2) is called a principal series unless ν1 = ν2

and ε1 6= ε2, in which case it is a limit of discrete series.
Moreover, these types exhaust the infinite-dimensional representation theory of GL2(Fv), i.e.

any infinite-dimensional irreducible πv is isomorphic either to a principal series representation
with ε1 6 ε2 or to a discrete series or limit of discrete series representation with ν1 − ν2 ∈ Z>0 and
(ε1, ε2) = (0, 1). In these two cases we have, respectively, k(πv) = ε2 − ε1 and k(πv) = ν1 − ν2 + 1.
We set ν(πv) = (ν1 − ν2)/2 and ε(πv) = ε1. Further, we write SR = Sd ∪ S0 ∪ S1, corresponding
to those places v for which πv is a discrete series or limit of discrete series, weight 0 principal
series and weight 1 principal series, respectively.

For any ξv ∈ Vπv , let Wξv denote the associated vector in the Whittaker model W (πv, ψv).
We have a decomposition of Vπv into weight spaces for the action of SO2(Fv)⊂Kv, i.e.

Vπv =
⊕

k∈k(πv)+2Z

V (k)
πv ,

where

ξv ∈ V (k)
πv =⇒ Wξv

(
g

(
cos θ sin θ
−sin θ cos θ

))
= eikθWξv(g) for all g ∈GL2(Fv), θ ∈ Fv.

It is known that each V
(k)
πv has dimension at most one; precisely, it is one dimensional for every

k ≡ k(πv) (mod 2) unless πv is a discrete series representation and |k|< k(πv), in which case
V

(k)
πv = {0}.

For each k, we choose a basis vector ξ(k)
v for V (k)

πv (or 0 if this space is trivial), and set
Wk =W

ξ
(k)
v

for shorthand. Further, let

fk(y) = ωπv(|y|−1/2)Wk

((
y

1

))
, y ∈ F×v .

We can choose the basis vectors in such a way that the fk are related by raising and lowering
operators (see [God70, p. 2.19, Equation (77)] or [JL70, Proof of Lemma 5.13.1]):

(2ν(πv) + 1 + k)fk+2(y) = 2yf ′k(y)− (4πy − k)fk(y),

(2ν(πv) + 1− k)fk−2(y) = 2yf ′k(y) + (4πy − k)fk(y),
(4.1)

from which one concludes that [God70, p. 2.20, Equation (78)]2

f ′′k (y) +
(

1/4− ν(πv)2

y2
+

2πk
y
− 4π2

)
fk(y) = 0.

Moreover, by considering the action of πv
((−1

1

))
on the ξ(k)

v , one finds that [God70, p. 2.7,
Equation (21)]

f−k(y) = (−1)ε(πv)fk(−y). (4.2)

2 The equation in [God70] is incorrect; the constant 1 in (78) should be replaced by 4π2. This is a consequence of
replacing u by 2πu as explained in the footnote on [God70, p. 2.19].
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These identities, together with the fact that fk(y) must have moderate growth as y→±∞,
uniquely determine the family fk (and hence also Wk) up to multiplication by a scalar, which
can be chosen a posteriori. (In fact, this is essentially the proof of the local multiplicity one
theorem; see [JL70, Lemma 5.13.1].)

For any ν ∈ C, let κν(y) = 4
√
|y|Kν(2π|y|), where Kν is the classical K-Bessel function; then

κν satisfies the second-order differential equation

y2κ′′ν(y) + (1
4 − ν

2 − 4π2y2)κν(y) = 0. (4.3)

Moreover, κν(y)∼ κ 1
2
(y) = 2e−2π|y| as y→±∞, and∫

R×
κν(y)|y|s−

1
2
dy

2|y|
= ΓR(s+ ν)ΓR(s− ν). (4.4)

For v ∈ S0, one can check that f0(y) = sgn(y)ε(πv)κν(πv)(y) satisfies all of the above conditions,
and the other fk are then determined by (4.1); in particular,

f±2(y) =
y sgn(y)ε(πv)

ν(πv) + 1
2

(κ′ν(πv)(y)∓ 2πκν(πv)(y)).

For v ∈ S1, one checks using (4.3) and the identities

yκ′
ν− 1

2

(y) = νκν− 1
2
(y)− 2π|y|κν+ 1

2
(y),

yκ′
ν+ 1

2

(y) =−νκν+ 1
2
(y)− 2π|y|κν− 1

2
(y)

that the choice
f±1(y) = |y|1/2κν(πv)− 1

2
(y)± sgn(y)|y|1/2κν(πv)+ 1

2
(y)

works. Similarly, for v ∈ Sd, we may take

fk(πv)(y) = (1 + sgn(y))|y|k(πv)/2κ1/2(y) =

{
4yk(πv)/2e−2πy if y > 0,
0 if y < 0.

Given a character ωv of F×v , we choose a test vector ξv such that Wξv = 1
2(Wk +

(−1)ε(πv)+ε(ωv)W−k), where k = k(πv) unless v ∈ S0 and ε(ωv) 6= ε(πv), in which case we take
k = 2. With this choice, one can verify using (4.4) and (4.2) that we can choose the constant of
proportionality so that∫

F×v

Wξv

((
y

1

))
ωv(y)‖y‖s−

1
2

v d×y = L(s, πv ⊗ ωv)

=



ΓR(t+ |ε(ωv)− ε(πv)|+ ν(πv))ΓR(t+ |ε(ωv)− ε(πv)| − ν(πv)) if v ∈ S0,

ΓR(t+ |ε(ωv)− ε(πv)|+ ν(πv))ΓR(t+ 1− |ε(ωv)− ε(πv)| − ν(πv)) if v ∈ S1,

ΓC

(
t+

k(πv)− 1
2

)
if v ∈ Sd,

where t= s+ ν(ωπv)/2 + ν(ωv).

4.2.2 Complex places. Suppose that v ∈ SC, i.e. Fv = C. The situation here is similar to
the real places except that there are no discrete series representations. To be precise, πv being
an irreducible admissible generic representation of GL2(Fv) can be realized as a full induced
representation B(µ1, µ2) (see [JL70, ch. 1, § 6]). We denote this representation by π(µ1, µ2).
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For such a πv, let µ(z) = µ1µ
−1
2 (z). By interchanging µ1 and µ2 if necessary, we may suppose

that k(µ) = k(µ1)− k(µ2) > 0; then in fact k(πv) = k(µ) [JL70, Lemma 6.1(ii)], and we define
ν(πv) = ν(µ)/2. In particular,

πv|SU2(Fv)
∼= ρk(µ) ⊕ ρk(µ)+2 ⊕ · · · ,

where ρN is the unique (N + 1)-dimensional irreducible representation of SU2(Fv) which acts
by right translation on the space VN of homogeneous polynomials of degree N in two variables.
Let us fix the basis

{X(N+k)/2Y (N−k)/2 : |k|6N, k ≡N (mod 2)}
for VN . If ρN ⊂ πv, there is an inclusion iN : VN →W (πv, ψ) which commutes with the action of
SU2(Fv). For each N > k(πv), let WN,k be the image of the monomial X(N+k)/2Y (N−k)/2. Using
the identity (

y x
1

)
= u

(
|y| x

1

)(
u

u

)
,

where x ∈ Fv, y ∈ F×v and u2 = y/|y|, we have

WN,k

((
y x

1

))
= ωπv(u)ukWN,k

((
|y| x

1

))
.

Let fN,k be the function on R>0 given by

fN,k(t) = ωπv(t
−1/2)WN,k

((
t

1

))
, t ∈ R>0.

It is shown in [JL70] that the functions fN,k satisfy the differential equations3

−4πi(N + k)
fN,k−2(t)

t
= f ′′N,k(t)− (1− k)

f ′N,k(t)
t

+
[

(2− k)2 − (k(πv) + 4ν(πv))2

4t2
− 16π2

]
fN,k(t),

4πi(N − k)
fN,k+2(t)

t
= f ′′N,k(t)− (1 + k)

f ′N,k(t)
t

+
[

(2 + k)2 − (k(πv)− 4ν(πv))2

4t2
− 16π2

]
fN,k(t),

(4.5)

analogous to (4.1) in the real case.
For fixed N , these equations, together with the condition of moderate growth, determine

the family of fN,k up to scalar multiplication. In particular, in the boundary cases k =±N
and N = k(πv), one can show that fN,k(t) is proportional to t1+N/2K2ν(πv)∓k(πv)/2(4πt) and
t1+k(πv)/2K2ν(πv)−k/2(4πt), respectively (cf. the proof of Lemma 5.2 below).

We now describe our choice of Whittaker functions at v. Let ωv be a fixed character of F×v ,
and set l =−k(ωπv)− 2k(ωv), N = max(k(πv), |l|). Then we pick ξv such that Wξv =WN,l; note
that this is always one of the boundary cases described above. Using the identity∫ ∞

0
t1+N/2K2ν(4πt)t2s−1dt

t
=

1
16

ΓC

(
s+

N

4
+ ν

)
ΓC

(
s+

N

4
− ν
)

3 As pointed out in [Pop08], the equations in [JL70] are not exact; the factor u there should be replaced by 4πu.

684

https://doi.org/10.1112/S0010437X10005087 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005087


A strengthening of the GL(2) converse theorem

and the above formulas for fN,k, it is straightforward to check that we can choose the constant
of proportionality so that∫

F×v

Wξv

((
y

1

))
ωv(y)‖y‖s−

1
2

v d×y

= L(s, πv ⊗ ωv) = ΓC

(
t+ ν(πv) +

|l − k(πv)|
4

)
ΓC

(
t− ν(πv) +

|l + k(πv)|
4

)
,

where t= s+ (ν(ωπv)/2) + ν(ωv).

4.3 Bounds for the archimedean parameters
For v ∈ S∞, let πv be as in § 4.2. In particular, πv is either a π(µ1, µ2) or a σ(µ1, µ2) for some
quasi-characters µ1, µ2. Using the classification of irreducible unitary generic representations of
GL2(Fv), in the notation of § 4.2, one has

<(ν1) + <(ν2) = 0 if πv = σ(µ1, µ2),
|<(ν1)|, |<(ν2)|< 1/2 if πv = π(µ1, µ2).

In particular, for v ∈ S0 ∪ S1 ∪ SC, we have |<ν(πv)|= |<(ν1 − ν2)|/2< 1
2 . As a consequence, note

that, for any character ωv of F×v , L(s, πv ⊗ ωv) is holomorphic in a right half-plane <(s)> 1
2 − δ

for some δ > 0. Also, recall that if πv = π(µ1, µ2) is a local component of a global unitary cuspidal
representation, then the Ramanujan conjecture predicts that πv is tempered, i.e. <(νi) = 0 for
i= 1, 2.

4.4 Fourier coefficients and Dirichlet series
For each v <∞, let ξv ∈ Vπv be the new vector introduced in § 4.1; for v|∞, let ξv ∈ Vπv be as
defined in § 4.2, with ωv equal to the trivial character. Set ξ =

⊗
ξv; then by construction we

have

Λ(s, π) =N(d)
1
2
−s
∫
F×\A×F

φξ

((
y

1

))
‖y‖s−

1
2 d×y. (4.6)

In this section we will write L(s, π) as a Dirichlet series and describe the Dirichlet coefficients
explicitly in terms of the finite part of the Whittaker function Wξ. For y ∈ A×F , x ∈ AF , we have

φξ

((
y x

1

))
=
∑
γ∈F×

Wξ

((
γy γx

1

))
=
∑
γ∈F×

ψ(γx)Wξ

((
γy

1

))

=
∑
γ∈F×

aξ(y, γ)ψ(γx)Wξ∞

((
γy∞

1

))
,

where aξ(y, γ) =
∏
v<∞Wξv

((γyv
1

))
and Wξ∞ =

∏
v|∞Wξv . Observe that aξ(y, γ) depends only

on the finite part yf of y. Moreover, for v <∞ and z ∈ o×v , we have

Wξv

((
a

1

)(
1 z

1

))
=Wξv

((
a

1

))
for all a ∈ F×v . Consequently, (ψv(az)− 1)Wξv((

a
1)) = 0, and hence Wξv

((
a

1

))
6= 0 =⇒ a ∈ d−1

v .
Therefore, aξ(y, γ) = 0 unless (γy)⊂ d−1, and thus

φξ

((
y x

1

))
=

∑
γ∈(y)−1d−1∩F×

aξ(y, γ)ψ(γx)Wξ∞

((
γy∞

1

))
.
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In particular, setting x= 0 in the above equation and using the fact that aξ(y, γ) = aξ(y, εγ) for
all ε ∈ o×F , we may break the sum over γ into equivalence classes modulo o×F to obtain

φξ

((
y

1

))
=

∑
γ∈o×F \((y)−1d−1∩F×)

aξ(y, γ)
∑
η∈o×F

Wξ∞

((
ηγy∞

1

))
. (4.7)

Next, since the function y 7→ φξ(
(y

1

)
) is invariant under multiplication by elements of∏

v<∞ o×v , by strong approximation we may rewrite (4.6) as

Λ(s, π) = N(d)
1
2
−s
∫
F×\A×F /

∏
v o×v

φξ

((
y

1

))
‖y‖s−

1
2 d×y

= N(d)
1
2
−s
∫

o×F \F
×
∞

h∑
j=1

φξ

((
(y∞, tj)

1

))
‖y∞‖

s− 1
2∞ ‖tj‖s−

1
2 d×y∞,

where the tj are the finite idèles defined in § 1.1. Using (4.7) and replacing y∞ by γ−1
∞ y∞ in the

above integral, we get

Λ(s, π) = N(d)
1
2
−s

h∑
j=1

∑
γ∈o×F \((tj)−1d−1∩F×)

aξ(tj , γ)‖tj‖s−
1
2 ‖γ‖

1
2
−s
∞

×
∫
F×∞

Wξ∞

((
y∞

1

))
‖y∞‖

s− 1
2∞ d×y∞. (4.8)

Now, for any non-zero integral ideal a in F , set

λπ(a) = aξ(tj , γ)
√
N(a),

where j, 1 6 j 6 h, is the unique index such that a = (γ)(tj)d for some γ ∈ F . Noting that
‖γ‖∞ =N(γ), it follows from (4.8) that

Λ(s, π) =
∑

a

λπ(a)
N(a)s

∏
v|∞

L(s, πv),

and thus

L(s, π) =
∑

a

λπ(m)
N(a)s

.

Moreover, it can be checked that the Dirichlet coefficients λπ(a) are multiplicative, i.e. λπ(ab) =
λπ(a)λπ(b) if a + b = oF .

Next, we consider the integral∫
F×\A×F

φξ

(
w

(
y

1

))
‖y‖s−

1
2 d×y,

where w =
(

1
−1

)
. A simple calculation using the fact that the central character ωπ is trivial on

F× shows that this is ∏
v

∫
F×v

Wξv

(
w

(
yv

1

))
‖yv‖

s− 1
2

v d×yv.

Now, using [JL70, Theorems 2.18, 5.15 and 6.4], keeping the notation there, we see that∫
F×v

Wξv

(
w

(
yv

1

))
‖yv‖

s− 1
2

v d×yv = ‖dv‖
1
2
−s

v ε(s, πv, ψv)L(1− s, π̃v). (4.9)
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Thus, we obtain∫
F×\A×F

φξ

(
w

(
y

1

))
‖y‖s−

1
2 d×y =N(d)s−

1
2 ε(s, π)Λ(1− s, π̃), (4.10)

where Λ(s, π̃) =
∏
v L(s, π̃v) and ε(s, π) =

∏
v ε(s, πv, ψv). For v <∞, the local epsilon factors

ε(s, πv, ψv) are given by

ε(s, πv, ψv) = ε(πv, ψv)ωπv(dv)‖dv‖2s−1
v q

f(πv)( 1
2
−s)

v , (4.11)

where ε(πv, ψv) is a complex number of unit modulus called the root number of πv. (Note that
ψv has conductor d−1

v = (d−1
v ).) Moreover, they satisfy the functional equation ε(s, πv, ψv)ε(1−

s, π̃v, ψv) = ωπv(−1) for all v.
Note that∫

F×\A×F
φξ

(
w

(
y

1

))
‖y‖s−

1
2 d×y =

∫
F×\A×F

φξ

((
y−1

1

)
w

)
ωπ(y)‖y‖s−

1
2 d×y (4.12)

and

φξ

((
y−1

1

)
w

)
ωπ(y) =

∑
γ∈F×

ãξ(y−1, γ)Wξ∞

((
γy−1
∞

1

)
w

)
ωπ∞(γy−1

∞ )−1,

where

ãξ(y−1, γ) =
∏
v<∞

Wξv

((
γy−1

v

1

)
w

)
ωπv(γy

−1
v )−1.

As above, we see that ãξ(y, γ) is invariant under y 7→ uy for u ∈
∏
v<∞ o×v , and ãξ(y, γ) = 0 unless

γ ∈ (y)N−1d−1. Thus, we have

φξ

((
y−1

1

)
w

)
ωπ(y) =

∑
γ∈o×F \((y)d−1N−1∩F×)

ãξ(y−1, γ)

×
∑
η∈o×F

Wξ∞

((
ηγy−1

∞
1

)
w

)
ωπ∞(ηγy−1

∞ )−1.

Substituting this into (4.12) and using (4.10), we obtain

N(d)s−
1
2 ε(s, π)Λ(1− s, π̃) =

h∑
j=1

∑
γ∈o×F \((tj)d−1N−1∩F×)

ãξ(t−1
j , γ)‖tj‖s−

1
2 ‖γ‖s−

1
2∞

×
∫
F×∞

Wξ∞

((
y∞

1

)
w

)
ωπ∞(y∞)−1‖y∞‖

1
2
−s
∞ d×y∞. (4.13)

Now, for any non-zero integral ideal a, set ãπ(a) = ãξ(t−1
j , γ)

√
N(a), where j is the unique

index such that a = (γ)Nd(tj)−1 for some γ ∈ F . Then it follows from (4.9), (4.11) and (4.13)
that

ωπ(d)εf (π, ψ)L(1− s, π̃) =
∑

a

ãπ(a)
N(a)1−s ,

where εf (π, ψ) =
∏
v<∞ ε(πv, ψv). Consequently,

ãπ(a) = ωπ(d)εf (π, ψ)λπ̃(a).
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Recall that εf (π, ψ) is of unit modulus, and satisfies the identity

εf (π, ψ)εf (π̃, ψ) =
∏
v<∞

ωπv(−1).

5. Proof of Theorem 1.1

With these preliminaries in place, we can now proceed with the proof. Firstly, it is well known that
for almost all places v of F the representation πv is unramified; for such a v, let

(αv
βv

)
∈GL2(C)

be the corresponding Satake parameters associated to πv. Since the products defining Λ(s, π ⊗ ω)
and Λ(s, π̃ ⊗ ω−1) converge for <(s)> σ, it is not hard to see that the inequality |αv|, |βv|6 qσ

′
v

must hold for some σ′ > 0. Moreover, from the functional equation, it follows that all poles are
confined to the strip {s ∈ C : 1− σ 6 <(s) 6 σ}.

5.1 Reduction to additively twisted L-functions
Let ω be an idèle class character. We aim to show that Λ(s, π ⊗ ω) is entire, so that our hypotheses
reduce to those of the traditional converse theorem. Let χω be the Größencharakter associated
to ω. Suppose that L(s, π) has Dirichlet coefficients λπ, so that

L(s, π) =
∑

a

λπ(a)N(a)−s.

The relationship between the classical and adelic formulations of the twisted L-functions is such
that

L(s, λπ × χω) =
∏
v<∞

ωv unramified

L(s, πv ⊗ ωv),

i.e. L(s, λπ × χω) is L(s, π ⊗ ω) with its Euler factors removed at all places v for which ωv is
ramified. When πv is unramified for all such v, the relevant Euler factors are 1, so the finite
twisted L-functions agree. However, when πv is also ramified, the local L-factor L(s, πv ⊗ ωv)
may be non-trivial, and removing it amounts to multiplying by a polynomial function of q−sv .
That could cancel a pole of Λ(s, π ⊗ ω), invalidating our subsequent arguments.

To get around this problem, we apply a version of the converse theorem [CKM04, Lecture 10,
Theorem 10.1] that allows one to twist only by those characters ω that are unramified at places
v in a given finite set S; in our case, we can choose S to be the set of finite places v for which πv
is ramified.4 The expense of doing so is that we only conclude quasi-automorphy of π, i.e. there is
an automorphic representation Π such that πv ∼= Πv for all v /∈ S. To conclude full automorphy,
we apply the standard ‘stability of γ-factors’ argument [CKM04, Lecture 6, § 5]. Precisely, we
fix a place u ∈ S and a local character ωu. We then consider idèle class characters ω which have
component ωu at u and are highly ramified at all other places v ∈ S. One knows then that the
local functional equations are the same for πv ⊗ ωv and Πv ⊗ ωv for all places v 6= u. We also
know that the global functional equations hold for Λ(s, π ⊗ ω) and Λ(s,Π⊗ ω). Together these
imply that the local functional equations for πu ⊗ ωu and Πu ⊗ ωu agree, and it follows that
πu ∼= Πu.

Thus, we may assume without loss of generality that ωv is unramified for all v ∈ S, so we
have L(s, π ⊗ ω) = L(s, λπ × χω). By Proposition 3.1, this L-series is a C-linear combination

4 This is essentially Weil’s version of the converse theorem [Wei71, Theorem 7], though he stated his results in
somewhat different language.
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of additive twists Laj (s, λπ, α, ω
−1
∞ ). We define a complete version of these additive twists by

attaching the same Γ-factors as in Λ(s, π ⊗ ω); precisely, we set

Λaj (s, λπ, α, ω
−1
∞ ) =N((α)−1aj)s−

1
2Laj (s, λπ, α, ω

−1
∞ )

∏
v|∞

L(s, πv ⊗ ωv).

(The exponential factor N((α)−1aj)s−
1
2 turns out to be a convenient normalization;

see (5.6) below.) Then Λ(s, π ⊗ ω) is a linear combination of terms of the form
N((α)−1aj)

1
2
−sΛaj (s, λπ, α, ω

−1
∞ ).

On the other hand, by the converse direction of Proposition 3.1, Laj (s, λπ, α, ω
−1
∞ ) is a

linear combination (with coefficients that are finite Dirichlet series) of multiplicative twists
L(s, λπ × χω′). Again using the fact that passing from adelic twists to classical twists involves
multiplying by a Dirichlet polynomial (which in this direction is harmless), we see that
Laj (s, λπ, α, ω

−1
∞ ) is also a combination of adelic twists L(s, π ⊗ ω′). Moreover, the ω′ that occur

in this expansion satisfy ω′∞ = ω∞, and it follows that the corresponding L-functions have the
same Γ-factors. Hence, Λaj (s, λπ, α, ω

−1
∞ ) is a linear combination of complete twisted L-functions

Λ(s, π ⊗ ω′), with coefficients that are entire. Our hypotheses thus imply that Λaj (s, λπ, α, ω
−1
∞ )

is meromorphic, with poles confined to the strip {s ∈ C : 1− σ 6 <(s) 6 σ}.
Note that the above remarks apply equally well with π, ω replaced by π̃, ω−1, respectively.

Because of the structure of the argument, it will be convenient to show first that Λaj (s, λπ̃, α, χ∞)
has no poles for <(s) 6 1/2 for arbitrary α, χ∞; thus, Λ(s, π̃ ⊗ ω−1) is holomorphic for <(s) 6 1/2
as well, for any ω as above. Reversing the roles of π and π̃ in the argument, it then follows from
the functional equation that Λ(s, π ⊗ ω) and Λ(s, π̃ ⊗ ω−1) are entire, as required.

5.2 Automorphy relations from unramified twists

We begin by showing that for any ξ ∈ Vπ that is K1(N)-invariant, φξ satisfies an automorphy
relation akin to (2.2) from the classical argument. We say that a representation π satisfies
condition Aω, where ω is a character of F×\A×F , if Λ(s, π ⊗ ω) and Λ(s, π̃ ⊗ ω−1) are entire
functions bounded in each vertical strip of finite width, and satisfy the functional equation

Λ(s, π ⊗ ω) = ε(s, π ⊗ ω)Λ(1− s, π̃ ⊗ ω−1).

For our particular π, note that the hypotheses of Theorem 1.1 and the Phragmén–Lindelöf
principle imply Aω for all ω that are unramified at every finite place. We recall a lemma due to
Piatetski-Shapiro, which generalizes a result proved by Jacquet and Langlands [JL70, Proof of
Theorem 11.3].

Lemma 5.1 [Pja75, Lemma 4]. Let X ⊂ A×F,f be a compact subgroup. Assume that M is a linear
subspace of Φ(π) and

φ

((
ax

1

))
= φ

((
a

1

))
for all φ ∈M, a ∈ A×F , x ∈X.

If Aω is satisfied for all characters of F×\A×F which are trivial on X, then, for any φ ∈M ,

φ

((
a

1

))
= φ

(
w

(
a

1

))
for all a ∈ A×F ,

where w =
(

1
−1

)
.
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We take X =
∏
v<∞ o×v and M to be the linear span of {R(1 (x∞,0)

1

)φξ : x∞ ∈ F∞}, where

Rg denotes the right regular action by g ∈GL2(AF ). Applying the conclusion of the lemma to
R(1 (x∞,0)

1

)φξ, we have

φξ

((
a

1

)(
1 (x∞, 0)

1

))
= φξ

(
w

(
a

1

)(
1 (x∞, 0)

1

))
for all x∞ ∈ F∞, a ∈ A×F . Choosing x∞ = a−1

∞ β∞ for some β ∈ F×, we have
(
a

1

)(
1 (x∞,0)

1

)
=(

a (β∞,0)
1

)
; finally, replacing a by (β∞a∞, af ), we get

φξ

((
(β∞a∞, af ) (β∞, 0)

1

))
= φξ

(
w

(
(β∞a∞, af ) (β∞, 0)

1

))
(5.1)

for all a ∈ A×F and β ∈ F×.

5.3 Producing additive twists

Define class group representatives aj = (t−1
j )Nd and a′j = (tj)d. Suppose that we are given a j,

1 6 j 6 h, a non-zero integral ideal q and a continuous character χ∞ : Γq\F×∞→ S1; we regard
these data as fixed from now on, and will not explicitly indicate their dependence in various
expressions. Set χ′∞ = ωπ∞χ∞ and choose ξ ∈ Vπ as described in § 4 so that ξv is the new vector
at all finite v and ∫

F×v

Wξv

((
y

1

))
χ′v(y)−1‖y‖s−

1
2

v d×y = L(s, πv ⊗ χ′−1
v )

for v|∞. With this choice fixed, we define, for α ∈ ajdq
−1 ∩ F× and y ∈ F×∞,

Φ(y, α) = χ′∞(y)−1φξ

((
(β∞y, tj) (β∞, 0)

1

))
,

where β =−α−1. Further, let T be a finite subset of (1 + q) ∩ F× containing 1, to be chosen
later, and set

q′ = q ∩N ∩
⋂
λ∈T

(λβ−1)a′jd.

Then λ−1β ∈ a′jdq
′−1 ∩ F× for every λ ∈ T , and χ′∞ factors through Γq′\F×∞. We have

Φ(y, α) = χ′∞(y)−1
∑
γ∈F×

Wξ

((
γ(β∞y, tj) γ(β∞, 0)

1

))

= χ′∞(y)−1
∑
γ∈F×

ψ∞(γβ)aξ(tj , γ)Wξ∞

((
γβy

1

))
, (5.2)

where aξ(a, γ) =
∏
v<∞Wξv((

γvav
1)) and Wξ∞ =

∏
v|∞Wξv . For v <∞, we saw in § 4.4 that

Wξv((
a

1)) = 0 for a /∈ d−1
v , where d−1

v is the conductor of ψv. Further, we break the sum over γ
into equivalence classes modulo o×F , to get

Φ(y, α) = χ′∞(y)−1
∑

γ∈o×F \(a
′−1
j ∩F×)

aξ(tj , γ)
∑
η∈o×F

ψ∞(ηγβ)Wξ∞

((
ηγβy

1

))
.
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Since γβ ∈ dq′−1, the map η 7→ ψ∞(ηγβ) factors through Γq′\o×F , and thus

Φ(y, α) = χ′∞(y)−1
∑

γ∈ o×F \(a
′−1
j ∩F×)

aξ(tj , γ)
∑

η∈Γq′\o
×
F

ψ∞(ηγβ)
∑
ε∈Γq′

Wξ∞

((
εηγβy

1

))
. (5.3)

We consider the integral

1
[o×F : Γq′ ]

∫
Γq′\F

×
∞

Φ(y, α)‖y‖s−
1
2∞ d×y. (5.4)

In view of the bound on the Satake parameters of π, it will be clear from the arguments below
that this converges for <(s) sufficiently large. Substituting (5.3) into this expression, we have

1
[o×F : Γq′ ]

∫
Γq′\F

×
∞

∑
γ∈o×F \(a

′−1
j ∩F×)

aξ(tj , γ)
∑

η∈Γq′\o
×
F

ψ∞(ηγβ)

×
∑
ε∈Γq′

Wξ∞

((
εηγβy

1

))
χ′∞(y)−1‖y‖s−

1
2∞ d×y.

Combining the integral and the sum over Γq′ , and making the change of variables y 7→ (γηβ)−1y,
we obtain

‖β‖
1
2
−s
∞

∑
γ∈o×F \(a

′−1
j ∩F×)

‖γ‖
1
2
−s
∞ aξ(tj , γ)
[o×F : Γq′ ]

∑
η∈Γq′\o

×
F

ψ∞(ηγβ)χ′∞(ηγβ)

×
∫
F×∞

Wξ∞

((
y

1

))
χ′∞(y)−1‖y‖s−

1
2∞ d×y.

Note that the inner sum 1/[o×F : Γq]
∑

η∈Γq′\o
×
F
ψ∞(ηγβ)χ′∞(ηγβ) is precisely eq′((γβ), χ′∞). Thus,

we get

‖β‖
1
2
−s
∞

∑
γ∈o×F \(a

′−1
j ∩F×)

aξ(tj , γ)eq′((γβ), χ′∞)

‖γ‖s−
1
2∞

∫
F×∞

Wξ∞

((
y

1

))
χ′∞(y)−1‖y‖s−

1
2∞ d×y. (5.5)

As shown in § 4.4,

aξ(tj , γ) =
λπ(a)√
N(a)

,

where a = (γ)a′j , so that

∑
γ∈o×F \(a

′−1
j ∩F×)

aξ(tj , γ)eq′((γβ), χ′∞)

‖γ‖s−
1
2∞

=N(a′j)
s− 1

2

∑
a∼a′j

λπ(a)eq′(aa′−1
j (β), χ′∞)

N(a)s
.

This is precisely the additive twist N(a′j)
s− 1

2La′j
(s, λπ, β, χ′∞). Moreover, the integral in (5.5)

equals
∏
v|∞ L(s, πv ⊗ χ′−1

v ). Putting everything together, we have

1
[o×F : Γq′ ]

∫
Γq′\F

×
∞

Φ(y, α)‖y‖s−
1
2∞ d×y

=N((β)−1a′j)
s− 1

2La′j
(s, λπ, β, χ′∞)

∏
v|∞

L(s, πv ⊗ χ′−1
v ) = Λa′j

(s, λπ, β, χ′∞). (5.6)
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For future reference, we note that if we replace (y, α) in this analysis by (λ−1y, λα) for some
λ ∈ T (and hence also replace β by λ−1β), we arrive at

1
[o×F : Γq′ ]

∫
Γq′\F

×
∞

Φ(λ−1y, λα)‖y‖s−
1
2∞ d×y =N((λ))s−

1
2 Λa′j

(s, λπ, λ−1β, χ′∞).

5.4 Taylor expansions

We now recompute (5.4) using (5.1). For any y ∈ A×F , the Iwasawa decomposition yields

w

(
(β∞y, tj) (β∞, 0)

1

)
=
(
z

z

)(
y′ x

1

)
k,

where x ∈ AF , y′, z ∈ A×F and k is an element of
∏
v|∞ Kv ·

∏
v<∞ GL2(ov). A calculation shows

that we may take

y′v =

t
−1
j if v <∞,
− αvyv

1 + yvyv
if v|∞, xv =

0 if v <∞,
αv

1 + yvyv
if v|∞,

zv =

{
tj if v <∞,
α−1
v

√
1 + yvyv if v|∞,

kv =


w if v <∞,

1√
1 + yvyv

(
1 −yv
yv 1

)
if v|∞.

Then

Φ(y, α) = χ′∞(y)−1φξ

((
z

z

)(
y′ x

1

)
k

)
=
∑
γ∈F×

χ′∞(y)−1Wξ

((
z

z

)(
γy′ γx

1

)
k

)

=
∑
γ∈F×

χ′∞(y)−1ωπ(γ−1z)ψ(γx)Wξ

((
γy′

1

)
k

)
,

where we have used our assumption that ωπ factors through F×\A×F . Thus,

Φ(y, α) =
∑
γ∈F×

ãξ(y′, γ)χ′∞(y)−1ωπ∞(γ−1z)ψ∞(γx)Wξ∞

((
γy′

1

)
k

)
, (5.7)

where

ãξ(y′, γ) =
∏
v<∞

ωπv(γvy
′
v)
−1Wξv

((
γvy
′
v

1

)
w

)
.

Recall that the support of the function Wξv

(( ·
1

)
w
)

is d−1
v N−1

v . Since y′v = t−1
j for v <∞, we

may rewrite (5.7) as

Φ(y, α) =
∑

γ∈a−1
j ∩F×

ãξ(t−1
j , γ)χ′∞(y)−1ωπ∞(γ−1z)ψ∞(γx)Wξ∞

((
γy′

1

)
k

)
.

Note that for v|∞ we have

ωπv(γ
−1z) = ωπv(γα)−1ωπv(

√
1 + yvyv)
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and

ψv(γx) = ψv(αγ)ψv

(
−αvγvyvyv

1 + yvyv

)
.

Recalling that ω−1
π∞χ

′
∞ = χ∞, we therefore have

Φ(y, α) = χ′∞(−1)
∑

γ∈a−1
j ∩F×

ãξ(t−1
j , γ)χ∞(γα)ψ∞(γα)

∏
v|∞

Φv(yv, γvαv), (5.8)

where

Φv(y, A) = χ′v(−Ay)−1ωπv(
√

1 + yy)ψv

(
− Ayy

1 + yy

)
Wξv

(− Ay
1+yy

1

) (
1 −y
y 1

)
√

1 + yy


for any y, A ∈ F×v .

Although Φ(y, α) is invariant under y 7→ εy for any ε ∈ Γq′ , that is not apparent from the
right-hand side of (5.8). This will be remedied in the process of taking a linear combination
over different choices of α. However, in so doing we must carry out the arguments in a different
order from the classical case, taking the linear combination before we take the Mellin transform.
The key results concerning the Taylor expansion of (5.8) that we need in order to complete the
proof are contained in the following lemma; we postpone its rather technical proof until the next
section.

Lemma 5.2. (i) For v ∈ SC, there are polynomials Pv(s;m, n) such that

Φv(y, A) = OM,K(|y|M‖Ay‖−Kv ) +
M−1∑
m=0

∑
−m6n6m

n≡m (mod 2)

‖A‖−m/2v θv(A)−n

2πi

×
∫
<(s)= 1

2

Pv(s;m, n)L(s, π̃v ⊗ χ−1
v ⊗ θ−nv )‖Ay‖(m/2)+ 1

2
−s

v ds

for all M ∈ Z>0, K ∈ R>0 and y, A ∈ F×v with |y|< 1
2 . In particular, for m even,

Pv(s;m, 0) =
(

(2πi)m/2

(m/2)!

)2L((m/2) + 1− s, πv ⊗ χv)
L(1− s, πv ⊗ χv)

.

(ii) For v ∈ SR, there are polynomials Pv(s;m) such that

Φv(y, A) = OM,K(|y|M‖Ay‖−Kv )

+
∑
m∈2Z

06m/2<M

A−m/2

2πi

∫
<(s)= 1

2

Pv(s;m)L(s, π̃v ⊗ χ−1
v ⊗ sgnm/2v )‖Ay‖(m/2)+ 1

2
−s

v ds

for all M ∈ Z>0, K ∈ R>0 and y, A ∈ F×v with |y|< 1
2 . In particular, for m≡ 0 (mod 4),

Pv(s;m) =
(2πi)m/2

(m/2)!
L((m/2) + 1− s, πv ⊗ χv)

L(1− s, πv ⊗ χv)
.

We express the conclusion of the lemma in more compact notation as follows. For each v ∈ SR,
let µv : F×v → C× be a quasi-character of the form µv(y) = ymv/2 for some mv ∈ 2Z>0, and put
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deg(µv) =mv/2 and

Iv(y, µv) =
1

2πi

∫
<(s)= 1

2

Pv(s;mv)L(s, π̃v ⊗ χ−1
v ⊗ sgnmv/2v )‖y‖(mv/2)+ 1

2
−s

v ds,

where Pv is as given by the lemma. Similarly, for v ∈ SC, let µv(y) = ‖y‖mv/2v θv(y)nv =
y(mv+nv)/2y(mv−nv)/2 for some mv ∈ Z>0, nv ∈mv + 2Z with |nv|6mv, and put deg(µv) =mv

and

Iv(y, µv) =
1

2πi

∫
<(s)= 1

2

Pv(s;mv, nv)L(s, π̃v ⊗ χ−1
v ⊗ θ−nvv )‖y‖(mv/2)+ 1

2
−s

v ds.

Then, for each v|∞, we have

Φv(y, A) =OM,K(|y|M‖Ay‖−Kv ) +
∑

µv :deg(µv)<M

µv(A)−1Iv(Ay, µv).

Next, define µ : F×∞→ C× by µ(y) =
∏
v|∞ µv(yv), and put deg(µ) =

∑
v|∞ deg(µv), I(y, µ) =∏

v|∞ Iv(yv, µv). Note that µ is a monomial of total degree deg(µ) in the [F : Q] variables yv for
v ∈ SR and yv, yv for v ∈ SC. Let RM denote the set of all such µ with deg(µ)<M . Multiplying
the series given by Lemma 5.2 over all v|∞, we have∏

v|∞

Φv(yv, Av) =OM,K

(
‖Ay‖−K∞ max

v|∞
|yv|M

)
+
∑
µ∈RM

µ(A)−1I(Ay, µ)

for any y, A ∈ F×∞ with maxv|∞ |yv|< 1
2 . Moreover, replacing (y, A) by (λ−1y, λA) for some λ ∈ T ,

we have∏
v|∞

Φv(λ−1
v yv, λvAv) =OM,K,T

(
‖Ay‖−K∞ max

v|∞
|yv|M

)
+
∑
µ∈RM

µ(λA)−1I(Ay, µ), (5.9)

provided that y satisfies

max
v|∞
|yv|< δT =

1
2

min
λ∈T

min
v|∞
|λv|. (5.10)

Note also that the implied constant in (5.9) now depends on the set T .
Let cλ ∈ C for each λ ∈ T . Substituting (5.9) into (5.8), we have∑

λ∈T
cλχ∞(λ)−1Φ(λ−1y, λα) =OM,K,T

(
max
v|∞
|yv|M

∑
γ∈a−1

j ∩F×

∑
λ∈T
|cλãξ(t−1

j , γ)| · ‖γαy‖−K∞
)

+ χ′∞(−1)
∑

γ∈a−1
j ∩F×

ãξ(t−1
j , γ)χ∞(γα)ψ∞(γα)

∑
µ∈RM

∑
λ∈T

cλµ(λγα)−1I(γαy, µ). (5.11)

Lemma 5.3. Let M ∈ Z>0 and µ0 ∈RM . Then there is a finite subset T ⊂ (1 + q) ∩ F× and
coefficients cλ ∈ C for each λ ∈ T such that∑

λ∈T
cλµ(λ)−1 =

{
1 if µ= µ0,

0 if µ 6= µ0

for all µ ∈RM .

Proof. Let τi : F → C, 1 6 i6 [F : Q], be the distinct field embeddings of F into C and τ :
F → C[F :Q] the ‘canonical embedding’ τ = (τ1, . . . , τ[F :Q]). It is well known that the image of
any non-zero integral ideal under τ is a lattice of full rank, and it follows easily that the
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set S = {τ(λ−1) : λ ∈ (1 + q) ∩ F×} is Zariski dense in C[F :Q]. Moreover, as noted above, µ(λ−1)
is a monomial function of τ(λ−1) of total degree deg(µ).

Next, consider the vector space V of functions f :RM → C. To each λ ∈ (1 + q) ∩ F× we
associate the function fλ ∈ V defined by fλ(µ) = µ(λ−1), and define V ′ ⊂ V to be the span
of the fλ. If V ′ 6= V , then there is a non-zero linear functional L : V → C which vanishes on V ′.
Note that L evaluated at fλ is a polynomial function of τ(λ−1), and hence its existence contradicts
the Zariski density of S. Therefore, V ′ = V , and the conclusion follows by choosing T such that
{fλ : λ ∈ T} is a basis. 2

We now fix m0 ∈ 4Z with 0 6m0 <M , and take µ0(y) = ‖y‖m0/2
∞ in Lemma 5.3. Then (5.11)

simplifies to∑
λ∈T

cλχ∞(λ)−1Φ(λ−1y, λα)

= EM,m0,α(y) + χ′∞(−1)
∑

γ∈a−1
j ∩F×

ãξ(t−1
j , γ)χ∞(γα)ψ∞(γα)‖γα‖−m0/2

∞ I(γαy, µ0), (5.12)

where EM,m0,α(y) is defined by this equation and satisfies

EM,m0,α(y)�M,K,m0 max
v|∞
|yv|M

∑
γ∈a−1

j ∩F×
|ãξ(t−1

j , γ)| · ‖γαy‖−K∞ .

Applying the same folding analysis as before, the sum over γ in (5.12) can be factored as

χ′∞(−1)
∑

γ∈ o×F \(a
−1
j ∩F×)

ãξ(t−1
j , γ)

∑
η∈Γq′\o

×
F

ψ∞(ηγα)χ∞(ηγα)‖γα‖−m0/2
∞

∑
ε∈Γq′

I(εηγαy, µ0).

Multiplying this part by ‖y‖s−
1
2∞ /[o×F : Γq′ ], integrating over Γq′\F×∞ and unfolding the sum over

ε, we get

χ′∞(−1)
∑

γ∈ o×F \(a
−1
j ∩F×)

ãξ(t−1
j , γ)eq′((γα), χ∞)‖γα‖

1
2
−(m0/2)−s
∞

∫
F×∞

I(y, µ0)‖y‖s−
1
2∞ d×y. (5.13)

Note that ∫
F×∞

I(y, µ0)‖y‖s−
1
2∞ d×y = P

(
s+

m0

2
;m0

)
L

(
s+

m0

2
, π̃∞ ⊗ χ−1

∞

)
,

where

P (s;m0) =
∏
v∈SR

Pv(s;m0)
∏
v∈SC

Pv(s;m0, 0)

=
(

(2πi)m0/2

(m0/2)!

)[F :Q]L(1− s+ (m0/2), π∞ ⊗ χ∞)
L(1− s, π∞ ⊗ χ∞)

. (5.14)

Recall also that the Fourier coefficients ãξ(t−1
j , γ) are related to the Dirichlet coefficients λπ̃ of

L(s, π̃) via

ãξ(t−1
j , γ) = ωπ(d)εf (π, ψ)

λπ̃(a)√
N(a)

,

where a = (γ)aj . Hence, (5.13) is precisely κP (s+ (m0/2);m0)Λaj (s+ (m0/2), λπ̃, α, χ∞), where
κ= χ′∞(−1)ωπ(d)εf (π, ψ).
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Moreover, choosing K = σ + 1, the error term converges and gives the estimate

EM,m0,α(y)�M,m0,α max
v|∞
|yv|M‖y‖−K∞ (5.15)

for any y satisfying (5.10). It is now clear from (5.12) that EM,m0,α factors through Γq′\F×∞ and
decays rapidly as ‖y‖∞→∞. Hence, the integral

HM,m0,α(s) =
1

[o×F : Γq′ ]

∫
Γq′\F

×
∞

EM,m0,α(y)‖y‖s−
1
2∞ d×y

converges for <(s) sufficiently large. Let F 1
∞ = {y ∈ F∞ : ‖y‖∞ = 1}. Then any y ∈ F×∞ can be

expressed as t1/[F :Q]y′, where t= ‖y‖∞ and y′ ∈ F 1
∞. Thus,

HM,m0,α(s) =
[F : Q]

[o×F : Γq′ ]

∫ ∞
0

ts−
1
2

∫
Γq′\F 1

∞

EM,m0,α(t1/[F :Q]y) d×y
dt

t
.

Fix a compact fundamental domain Fq′ for Γq′\F 1
∞ and set δ′T = infy∈Fq′ minv|∞(δT /|yv|)[F :Q].

Then, by (5.15), the inner integral is OM,m0,α(tM/[F :Q]−K) for t < δ′T , and it follows that HM,m0,α

is holomorphic for s > K + 1
2 − (M/[F : Q]).

Putting this together with the analysis of the left-hand side, we have

κP

(
s+

m0

2
;m0

)
Λaj

(
s+

m0

2
, λπ̃, α, χ∞

)
=
∑
λ∈T

cλχ∞(λ)−1N((λ))s−
1
2 Λa′j

(s, λπ, λ−1β, χ′∞)−HM,m0,α(s).

Choosingm0 > 4σ − 2 andM >max(m0, [F : Q](m0 + 2σ + 2K − 1)/2), we see that P (s;m0)Λaj

(s, λπ̃, α, χ∞) is entire. Finally, in view of (5.14), note that the zeros of P (s;m0) are among the
poles of L(1− s, π∞ ⊗ χ∞). As observed in § 4.3, since πv is unitary for every v|∞, there are
no such poles for <(s) 6 1

2 , and it follows that Λaj (s, λπ̃, α, χ∞) is holomorphic for <(s) 6 1
2 , as

required.

5.5 Proof of Lemma 5.2

Note first that we may express the result in terms of πv rather than π̃v, thanks to the isomorphism
π̃v ⊗ χ−1

v
∼= πv ⊗ χ′−1

v ; this is more convenient since our test functions are chosen from the
Whittaker model for πv. Moreover, it is easy to see that if the conclusions of Lemma 5.2 hold for
some choice of χv then they hold for | · |νχv as well, for any ν ∈ iR. Hence, we may assume without
loss of generality that ν(ωπv) + 2ν(χv) = 0. With this normalization, a short computation shows
that the polynomials that we expect are

Pv(s;m, 0) = (−1)m/2
(
s− 1− |k(πv)+k(ωπv )−2k(χ′v)|

4 + ν(πv)
m/2

)
×
(
s− 1− |k(πv)−k(ωπv )+2k(χ′v)|

4 − ν(πv)
m/2

)
, (5.16)
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for v ∈ SC and m even, and

Pv(s;m) =



(−4)m/4(m/2
m/4

) (
s−1−|ε(χ′v)−ε(πv)|+ν(πv)

2

m/4

)(
s−1−|ε(χ′v)−ε(πv)|−ν(πv)

2

m/4

)
if v ∈ S0,

(−4)m/4(m/2
m/4

) (
s+χ′v(−1)ν(πv)−1

2

m/4

)(
s−χ′v(−1)ν(πv)−2

2

m/4

)
if v ∈ S1,

(−1)m/4
(
s− k(πv)+1

2

m/2

)
if v ∈ Sd

(5.17)

for v ∈ SR and m≡ 0 (mod 4).

5.5.1 Complex places. Let notation be as in § 4.2. Our first task is to get a better
understanding of all of the Whittaker functions WN,k, since it is not only the boundary ones
that play a role. It is easiest to do this via their Mellin transforms; precisely, we define

f̃N,k(s) =
∫
F×v

fN,k(|z|)‖z‖sv d×z,

so that

fN,k(t) =
1

2πi

∫
<(s)=σ0

f̃N,k(s)t1−2s ds (5.18)

for t > 0 and any σ0 > 0 sufficiently large. Then the differential equations (4.5) become

4πi(N + k)f̃N,k−2(s) = 16π2f̃N,k

(
s+

1
2

)
−
[(

2s− 1− k

2

)2

− p2

]
f̃N,k

(
s− 1

2

)
(5.19)

and

−4πi(N − k)f̃N,k+2(s) = 16π2f̃N,k

(
s+

1
2

)
−
[(

2s− 1 +
k

2

)2

− q2

]
f̃N,k

(
s− 1

2

)
, (5.20)

where we write p= 2ν(πv) + k(πv)/2, q = 2ν(πv)− (k(πv)/2).

Next, let

γk(s) = ΓC

(
s+ ν(πv) +

|k − k(πv)|
4

)
ΓC

(
s− ν(πv) +

|k + k(πv)|
4

)
and

FN,k(s) =
f̃N,k(s)
γk(s)

.
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Up to a shift, γk(s) is the L-factor of πv twisted by any character that is not orthogonal to WN,k.
In terms of FN,k, the differential equations become

−N + k

4πi
FN,k−2(s) =



FN,k(s+ 1/2)− FN,k(s− 1/2) if k 6−k(πv),

2s− 1 + k/2 + q

4π
FN,k(s+ 1/2)

− 2s− 1− k/2 + p

4π
FN,k(s− 1/2) if −k(πv)< k 6 k(πv),

(2s− 1 + k/2)2 − q2

16π2
FN,k(s+ 1/2)

− (2s− 1− k/2)2 − p2

16π2
FN,k(s− 1/2) if k > k(πv)

and

N − k
4πi

FN,k+2(s) =



(2s− 1− k/2)2 − p2

16π2
FN,k(s+ 1/2)

− (2s− 1 + k/2)2 − q2

16π2
FN,k(s− 1/2) if k <−k(πv),

2s− 1− k/2 + p

4π
FN,k(s+ 1/2)

− 2s− 1 + k/2 + q

4π
FN,k(s− 1/2) if −k(πv) 6 k < k(πv),

FN,k(s+ 1/2)− FN,k(s− 1/2) if k > k(πv).

In particular, we have FN,±N (s+ 1/2)− FN,±N (s− 1/2) = 0, i.e. FN,±N is periodic with period 1.
From Stirling’s formula and the fact that f̃N,k must decay in vertical strips (since WN,k is
smooth), it follows that FN,±N is constant. A simple inductive argument then shows that FN,k is a
polynomial of degree (N −max(k(πv), |k|))/2 and, if we normalize matters so that FN,l is monic
for some l ∈ [−N, N ], then FN,k has leading coefficient (2π)(max(k(πv),|k|)−max(k(πv),|l|))/2i(k−l)/2.
From these facts, it is easy to verify the formulas for fN,k given in § 4.2.

Since πv is unitary, f̃N,k(s) = FN,k(s)γk(s) is holomorphic in a right half-plane <(s)> 1
2 − δ

for some δ > 0, as noted in § 4.3. It follows from Stirling’s formula that we have

f̃N,k(s)�πv ,N,k,<(s),ε e
−(π−ε)|s|

for fixed ε > 0 and any s ∈ C with fixed real part <(s) > 1
2 . We shift the contour of (5.18) to

<(s) =K + 1
2 for some K ∈ R>0 and differentiate to obtain

taf
(a)
N,k(t)

a!
=

1
2πi

∫
<(s)=K+ 1

2

(
1− 2s
a

)
f̃N,k(s)t1−2s ds

�πv ,N,k,K,ε t
−2K

∫
<(s)=K+ 1

2

∣∣∣∣(1− 2s
a

)∣∣∣∣ e−(π−ε)|s| |ds|.

Note that ∣∣∣∣(1− 2s
a

)∣∣∣∣=
∣∣∣∣(2s+ a− 2

a

)∣∣∣∣6 (|2s− 1|+ a− 1
a

)
6 2|2s|+a.
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Since 4< eπ, we may choose ε small enough that the integral converges, giving the estimate

taf
(a)
N,k(t)

a!
�πv ,N,k,K 2at−2K (5.21)

for all a ∈ Z>0, K ∈ R>0.

Next, we compute the right action of 1/
√

1 + yy
(1 −y
y 1

)
on Wξv =WN,l, where l =−k(ωπv) +

2k(χ′v) = k(ωπv) + 2k(χv). Note that

(
X Y

)(1 −y
y 1

)
=
(
X + yY Y − yX

)
,

so that X(N+l)/2Y (N−l)/2 is mapped to

(X + yY )(N+l)/2(Y − yX)(N−l)/2

(1 + yy)N/2

= (1 + yy)−N/2
(N+l)/2∑
j1=0

(N−l)/2∑
j2=0

(N+l
2

j1

)(N−l
2

j2

)
yj1(−y)j2X((N+l)/2)+j2−j1Y ((N−l)/2)+j1−j2

= (1 + yy)−N/2
(N+l)/2∑
j1=0

(N−l)/2∑
j2=0

(−1)j2
(N+l

2

j1

)(N−l
2

j2

)
× |y|j1+j2θv(y)j1−j2X((N+l)/2)+j2−j1Y ((N−l)/2)+j1−j2 .

Thus, after a short computation using our assumption that ν(ωπv) + 2ν(χv) = 0, we have

χ′v(−Ay)−1ωπv(
√

1 + yy)e
(
−trFv/R

Ayy

1 + yy

)
Wξv

(− Ay
1+yy

1

) (
1 −y
y 1

)
√

1 + yy


=
∑

j1,j2>0

(N+l
2

j1

)(N−l
2

j2

)
(−1)j2 |y|j1+j2θv(−A)j2−j1

× (1 + yy)−N/2e
(
−(A+A)yy

1 + yy

)
fN,l+2j1−2j1

(
|Ay|

1 + yy

)
. (5.22)

Next, using (5.21), we have

fN,k

(
|Ay|

1 + yy

)
=
∞∑
a=0

f
(a)
N,k(|Ay|)

a!

(
−|Ay|yy

1 + yy

)a

=
∑
a∈Z>0
2a<a0

f
(a)
N,k(|Ay|)

a!

(
−|Ay|yy

1 + yy

)a
+Oπv ,N,k,K

(
|Ay|−2K

∑
a∈Z>0
2a>a0

(
2yy

1 + yy

)a)

=
∑
a∈Z>0
2a<a0

f
(a)
N,k(|Ay|)

a!

(
−|Ay|yy

1 + yy

)a
+Oπv ,N,k,K,a0(‖Ay‖−Kv |y|a0)
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for any a0 ∈ Z>0 and y such that |y|< 1
2 , say. Multiplying by e(−(A+A)yy/(1 + yy)), which

has modulus 1, we have

fN,k

(
|Ay|

1 + yy

)
e

(
−(A+A)yy

1 + yy

)
=
∑
a∈Z>0
2a<a0

f
(a)
N,k(|Ay|)

a!

(
−|Ay|yy

1 + yy

)a
e

(
−(A+A)yy

1 + yy

)

+ Oπv ,N,k,K,a0(‖Ay‖−Kv |y|a0). (5.23)

Since e(x) is a bounded function of x ∈ R, Taylor’s theorem yields

e(x) =
b0−1∑
b=0

(2πix)b

b!
+Ob0(|x|b0)

for any b0 ∈ Z>0. Taking b0 = a0 − 2a and substituting into (5.23), we have

fN,k

(
|Ay|

1 + yy

)
e

(
−(A+A)yy

1 + yy

)

=
∑
a∈Z>0
2a<a0

f
(a)
N,k(|Ay|)

a!

(
−|Ay|yy

1 + yy

)a a0−2a−1∑
b=0

1
b!

(
−2πi(A+A)yy

1 + yy

)b

+ Oπv ,N,k,K,a0

( ∑
a∈Z>0
2a<a0

∣∣∣∣(Ay)af (a)
N,k(|Ay|)
a!

∣∣∣∣(yy)a|Ayy|a0−2a

)

+ Oπv ,N,k,K,a0(‖Ay‖−Kv |y|a0).

Applying (5.21) with K replaced by K + a0/2− a (and taking the maximum of the implied
constants over all choices of a), we see that the first error term can be absorbed into the second.
Expanding the bth power, we have

fN,k

(
|Ay|

1 + yy

)
e

(
−(A+A)yy

1 + yy

)

=
∑

a,b∈Z>0
2a+b<a0

b∑
t=0

(−1)a
|Ay|a+bf

(a)
N,k(|Ay|)
a!

(yy)a+(b/2)

(1 + yy)a+b

(2πi)b

b!

(
b

t

)
θv(−A)2t−b

+ Oπv ,N,k,K,a0(‖Ay‖−Kv |y|a0). (5.24)

Next, using the inequality∣∣∣∣(−a− b− N
2

r

)∣∣∣∣=
∣∣∣∣(r + a+ b+ N

2 − 1
r

)∣∣∣∣6 2r+a+b+N/2,
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we have

(yy)a+(b/2)(1 + yy)−a−b−(N/2) =
∞∑
r=0

(
−a− b− N

2

r

)
‖y‖(2a+2r+b)/2

v

=
∑
r∈Z>0

2a+2r+b<a0

(
−a− b− N

2

r

)
‖y‖(2a+2r+b)/2

v +ON,M

( ∑
r∈Z>0

2a+2r+b>a0

(2‖y‖v)(2a+2r+b)/2

)

=
∑
r∈Z>0

2a+2r+b<a0

(
−a− b− N

2

r

)
‖y‖(2a+2r+b)/2

v +ON,M (|y|a0)

for y with |y|< 1
2 . Substituting into (5.24) and applying (5.21) with K replaced by K + b/2,

we get

(1 + yy)−N/2fN,k

(
|Ay|

1 + yy

)
e

(
−(A+A)yy

1 + yy

)
=

∑
a,b,r∈Z>0

2a+2r+b<a0

b∑
t=0

(−1)a
|Ay|a+bf

(a)
N,k(|Ay|)
a!

(2πi)b

b!

(
b

t

)(
−a− b− N

2

r

)
‖y‖(2a+2r+b)/2

v

× θv(−A)2t−b +Oπv ,N,k,K,a0(‖Ay‖−Kv |y|a0). (5.25)

Now, any term of (5.22) with j1 + j2 >M becomes part of the final error term by
substituting (5.25) with a0 = 0. For j1 + j2 <M , we set a0 =M − j1 − j2. Putting everything
together, (5.22) becomes

∑
j1,j2,a,b,r,t∈Z>0

2a+2r+b+j1+j2<M
t6b

(−1)a
f

(a)
N,l+2j2−2j1

(|Ay|)
a!

(2πi)b

b!

(
b

t

)(
−a− b− N

2

r

)

× (−1)j2
(N+l

2

j1

)(N−l
2

j2

)
‖y‖(2a+2r+b+j1+j2)/2

v |Ay|a+bθv(−A)2t−b+j2−j1

+ Oπv ,N,k,K,M (‖Ay‖−Kv |y|M ). (5.26)

Now, writing m= 2a+ 2r + b+ j1 + j2 and n= b− 2t+ j1 − j2 (thus replacing the variable t),
this is

M−1∑
m=0

∑
n∈Z

|n|6m,n≡m (mod 2)

‖y‖m/2v θv(−A)−n
∑

j1,j2,a,b,r∈Z>0
2a+2r+b+j1+j2=m
|n+j2−j1|6b

× (−1)a+j2 |Ay|a+b
f

(a)
N,l+2j2−2j1

(|Ay|)
a!

(2πi)b

b!

(
b

b+j1−j2−n
2

)(N+l
2

j1

)(N−l
2

j2

)(
−a− b− N

2

r

)
+ Oπv ,N,k,K,M (‖Ay‖−Kv |y|M ).

By Mellin inversion, we have

|Ay|a+b
f

(a)
N,l+2j2−2j1

(|Ay|)
a!

=
1

2πi

∫
<(s)= 1

2

(
1− b− 2s

a

)
f̃N,l+2j2−2j1(s+ b/2)‖Ay‖

1
2
−s

v ds.
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Further, we replace a by ((m− b− j1 − j2)/2)− r to get

M−1∑
m=0

‖y‖m/2v

∑
n∈Z

|n|6m,n≡m (mod 2)

θv(−A)−n
1

2πi

∫
<(s)= 1

2

∑
j1,j2>0

(N+l
2

j1

)(N−l
2

j2

)

×
∑
b∈Z

|n+j2−j1|6b6m−j1−j2
b≡n+j2−j1 (mod 2)

(−1)j2
(2πi)b

b!

(
b

b+j1−j2−n
2

)

×
(m−b−j1−j2)/2∑

r=0

(−1)((m−b−j2−j1)/2)−r
(
r − m+b+N−j1−j2

2

r

)
×
(

1− b− 2s
m−b−j1−j2

2 − r

)
f̃N,l+2j2−2j1(s+ b/2)‖Ay‖

1
2
−s

v ds+Oπv ,N,k,K,M (‖Ay‖−Kv |y|M ).

Now,

m−b−j1−j2/2∑
r=0

(−1)((m−b−j2−j1)/2)−r
(
r − m+b+N−j1−j2

2

r

)(
1− b− 2s

m−b−j1−j2
2 − r

)

=
(m−b−j1−j2)/2∑

r=0

(−1)(m−b−j2−j1)/2

(m+b+N−j1−j2
2 − 1
r

)(
1− b− 2s

m−b−j1−j2
2 − r

)

= (−1)(m−b−j2−j1)/2

(m+N−b−j1−j2
2 − 2s

m−b−j1−j2
2

)
=
(

2s− N
2 − 1

m−b−j1−j2
2

)
. (5.27)

Substituting this yields
M−1∑
m=0

‖y‖m/2v

∑
n∈Z

|n|6m,n≡m (mod 2)

θv(−A)−n
1

2πi

∫
<(s)= 1

2

∑
j1,j2>0

(N+l
2

j1

)(N−l
2

j2

)

×
∑
b∈Z

|n+j2−j1|6b6m−j1−j2
b≡n+j2−j1 (mod 2)

(−1)j2
(2πi)b

b!

(
b

b+j1−j2−n
2

)(
2s− N

2 − 1
m−b−j1−j2

2

)

× f̃N,l+2j2−2j1(s+ b/2)‖Ay‖
1
2
−s

v ds+Oπv ,N,k,K,M (‖Ay‖−Kv |y|M ).

It is easy to verify that

f̃N,l+2j2−2j1(s+ t/2)
γl−2n(s)

= FN,l+2j2−2j1(s+ b/2)
γl+2j2−2j1(s+ b/2)

γl−2n(s)

is a polynomial function of s, so the whole expression takes the form
M−1∑
m=0

‖y‖m/2v

∑
n∈Z

|n|6m,n≡m (mod 2)

θv(A)−n
1

2πi

∫
<(s)= 1

2

Pv(s;m, n)γl−2n(s)‖Ay‖
1
2
−s

v ds

+ Oπv ,N,k,K,M (‖Ay‖−Kv |y|M ),

where Pv(s;m, n) is a polynomial. Moreover, since we have assumed that ν(ωπv) + 2ν(χv) = 0,
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we have
γl−2n(s) = L(s, πv ⊗ χ′−1

v ⊗ θ−nv ) = L(s, π̃v ⊗ χ−1
v ⊗ θ−nv ).

It remains to evaluate this polynomial when n= 0 and m is an even integer. In this case,
we have

Pv(s;m, 0) =
∑

j1,j2>0

(−1)j2
(N+l

2

j1

)(N−l
2

j2

)

×
∑
b∈Z

|j2−j1|6b6m−j1−j2
b≡j1+j2 (mod 2)

(2πi)b

b!

(
b

b+j1−j2
2

)(
2s− N

2 − 1
m−b−j1−j2

2

)
f̃N,l+2j2−2j1(s+ b/2)

γl(s)
.

We make the change of variables b= 2r − j1 − j2:∑
j1,j2,r∈Z
06j1,j26r

(−1)j2
(N+l

2

j1

)(N−l
2

j2

)
(2πi)2r−j1−j2

(r − j1)(r − j2)!

(
2s− N

2 − 1
m
2 − r

)
f̃N,l+2j2−2j1(s+ r + (j1 + j2)/2)

γl(s)
.

We evaluate this first in the case when N = k(πv). Then FN,k(s) is the constant i(k−l)/2,
so that

(2πi)2r−j1−j2

(r − j1)(r − j2)!
f̃N,l+2j2−2j1(s+ r + (j1 + j2)/2)

γl(s)

= (−1)r+j1
(2π)2r−j1−j2

(r − j1)(r − j2)!
γl+2j2−2j1(s+ r + (j1 + j2)/2)

γl(s)

= (−1)r+j1
(
s− ν(πv) + N+l

4 + r − j1 − 1
r − j1

)(
s+ ν(πv) + N−l

4 + r − j2 − 1
r − j2

)
= (−1)r+j2

(
−s+ ν(πv)− N+l

4

r − j1

)(
−s− ν(πv)− N−l

4

r − j2

)
.

This gives∑
j1,j2,r∈Z
06j1,j26r

(−1)r
(N+l

2

j1

)(N−l
2

j2

)(
2s− N

2 − 1
m
2 − r

)(
−s+ ν(πv)− N+l

4

r − j1

)(
−s− ν(πv)− N−l

4

r − j2

)
.

Applying the Chu–Vandermonde identity to the j1 and j2 sums, this simplifies to∑
r>0

(−1)r
(

2s− N
2 − 1

m
2 − r

)(
−s− ν(πv) + N−l

4

r

)(
−s+ ν(πv) + N+l

4

r

)
.

Finally, by Lemma A.1(i), this is

(−1)m/2
(
s+ ν(πv)− N−l

4 − 1
m/2

)(
s− ν(πv)− N+l

4 − 1
m/2

)
,

in agreement with (5.16).
Next, we handle the case l =−N . Then the only non-zero term in the sum over j1 is the one

with j1 = 0. Writing j in place of j2, we thus have∑
r>0

(
2s− N

2 − 1
m
2 − r

) min(r,N)∑
j=0

(−2πi)2r−j

r!(r − j)!

(
N

j

)
f̃N,2j−N (s+ r − j/2)

γ−N (s)
. (5.28)
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Set

GN,k(s) =
f̃N,k(s− k/4)
γN (s−N/4)

,

so that

f̃N,2j−N (s+ r − j/2)
γ−N (s)

=
GN,2j−N (s+ r −N/4)γN (s+ r −N/2)

γ−N (s)
(5.29)

and

GN,−N (s) = (2π)−N
(
N + k(πv)

2

)
!
(
N − k(πv)

2

)
!

×
(
s+ ν(πv) + 2N+k(πv)

4 − 1)
N+k(πv)

2

)(
s− ν(πv) + 2N−k(πv)

4 − 1)
N−k(πv)

2

)
.

Moreover, substituting into (5.20), we have

GN,k(s) =GN,k(s− 1)− i(N − k)
4π

GN,k+2(s). (5.30)

It follows that GN,k(s) is a polynomial of degree (N − k)/2.

We now consider the sum

Sr(s) =
N∑
j=0

j!
(−2πi)j

(
r

j

)(
N

j

)
GN,2j−N (s).

Substituting into (5.30), we have

Sr(s) = Sr(s− 1)−
N−1∑
j=0

(j + 1)!
(−2πi)j+1

(
r

j

)(
N

j + 1

)
GN,2j+2−N (s)

= Sr(s− 1)−
N∑
j=0

j!
(−2πi)j

(
r

j − 1

)(
N

j

)
GN,2j−N (s)

= Sr(s− 1)− Sr+1(s) + Sr(s),

since
(
r
j−1

)
=
(
r+1
j

)
−
(
r
j

)
. Hence, Sr+1(s) = Sr(s− 1), so by induction we have Sr(s) = S0(s−

r) =GN,−N (s− r).
By (5.29), we have

min(r,N)∑
j=0

(−2πi)2r−j

r!(r − j)!

(
N

j

)
f̃N,2j−N (s+ r − j/2)

γ−N (s)
=

(−4π2)r

r!2
Sr

(
s+ r − N

4

)
γN (s+ r −N/2)

γ−N (s)

=
(−4π2)r

r!2
GN,−N

(
s− N

4

)
γN (s+ r −N/2)

γ−N (s)
=

(−4π2)r

r!2
γN (s+ r −N/2)
γN (s−N/2)

= (−1)r
(
s+ ν(πv)− N+k(πv)

4 + r − 1
r

)(
s− ν(πv)− N−k(πv)

4 + r − 1
r

)
= (−1)r

(
−s− ν(πv) + N+k(πv)

4

r

)(
−s+ ν(πv) + N−k(πv)

4

r

)
.
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Finally, applying Lemma A.1(i), we have that Pv(s;m, 0) is

∑
r>0

(−1)r
(

2s− N
2 − 1

m
2 − r

)(
−s− ν(πv) + N+k(πv)

4

r

)(
−s+ ν(πv) + N−k(πv)

4

r

)

= (−1)m/2
(
s+ ν(πv)− N+k(πv)

4 − 1
m/2

)(
s− ν(πv)− N−k(πv)

4 − 1
m/2

)
,

as required.

The case l =N is handled by an entirely similar argument. Alternatively, using the
isomorphism πv ⊗ χ′−1

v
∼= π̃v ⊗ χ−1

v and working instead with the Whittaker model for π̃v
effectively replaces l and ν(πv) by their negatives, and thus the result for l =N follows formally
from that for l =−N .

5.5.2 Real places. Again let notation be as in § 4.2. The function that we must analyze is

χ′v(−Ay)−1ωπv(
√

1 + y2)e
(
− Ay2

1 + y2

)
Wξv

(− Ay
1+y2

1

) (
1 −y
y 1

)
√

1 + y2

.
We start by considering Wk in place of Wξv :

χ′v(−Ay)−1ωπv(
√

1 + y2)e
(
− Ay2

1 + y2

)
Wk

(− Ay
1+y2

1

) (
1 −y
y 1

)
√

1 + y2


= χ′v(−Ay)−1ωπv(

√
1 + y2)e

(
− Ay2

1 + y2

)
(1− iy)k

(1 + y2)k/2
Wk

((
− Ay

1+y2

1

))

= χ′v(−Ay)−1ωπv(
√
|Ay|)(1− i sgn(k)y)|k|

(1 + y2)|k|/2
e

(
− Ay2

1 + y2

)
fk

(
− Ay

1 + y2

)
. (5.31)

We apply a similar argument to that leading up to (5.26) in the complex case to derive the
Taylor expansion

(1− i sgn(k)y)|k|

(1 + y2)|k|/2
e

(
− Ay2

1 + y2

)
fk

(
− Ay

1 + y2

)
=Oπv ,k,K(‖Ay‖−Kv |y|M ) +

∑
a,b,r,j∈Z>0

2a+2r+b+j<M

(−1)ai−j sgn(k) (2πi)b

b!

×
(−Ay)a+bf

(a)
k (−Ay)

a!

(
−a− b− |k|2

r

)(
|k|
j

)
y2a+2r+b+j

for all y with |y|< 1
2 . Moreover, assuming that ν(ωπv) + 2ν(χv) = 0, we have χ′v(−Ay)−1ωπv

(
√
|Ay|) = χ′v(−1) = (−1)ε(χ

′
v). Substituting

ta+bf
(a)
k (t)
a!

=
∑

ε∈{0,1}

1
2πi

∫
<(s)= 1

2

f̃k(s+ b, ε)
(1

2 − b− s
a

)
sgn(t)b+ε‖t‖

1
2
−s

v ds,
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(5.31) thus becomes

Oπv ,k,K(‖Ay‖−Kv |y|M ) +
∑

a,b,r,j>0
2a+2r+b+j<M

1
2πi

∫
<(s)= 1

2

∑
ε∈{0,1}

sgn(−Ay)ε(χ
′
v)+b+ε‖Ay‖

1
2
−s

v

× (−1)ai−j sgn(k) (2πi)b

b!

(1
2 − b− s

a

)(
−a− b− |k|2

r

)(
|k|
j

)
f̃k(s+ b, ε)y2a+2r+b+j ds.

Next, we write 2a+ 2r + b+ j =m/2, where m ∈ 2Z>0, to get

Oπv ,k,K(‖Ay‖−Kv |y|M )

+
∑

m∈2Z>0

m/2<M

(−A)−m/2
∑

a,b,r,j>0
2a+2r+b+j=m/2

1
2πi

∫
<(s)= 1

2

∑
ε∈{0,1}

sgn(−Ay)ε(χ
′
v)+(m/2)+b+ε

× ‖Ay‖(m/2)+ 1
2
−s

v (−1)ai−j sgn(k) (2πi)b

b!

(1
2 − b− s

a

)(
−a− b− |k|2

r

)(
|k|
j

)
f̃k(s+ b, ε) ds

=Oπv ,k,K(‖Ay‖−Kv |y|M )

+
∑

m∈2Z>0

m/2<M

(−A)−m/2
∑
b,r,j>0

2r+b+j6m/2
b+j≡m/2 (mod 2)

1
2πi

∫
<(s)= 1

2

∑
ε∈{0,1}

sgn(−Ay)ε(χ
′
v)+j+ε

× ‖Ay‖(m/2)+ 1
2
−s

v (−1)m/2−b−j/2−ri−j sgn(k) (2πi)b

b!

×
( 1

2 − b− s
m/2−b−j

2 − r

)(−m/2−b+j−|k|
2 + r

r

)(
|k|
j

)
f̃k(s+ b, ε) ds.

Note that∑
r>0

(−1)((m/2−b−j)/2)−r
( 1

2 − b− s
m/2−b−j

2 − r

)(−m/2−b+j−|k|
2 + r

r

)
=
(
s− |k|+1

2
m/2−b−j

2

)
,

with the same proof as (5.27). Also, using (4.2), we see that

f̃k(s, ε) = i(ε−ε(πv))(1−sgn(k))f̃|k|(s, ε).

Substituting these, we have

Oπv ,k,K(‖Ay‖−Kv |y|M )

+
∑

m∈2Z>0

m/2<M

(−A)−m/2
∑
b,j>0

b+j6m/2
b+j≡m/2 (mod 2)

1
2πi

∫
<(s)= 1

2

∑
ε∈{0,1}

sgn(−Ay)ε(χ
′
v)+j+ε

× ‖Ay‖(m/2)+(1/2)−s
v ib−j+(ε−ε(πv)+j)(1−sgn(k)) (2π)b

b!

(
s− |k|+1

2
m/2−b−j

2

)(
|k|
j

)
f̃|k|(s+ b, ε) ds.

Now, considering Wξv = (Wk + (−1)ε(πv)+ε(χ′v)W−k)/2 with k > 0 in place of Wk selects the
term with ε≡ j + ε(χ′v) (mod 2). (This holds even when k = 0, since ε(χ′v) = ε(πv) and j = 0
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in that case.) Thus, we have

Oπv ,k,K(‖Ay‖−Kv |y|M ) +
∑

m∈2Z>0

m/2<M

(−A)−m/2
1

2πi

∫
<(s)= 1

2

‖Ay‖(m/2)+ 1
2
−s

v

×
∑
b,j>0

b+j6m/2
b+j≡m/2 (mod 2)

ib−j
(2π)b

b!

(
s− k+1

2
m/2−b−j

2

)(
k

j

)
f̃k(s+ b, m/2 + b+ ε(χ′v)) ds.

As in the complex case, we see that f̃k(s+ b, m/2 + b+ ε(χ′v)) is a polynomial function times
L(s, πv ⊗ χ′−1

v ⊗ sgnm/2v ) = L(s, π̃v ⊗ χ−1
v ⊗ sgnm/2v ), so the whole expression can be written in

the form

OM,K(|y|M‖Ay‖−Kv )

+
∑
m∈2Z

06m/2<M

A−m/2

2πi

∫
<(s)= 1

2

Pv(s;m)L(s, π̃v ⊗ χ−1
v ⊗ sgnm/2v )‖Ay‖(m/2)+(1/2)−s

v ds,

as required.

To compute Pv(s;m) for m divisible by 4, we write b= 2r + δ, j = 2t+ δ with δ ∈ {0, 1},
to get

Pv(s;m) =
∑

δ∈{0,1}

∑
r,t>0

(−1)r+t
(2π)2r+δ

(2r + δ)!

(
s− k+1

2
m
4 − δ − r − t

)(
k

2t+ δ

)
f̃k(s+ 2r + δ, δ + ε(χ′v))

L(s, πv ⊗ χ′−1
v )

.

(5.32)
We now break into cases according to whether v ∈ S0, v ∈ S1 or v ∈ Sd.

Weight 1 principal series. In this case we have k = 1,

f̃k(s, δ + ε(χ′v)) = ΓR(s+ δ + χ′v(−1)ν(πv))ΓR(s+ 1− δ − χ′v(−1)ν(πv))

and

L(s, πv ⊗ χ′−1
v ) = ΓR(s+ χ′v(−1)ν(πv))ΓR(s+ 1− χ′v(−1)ν(πv)),

so that

f̃k(s+ 2r + δ, δ + ε(χ′v))
L(s, πv ⊗ χ′−1

v )

= π−2r−δr!(r + δ)!
( s+2r+2δ+χ′v(−1)ν(πv)

2 − 1
r + δ

)( s+2r+1−χ′v(−1)ν(πv)
2 − 1
r

)
= (−π)−2r−δr!(r + δ)!

(
− s+χ′v(−1)ν(πv)

2

r + δ

)(
− s+1−χ′v(−1)ν(πv)

2

r

)
.

Moreover, only the t= 0 term contributes to (5.32), so we have

∑
δ∈{0,1}

∑
r>0

(−1)r+δ
22r+δ(
2r+δ
r

)( s− 1
m
4 − δ − r

)(
− s+χ′v(−1)ν(πv)

2

r + δ

)(
− s+1−χ′v(−1)ν(πv)

2

r

)
.
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Replacing r by r − δ in the inner sum and using the equality 22r−1/
(

2r−1
r−1

)
= 22r/

(
2r
r

)
for r > 1,

this is ∑
r>0

(−1)r
22r(
2r
r

)( s− 1
m
4 − r

)(
− s+χ′v(−1)ν(πv)

2

r

) ∑
δ∈{0,1}

(
− s+1−χ′v(−1)ν(πv)

2

r − δ

)

=
∑
r>0

(−1)r
22r(
2r
r

)( s− 1
m
4 − r

)(
− s+χ′v(−1)ν(πv)

2

r

)(
− s−1−χ′v(−1)ν(πv)

2

r

)
.

Applying Lemma A.1(ii), we have

Pv(s;m) =
(−4)m/4(m/2

m/4

) ( s−χ′v(−1)ν(πv)−2
2

m/4

)( s+χ′v(−1)ν(πv)−1
2

m/4

)
,

in agreement with (5.17).

Weight 0 principal series. If k = 0 (so that ε(χ′v) = ε(πv)), then we have t= δ = 0:∑
r>0

(−1)r
(2π)2r

(2r)!

(
s− 1

2
m
4 − r

)
f̃0(s+ 2r, ε(χ′v))
L(s, πv ⊗ χ′−1

v )
.

Note that

f̃0(s+ 2r, ε(χ′v))
L(s, πv ⊗ χ′−1

v )
=

ΓR(s+ 2r + ν(πv))ΓR(s+ 2r − ν(πv))
ΓR(s+ ν(πv))ΓR(s− ν(πv))

= π−2rr!2
( s+2r+ν(πv)

2 − 1
r

)( s+2r−ν(πv)
2 − 1
r

)
= π−2rr!2

(
− s+ν(πv)

2

r

)(
− s−ν(πv)

2

r

)
.

Therefore, by Lemma A.1(ii),

Pv(s;m) =
∑
r>0

(−1)r
22r(
2r
r

)( s− 1
2

m
4 − r

)(
− s+ν(πv)

2

r

)(
− s−ν(πv)

2

r

)

=
(−4)m/4(m/2

m/4

) ( s−ν(πv)−1
2

m/4

)( s+ν(πv)−1
2

m/4

)
,

as required.
If k = 2 (so that ε(χ′v) = 1− ε(πv)), we have∑

δ∈{0,1}

∑
r>0

(−1)r
(2π)2r+δ

(2r + δ)!

(
s− 3

2
m
4 − δ − r

)
2δ
f̃2(s+ 2r + δ, δ + ε(χ′v))

L(s, πv ⊗ χ′−1
v )

−
∑
r>0

(−1)r
(2π)2r

(2r)!

(
s− 3

2
m
4 − 1− r

)
f̃2(s+ 2r, ε(χ′v))
L(s, πv ⊗ χ′−1

v )
.

Note that

f̃2(s, ε(χ′v) + δ) =
(
s− 1

2

2π

)δ
ΓR(s+ 1− δ + ν(πv))ΓR(s+ 1− δ − ν(πv))
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and

L(s, πv ⊗ χ′−1
v ) = ΓR(s+ 1 + ν(πv))ΓR(s+ 1− ν(πv)),

so that

f̃2(s+ 2r + δ, ε(χ′v) + δ)
L(s, πv ⊗ χ′−1

v )

= π−2rr!2
(
s+ 2r + 1

2

2π

)δ( s+2r+1+ν(πv)
2 − 1
r

)( s+2r+1−ν(πv)
2 − 1
r

)
= π−2rr!2

(
s+ 2r + 1

2

2π

)δ(− s+1+ν(πv)
2

r

)(
− s+1−ν(πv)

2

r

)
.

Moreover, we calculate that∑
δ∈{0,1}

22r+δr!2

(2r + δ)!

(
s− 3

2
m
4 − δ − r

)(
s+ 2r +

1
2

)δ
− 22rr!2

(2r)!

(
s− 3

2
m
4 − 1− r

)

=
22r(
2r
r

)m/2 + 1
2r + 1

(
s− 1

2
m
4 − r

)
.

Therefore, applying Lemma A.1(iii), we get

Pv(s;m) =
∑
r>0

(−4)r(
2r
r

) m/2 + 1
2r + 1

(
s− 1

2
m
4 − r

)(
− s+1+ν(πv)

2

r

)(
− s+1−ν(πv)

2

r

)

=
(−4)m/4(m/2

m/4

) ( s−ν(πv)−2
2

m/4

)( s+ν(πv)−2
2

m/4

)
,

as required.

Discrete series. In this case we have k = k(πv) > 1 and

f̃k(s, δ + ε(χ′v)) = L(s, πv ⊗ χ′−1
v )

= ΓC

(
s+

k(πv)− 1
2

)
,

so that

f̃k(s+ 2r + δ, δ + ε(χ′v))
L(s, πv ⊗ χ′−1

v )
= (2π)−2r−δ(2r + δ)!

(
s+ k(πv)−1

2 + 2r + δ − 1
2r + δ

)
= (−2π)−2r−δ(2r + δ)!

(
−s− k(πv)−1

2

2r + δ

)
.

We make the change of variables 2r + δ = j2, 2t+ δ = 2j1 − j2 with 0 6 j2 6 2j1, to get

Pv(s;m) =
∑

j1,j2>0

(−1)j1
(
s− k(πv)+1

2
m
4 − j1

)(
k(πv)

2j1 − j2

)(
−s− k(πv)−1

2

j2

)

=
∑
j1>0

(−1)j1
(
s− k(πv)+1

2
m
4 − j1

)(
−s+ k(πv)+1

2

2j1

)
.
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Next, as a special case of (A5), we have(
−s+ k(πv)+1

2

2j1

)
=

22j1(
2j1
j1

)(− s
2 + k(πv)+1

4

j1

)(
− s

2 + k(πv)−1
4

j1

)
,

so, by Lemma A.1(ii), we arrive at

Pv(s;m) = (−1)m/4
2m/2(m/2
m/4

)( s
2 −

k(πv)+1
4

m/4

)( s
2 −

k(πv)+3
4

m/4

)
= (−1)m/4

(
s− k(πv)+1

2

m/2

)
,

as required.
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Appendix A. Binomial coefficients

The binomial coefficient polynomials
(
x
n

)
are defined for x ∈ C, n ∈ Z by(

x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
=

Γ(x+ 1)
n!Γ(x+ 1− n)

(A1)

for n> 0 and
(
x
n

)
= 0 for n < 0. These directly generalize the usual binomial coefficients

(
m
n

)
, and

it easy to see that many of the familiar properties hold in full generality, e.g.(
x+ 1
n

)
=
(
x

n

)
+
(

x

n− 1

)
,

(
x

n

)(
n

m

)
=
(
x

m

)(
x−m
n−m

)
and (

x+ y

n

)
=

n∑
k=0

(
x

k

)(
y

n− k

)
.

(The last one of these is known as the ‘Chu–Vandermonde identity’.) For some, one must exercise
caution, e.g.

(
m
n

)
=
(
m

m−n
)

holds when m ∈ Z>0, but not in general otherwise. On the other hand,
we have

(
x
n

)
= (−1)n

(
n−1−x

n

)
, which is new to the general setting.

We will also need the following less obvious identities.

Lemma A.1. For x, y ∈ C and n ∈ Z, we have:

(i)
n∑
r=0

(−1)r
(
x+ y + 1
n− r

)(
−x− 1
r

)(
−y − 1
r

)
= (−1)n

(
x

n

)(
y

n

)
;

(ii)
∑
r>0

(−4)r(
2r
r

) (x+ y

n− r

)(
−x
r

)(
−y − 1

2

r

)
=

(−4)n(
2n
n

) (x− 1
2

n

)(
y

n

)
;

(iii)
∑
r>0

(−4)r(
2r
r

) 2n+ 1
2r + 1

(
x+ y

n− r

)(
−x− 1

2

r

)(
−y − 1
r

)
=

(−4)n(
2n
n

) (x− 1
n

)(
y − 1

2

n

)
.
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Proof. For (i), we begin with the identity(
x

m

)(
x

n

)
=

m+n∑
k=max(m,n)

k!
(m+ n− k)!(k −m)!(k − n)!

(
x

k

)
(A2)

for x, m, n ∈ Z>0, which has the following combinatorial interpretation. Let X be a set of
cardinality x, and choose subsets of M , N of cardinality m, n, respectively. The number of ways
of making such a choice is the left-hand side,

(
x
m

)(
x
n

)
. On the right-hand side, we consider all

possibilities for the cardinality k of the union K =M ∪N . Given such a k, there are
(
x
k

)
ways of

choosing the elements of K among those of X; this is then multiplied by the number of ways
of dividing those elements among the three sets M ∩N , N\M and M\N , which is the trinomial
coefficient k!/(m+ n− k)!(k −m)!(k − n)!.

Thus, (A2) holds for all x ∈ Z>0. Since both sides are clearly polynomial functions of x and
Z>0 is Zariski dense in C, it in fact holds for all x ∈ C. Further, by the Chu–Vandermonde identity
we have

k!
(m+ n− k)!(k −m)!(k − n)!

=
(
k

m

)(
m

k − n

)
=
∑
r

(
k − n
m− r

)(
n

r

)(
m

k − n

)
=
∑
r

(
m

r

)(
n

r

)(
r

m+ n− k

)
.

Thus, (
x

m

)(
x

n

)
=
∑
k,r

(
m

r

)(
n

r

)(
r

m+ n− k

)(
x

k

)
=
∑
r

(
m

r

)(
n

r

)(
x+ r

m+ n

)
(A3)

for all x ∈ C. Next, from (A1), we see that(
x+ r

m+ n

)(
m+ n

n

)(
n

r

)
=
(
x+ r

r

)(
x

m

)(
x−m
n− r

)
.

Multiplying (A3) by
(
m+n
n

)
/
(
x
m

)
, we thus have(

m+ n

n

)(
x

n

)
=
∑
r

(
m

r

)(
x+ r

r

)(
x−m
n− r

)
or

(−1)n
(
−m− 1

n

)(
x

n

)
=
∑
r

(−1)r
(
−m− 1 + r

r

)(
x+ r

r

)(
x−m
n− r

)
,

which is the required identity with y =−m− 1. Since the negative integers are Zariski dense
in C, the identity holds for all x, y.

To prove (ii) and (iii), we first derive the identity

(−1)tx
x− t

(z − 1)2x−t d
t

dzt
(
√
z ± 1)2t−2x =

dt

dzt
(
√
z ∓ 1)2x (A4)

for z > 1 and t ∈ Z>0. This clearly holds for t= 0, since z − 1 = (
√
z + 1)(

√
z − 1). Hence, by

induction, it suffices to show that replacing t by t+ 1 in the left-hand side has the same effect
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as differentiating with respect to z. To that end, we have

d

dz

(−1)tx
x− t

(z − 1)2x−t d
t

dzt
(
√
z ± 1)2t−2x

=
(−1)tx
x− t

(z − 1)2x−t−1

(
(2x− t) d

t

dzt
(
√
z ± 1)2t−2x + (z − 1)

dt+1

dzt+1
(
√
z ± 1)2t−2x

)
.

By the Leibniz rule, we see that

(z − 1)
dt+1

dzt+1
(
√
z ± 1)2t−2x =

dt+1

dzt+1
((z − 1)(

√
z ± 1)2t+2−2x)− (t+ 1)

dt

dzt
(
√
z ± 1)2t−2x,

so that

d

dz

(−1)tx
x− t

(z − 1)2x−t d
t

dzt
(
√
z ± 1)2t−2x

=
(−1)tx
x− t

(z − 1)2x−t−1

(
(2x− 2t− 1)

dt

dzt
(
√
z ± 1)2t−2x +

dt+1

dzt+1
((z − 1)(

√
z ± 1)2t−2x)

)
.

On the other hand, replacing t by t+ 1 on the left-hand side of (A4) yields

(z − 1)2x−t−1 (−1)t+1x

x− t− 1
dt+1

dzt+1
(
√
z ± 1)2t+2−2x.

Thus, we must show the equality

(2x− 2t− 1)
dt

dzt
(
√
z ± 1)2t−2x +

dt+1

dzt+1
((z − 1)(

√
z ± 1)2t−2x)

=− x− t
x− t− 1

dt+1

dzt+1
(
√
z ± 1)2t+2−2x.

This follows from the directly verifiable identity

(2x− 1)(
√
z ± 1)−2x +

d

dz
((z − 1)(

√
z ± 1)−2x) =− x

x− 1
d

dz
(
√
z ± 1)2−2x

by changing x to x− t and applying dt/dzt.

Next, we show how (ii) and (iii) are deduced from (A4). First note that, by the identities

(−4)k

(2k + 1)
(

2k
k

) =
(−1)k

2
22k+1

(k + 1)
(

2k+1
k

) and
1

k + 1

(
x− 1
k

)
=

1
x

(
x

k + 1

)
,

(iii) is equivalent to∑
r>0

(−1)n−r
22r+1(
2r+1
r

)(x+ y

n− r

)(
−y
r + 1

)(
−x− 1

2

r

)
=−y

x

22n+1(
2n+1
n

)( x

n+ 1

)(
y − 1

2

n

)
.

Thus, (ii) and (iii) can be written in the common form∑
r>0

(−1)n−r
22r+δ(
2r+δ
r

)(x+ y

n− r

)(
−y + δ−1

2

r + δ

)(
−x− δ

2

r

)

=
(
−y
x

)δ 22n+δ(
2n+δ
n

)(x+ δ−1
2

n+ δ

)(
y − δ

2

n

)
for δ ∈ {0, 1}. Again, by a density argument, it is enough to show this when y = x− t for t ∈ Z>0,
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in which case the desired identity is∑
r>0

(−1)n−r
22r+δ(
2r+δ
r

)(2x− t
n− r

)(
t− x+ δ−1

2

r + δ

)(
−x− δ

2

r

)

=
(
t− x
x

)δ 22n+δ(
2n+δ
n

)(x+ δ−1
2

n+ δ

)(
x− 2t+δ

2

n

)
.

Working from (A1), we derive

22r+δ(
2r+δ
r

)(x+ δ−1
2

r + δ

)(
x− 2t+δ

2

r

)(
x− δ

2

t

)
=
(

2x
2r + δ

)(
x− 2r+δ

2

t

)
. (A5)

From the binomial theorem we have, for z > 1,

∞∑
n=0

(
2x
n

)(
x− n

2

t

)
(±
√
z)−n = zt−x

dt

dzt

∞∑
n=0

(±1)n
(

2x
n

)
zx−(n/2) = zt−x

dt

dzt
(
√
z ± 1)2x.

Taking the sum and difference over both choices of the sign, we have

∞∑
r=0

(
2x

2r + δ

)(
x− 2r+δ

2

t

)
z−r = zt−x+(δ/2) d

t

dzt
(
√
z + 1)2x + (−1)δ(

√
z − 1)2x

2
.

Substituting (A5), we get(
x− δ

2

t

) ∞∑
r=0

22r+δ(
2r+δ
r

)(x+ δ−1
2

r + δ

)(
x− 2t+δ

2

r

)
z−r = zt−x+(δ/2) d

t

dzt
(
√
z + 1)2x + (−1)δ(

√
z − 1)2x

2
.

Replacing x by t− x, we get

(−1)t
(
x+ δ

2 − 1
t

) ∞∑
r=0

22r+δ(
2r+δ
r

)(−x− δ
2

r

)(
t− x+ δ−1

2

r + δ

)
z−r

= zx+(δ/2) d
t

dzt
(
√
z + 1)2t−2x + (−1)δ(

√
z − 1)2t−2x

2
.

Thus,

(−1)t
(
x+ δ

2 − 1
t

) ∞∑
n=0

z−n
∞∑
r=0

(−1)n−r
22r+δ(
2r+δ
r

)(2x− t
n− r

)(
−x− δ

2

r

)(
t− x+ δ−1

2

r + δ

)
= (1− z−1)2x−tzx+(δ/2) d

t

dzt
(
√
z + 1)2t−2x + (−1)δ(

√
z − 1)2t−2x

2
.

Therefore, (ii) and (iii) are equivalent to the equality of generating functions

(1− z−1)2x−tzx+(δ/2)

(−1)t
(
x+δ/2−1

t

) dt

dzt
(
√
z + 1)2t−2x + (−1)δ(

√
z − 1)2t−2x

2

=
(
t− x
x

)δ zt−x+(δ/2)(
x−δ/2
t

) dt

dzt
(
√
z + 1)2x + (−1)δ(

√
z − 1)2x

2
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or

(−1)t+δx
x− t

(z − 1)2x−t d
t

dzt
[(
√
z + 1)2t−2x + (−1)δ(

√
z − 1)2t−2x]

=
dt

dzt
[(
√
z + 1)2x + (−1)δ(

√
z − 1)2x],

which follows immediately from (A4). 2
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