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The flow around a rotating circular cylinder has a parameter regime with a complex
pattern of periodic solutions and multiple steady states. Sierra et al. (J. Fluid Mech.,
vol. 905, 2020, A2) provide a complete bifurcation analysis of this regime. The numerical
computations are guided by a qualitative analysis of the bifurcations stemming from a
highly degenerate singular dynamical system. Surprisingly, the dynamics of the singular
system itself cannot be realized as a specific flow, but acts mathematically as an organizer
of the physical bifurcation diagram.
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1. Introduction

On a list of the most studied fluid mechanics problems, the flow around a circular
cylinder would surely be at the top end. The cylinder is the prototype bluff body, and
the flow around it has been used to gain insight into separated flows, their stability and
ways to control them.

The flow in an unbounded domain depends on a single dimensionless parameter, the
Reynolds number Re = UD/ν, where U is the incoming fluid velocity, D is the diameter of
the cylinder and ν is the kinematic viscosity of the fluid. The most fundamental instability
occurs at ReH ≈ 46, where the symmetric steady flow becomes unstable, and a periodic
flow appears (Williamson 1996). The periodic flow leads to vortex shedding, giving rise
to the famous Kármán vortex street where vortices of alternate signs are shed from the
cylinder. In terms of bifurcation theory, the transition is a supercritical Hopf bifurcation
(Provansal, Mathis & Boyer 1987).

If the cylinder also rotates, another dimensionless parameter appears, α = ΩD/2U,
where Ω is the angular velocity of the cylinder. The rotation breaks the symmetry of
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FIGURE 1. Bifurcations diagram showing curves of elementary bifurcations in the (Re, α)
parameter plane. Boxes to the right show streamlines and vorticity at the bifurcation points
for Re = 200. Full lines denote Hopf bifurcations, dashed and dash-dotted lines are fold
bifurcations. There are three steady states in the grey region. Mode I is the periodic Kármán
wake; mode II is the low-frequency periodic flow; TB-C marks a Takens–Bogdanov point and a
cusp that are very close; GH is a generalized Hopf point which will not be discussed here. From
Sierra et al. (2020).

the steady solution and stabilizes it, such that the critical Reynolds number ReH increases
rapidly with α in the range 0 < α < 2, see figure 1.

For higher values of α a more complex scenario occurs. Low-frequency periodic
solutions (denoted mode II) with shedding of same-sign vortices have been found
(Stojković, Breuer & Durst 2002), as well as a range with up to three steady states (Pralits,
Brandt & Gianetti 2010; Rao et al. 2013).

Sierra et al. (2020) give for the first time a complete description of the intricate pattern
of bifurcations that connect these states under variation of Re and α. The important
insight is that the bifurcation diagram can be understood from an organizing centre, a state
with highly degenerate dynamics. The organizing centre has codimension three, meaning
that three parameters are needed to realize all possible kinds of dynamics near it. This
is surprising, as the system at hand only has two parameters, and the dynamics of the
organizing centre cannot be realized for the physical system. Nevertheless, this ‘super’
organizing centre is a most useful mathematical abstraction which Sierra et al. (2020) use
as a guide to conjecture the structure of the physical bifurcation diagram and verify it by
numerical simulations.

2. Overview

A two-parameter bifurcation diagram is built up by a number of curves of elementary
bifurcations. For the rotating cylinder, curves of Hopf bifurcations and fold (saddle-node)
bifurcations occur. In a fold bifurcation two steady states, one stable, one unstable, appear
out of the blue. The bifurcation curves can meet in special singularities, codimension-two
points, also denoted organizing centres (Golubitsky & Schaeffer 1985). By analysing
simple representative cases, normal forms, the qualitative structure of the bifurcation
diagram near a codimension-two singularity can be found (Kuznetsov 2004).
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FIGURE 2. A two-dimensional slice through the three-dimensional bifurcation diagram of the
degenerate Takens–Bogdanov bifurcation. Here C, cusp bifurcation; TB, Takens–Bogdanov
point; SNL, saddle-node-loop point; H−, Hopf bifurcation curve; F+, F−, fold bifurcation
curves; H∞, homoclinic bifurcation curve. Typical dynamics in each sector are shown in the
boxes. Boxes with yellow background show streamlines and vorticity at the codimension-two
points. From Sierra et al. (2020).

Sierra et al. (2020) argue that two codimension-two singularities are relevant for the
rotating cylinder. One is the cusp, where two fold curves meet. Close to a cusp up to three
steady states can be present. The other is the Takens–Bogdanov (TB) point, where a Hopf
curve and a fold curve meet. From a TB point a curve of homoclinic bifurcations also
emanates. In these bifurcations a periodic state disappears as the frequency tends to zero.
This fits well with the low-frequency mode II periodic flows. Neither the cusp nor the
TB point alone can account for all the available observations. Both will be needed for a
complete description.

Figure 1 show the curves of elementary bifurcations computed by Sierra et al. (2020).
As anticipated, both a cusp and a TB point are found. The two points are very close,
(Re, α) = (75.6, 5.38) and (77.6, 5.36), respectively. This indicates that a small change
of the dynamical system at hand could make the two points merge into a more degenerate
singularity. Such a degenerate TB point has codimension three and the corresponding local
bifurcation diagram has three parameters. The bifurcation diagram has been determined
for a normal form by Dumortier et al. (1991), and it is expected that the bifurcation diagram
for the rotating cylinder will correspond to a two-dimensional slice in the extended
three-dimensional parameter space. A candidate for such a slice is shown in figure 2.
As required, it includes both a cusp and a TB point, but there is an additional organizing
centre, a saddle-node loop. At this point the dynamics exhibits a fold bifurcation point
on a limit cycle, and in the bifurcation diagram a curve of homoclinic bifurcations
emanates which ends at the TB point. By careful simulations, Sierra et al. (2020)
confirm that all the features of figure 2 are indeed present for the rotating cylinder.
However, on the scale of figure 1 the details of figure 2 are too fine to be seen. Hence,
the organizing centres and the bifurcation curves joining them in the two-dimensional
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(Re, α) plane are themselves organized from a ‘super’ organizing centre, the degenerate
TB point.

3. Future

The question naturally arises if the setting of the problem could be modified such
that a third parameter appears, and the degenerate TB point could be realized physically.
Sierra et al. (2020) suggest considering compressibility, or changing the external boundary
conditions by confinement or shear in the incoming flow. If such attempts were successful,
the full three-parameter diagram of the degenerate TB bifurcation could be realized,
and bifurcation diagrams different from figure 2, corresponding to different slices in the
three-dimensional parameter space, would occur. If the third parameter is sufficiently
large, the bifurcation diagram in figure 2 could occupy a substantially larger part of the
(Re, α) space and be experimentally observable.

It would be interesting to understand better why the flow around a rotating cylinder is so
close to a codimension-three singularity. The rotating cylinder is unique in the sense that
the boundary is time independent, and steady flows are allowed. This is not the case for
any other rotating shape. Is there a hidden symmetry?

The approach of Sierra et al. (2020) will be useful in other similar problems. What is
required is a problem that is relatively simple from a dynamical point of view, that is, only
steady states and periodic flows occur, but which has complex dependence on parameters.
Many two-dimensional flows at low Re will fit in this category.
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