
7

Axial field configurations

In this chapter, we consider field configurations that have an axial field component.
In straight channels, these fields are azimuthally symmetric around the system axis
and only have axial and radial components. The basic example of this type of
configuration is the closed circular current loop. Combinations of current loops can
be used to produce desired axial field profiles. The current loop can also be
extended axially to generate an ideal sheet solenoid. We conclude the chapter
with a discussion of bent solenoids. When the bent channel forms a closed ring,
we obtain the toroid configuration.

7.1 Circular current loop

We recall from Equation 1.18 that the on-axis field of a circular current loop with
radius a is

Bz ¼ μ0Ia
2

2fa2 þ z2og3=2
; (7.1)

where I is the current in the loop and zo is the distance of the observation point along
the z axis from the plane of the loop. We now consider the determination of the
vector potential in the case when the observation point P is not restricted to lie
along the z axis, as shown in Figure 7.1. We define a coordinate system where the
x axis lies directly below the observation point P. By symmetry, the vector potential
only has a ϕ component and cannot depend on the azimuthal coordinate ϕ.
The vector potential is given by

Aϕðρ; zÞ ¼ μ0I
4π

þ
ds
R
:
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An arbitrary element of current has the Cartesian coordinates (a cos ϕ; a sin ϕ; 0), so

R ¼ ðρ� a cos ϕÞ2 þ ða sin ϕÞ2 þ z2
n o1=2

¼ ρ2 þ a2 � 2aρ cos ϕþ z2
� �1=2

:

The contribution from a current element at ϕ makes the same contribution to the
vector potential as the element at –ϕ. In addition, the contribution of each of these
elements to the vector potential atP is proportional to cos ϕ. Therefore we can write

Aϕðρ; zÞ ¼ μ0I
2π

ðπ
0

cos ϕ

fρ2 þ a2 � 2aρ cos ϕþ z2g1=2
a dϕ:

Making the substitutions

ϕ ¼ πþ 2θ
cos ϕ ¼ �1þ 2sin2 θ;

we can write the vector potential as

Aϕðρ; zÞ ¼ μ0Ia
2π

ð0
�π=2

2sin2θ� 1

fρ2 þ a2 þ z2 � 2aρð2sin2θ� 1Þg1=2
2 dθ:

The integral is symmetric in θ, so we can translate the limits of integration. After
rearranging the terms in the denominator, we get

Aϕðρ; zÞ ¼ μ0Ia
π

ðπ=2
0

2sin2θ� 1

fðaþ ρÞ2 þ z2 � 4aρ sin2θg1=2
dθ:

Figure 7.1 Current loop geometry.
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Define

k2 ¼ 4aρ

ðaþ ρÞ2 þ z2
: (7.2)

Then we have

Aϕðρ; zÞ ¼ μ0Ia
π

kffiffiffiffiffiffiffiffi
4aρ

p
ðπ=2
0

2sin2θ� 1

f1� k2sin2θg1=2
dθ

¼ μ0Ia
π

kffiffiffiffiffiffiffiffi
4aρ

p ½2 I1 � I2�;
(7.3)

where1

I1 ¼
ðπ=2
0

sin2θ

f1� k2sin2θg1=2
dθ

¼ KðkÞ � EðkÞ
k2

and2

I2 ¼
ðπ=2
0

1

f1� k2sin2θg1=2
dθ

¼ KðkÞ:

The function KðkÞ is the complete elliptic integral of the first kind and EðkÞ is the
complete elliptic integral of the second kind.3 Substituting back into Equation 7.3,
we find

Aϕðρ; zÞ ¼ μ0Ia
π

kffiffiffiffiffiffiffiffi
4aρ

p 2

k2
� 1

� �
KðkÞ � 2

k2
EðkÞ

� �
;

which can be written in the form [1, 2]

Aϕðρ; zÞ ¼ μ0I
πk

ffiffiffi
a
ρ

r
1� k2

2

� �
KðkÞ � EðkÞ

� �
: (7.4)

1 GR 8.112.5. 2 GR 8.112.1. 3 Properties of complete elliptic integrals are discussed in Appendix F.
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The components of the magnetic field in cylindrical coordinates are

Bρ ¼ � ∂Aϕ

∂z
Bϕ ¼ 0

Bz ¼ 1

ρ
∂
∂ρ

ðρAϕÞ:

In order to evaluate these field components, we need the derivatives of the para-
meter k defined in Equation 7.2. We have [1]

∂k
∂z

¼ � zk3

4aρ

∂k
∂ρ

¼ k
2ρ

� k3

4ρ
� k3

4a
:

(7.5)

We also need the derivatives4 of the complete elliptic integrals KðkÞ and EðkÞ with
respect to their parameter k.

∂K
∂k

¼ E
k ð1� k2Þ �

K
k

∂E
∂k

¼ E
k
� K

k
:

(7.6)

Evaluating the derivatives together with a lot of algebra,5 we find that [1, 2]

Bρ ¼ μ0I
2π

z

ρfðaþ ρÞ2 þ z2g1=2
�KðkÞ þ a2 þ ρ2 þ z2

ða� ρÞ2 þ z2
EðkÞ

" #
(7.7)

and

Bz ¼ μ0I
2π

1

fðaþ ρÞ2 þ z2g1=2
KðkÞ þ a2 � ρ2 � z2

ða� ρÞ2 þ z2
EðkÞ

" #
: (7.8)

In the limit ρ→ 0, k2 ¼ 0 and the elliptic integrals in Equation 7.8 equal π/2. Then
it is straightforward to show that Bz approaches Equation 7.1 for the axial field on
the axis. Using l’Hopital’s rule and the series expansions

4 GR 8.123.2,4. 5 A computer algebra program is really useful here!
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EðkÞ ≃ π
2
� π
8
k2 þ � � �

KðkÞ ≃ π
2
þ π
8
k2 þ � � � ;

it is also possible to show that Equation 7.7 for Bρ approaches 0 on the axis, as it
should.
In the preceding derivation, we have gone through a standard approach of

calculating the vector potential and taking its derivatives to find the field compo-
nents. We have done this to illustrate several useful mathematical properties
involving the use of elliptic integrals. We should note, however, that it is possible
in this case to solve the Biot-Savart equation for the fields directly since the
required integrals are known.[3]
Besides the solution given here in terms of KðkÞ and EðkÞ and cylindrical

coordinates, the problem of the circular current loop has been solved using
a number of alternative methods. The vector potential for the circular loop can be
written in terms of Bessel functions as [4]

Aϕðρ; zÞ ¼ μ0I a
2

ð∞
0
J1ðkaÞ J1ðkρÞ e�kj z j dk: (7.9)

For some applications, it is more convenient to solve for the vector potential of the
current loop in spherical coordinates. Spherical solutions for the vector potential
and field have also been given in terms of elliptic integrals.[5, 6] However in
spherical coordinates, it is sometimes more natural to expand the solutions in
Legendre functions. The vector potential for the current loop for r < a is given in
this case as [1]

Aϕðr; θÞ ¼ μ0I
2

X∞
n¼1

sin α
nðnþ 1Þ

r
a

� �n
P1
nðcos αÞ P1

nðcos θÞ; (7.10)

whereP1
n is an associated Legendre function and α is the polar angle of the loop. For

r > a, the radial factor in this equation must be replaced with

a
r

� �nþ1
:

This type of expansion makes it easier to show that the field of the current
loop approaches that for a magnetic dipole in the limit when r >> a. It is
also possible to solve for the field components directly from Maxwell’s
equations.[7]
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Example 7.1: mutual inductance of two coaxial current loops
Consider two coaxial current loops separated by a distance d, as shown in Figure 7.2.
The mutual inductance between the two loops is the flux intercepted by loop 2 for
a given current in loop 1. Thus we have

M ¼ Φ2

I1
¼ 1

I1

ð
Aϕ1ðb; dÞ ds2:

The vector potential for loop 1 at points along loop 2 can be found using Equation 7.4

Aϕðb; dÞ ¼ μ0I
πk

ffiffiffi
a
b

r
1� k2

2

� �
KðkÞ � EðkÞ

� �
;

where k2 follows from Equation 7.2.

k2 ¼ 4ab

ðaþ bÞ2 þ d2
:

Since the value of Aϕ is constant for all the points on loop 2, the mutual inductance
is [8]

M ¼ μ0
ffiffiffiffiffi
ab

p 2

k
� k

� �
KðkÞ � 2

k
EðkÞ

� �
: (7.11)

7.2 Radial expansion of the on-axis magnetic field

Consider a longitudinal distribution of azimuthally symmetric current sources. It is
useful in some cases to express the off-axis values of the magnetic field as
a function of the magnetic field along the system axis of the current distribution.
This could be used, for example, to synthesize some desirable field distribution or

Figure 7.2 Mutual inductance of two current loops.
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for rapid optimization of current source parameters. We begin by assuming we have
a scalar potential

Ω ¼ μ0Vm

that does not depend on the coordinate ϕ and can be written as the power series

Ωðρ; zÞ ¼
X∞
n¼0

cnðzÞ ρn:

We demand that Ω satisfy Laplace’s equation in the region from the axis up to the
location of the closest coil

r2Ω ¼ 0;

where the Laplacian operator is given in cylindrical coordinates by

r2 ¼ 1

ρ
∂ρðρ ∂ρÞ þ ∂2z :

Substituting the series for Ω into Laplace’s equation and bringing the operator
inside the summation sign, we getX

n
cn n

2ρn�2 þ ρn
∂2cn
∂z2

� �
¼ 0:

In order to satisfy this relation, we need to get cancellations between the cn terms of
order n and second derivative terms two orders higher than n. Therefore let us
demand that

cnþ2ðnþ 2Þ2ρn ¼ �ρn
∂2cn
∂z2

:

Making the substitution n→n� 2, we can write the coefficient in terms of the
recursion relation

cn ¼ � 1

n2
∂2cn�2

∂z2
; n≥ 2: (7.12)

We know that the radial component of the magnetic field has to vanish on the axis
of the system. Since

Bρ ¼ � ∂Ω
∂ρ

;
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we find that

�Bρ ¼ c1 þ 2c2 ρþ 3c3 ρ
2 þ � � �

Therefore, we must have c1 ¼ 0, and since Equation 7.12 relates c1 to all the
higher odd terms, the series expansion forΩ can only contain even terms. ThusΩ
has the form

Ωðρ; zÞ ¼
X∞
n¼0

c2nðzÞ ρ2n;

where

c2nðzÞ ¼
ð�1Þn ∂

2nc0
∂z2n

22nðn!Þ2 : (7.13)

The numerical factors in the coefficient can be checked by comparing the values
from Equation 7.13 with the values from recursively using Equation 7.12. Define
the magnetic field on the system axis as

B0ðzÞ ¼ Bzð0; zÞ ¼ � ∂Ω
∂z

����
ρ¼0

¼ � ∂c0
∂z

:

Then the off-axis axial field component is [9]

Bzðρ; zÞ ¼
X∞
n¼0

ð�1Þn
22nðn!Þ2

∂2nB0

∂z2n
ρ2n (7.14)

and the off-axis radial field component is

Bρðρ; zÞ ¼
X∞
n¼0

ð�1Þnþ1

22nþ1n!ðnþ 1Þ!
∂2nþ1B0

∂z2nþ1
ρ2nþ1: (7.15)

In cases involving loops and solenoids, where the on-axis fields are known
analytically, it is possible using this method to achieve high accuracy in computing
the field out to radial distances ~70% of the coil radius.[9]

7.3 Zonal harmonic expansions

The solution of Laplace’s equation in spherical coordinates for azimuthally sym-
metric current distributions can be expressed as a series of zonal harmonic
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functions.[10, 11] Computations of magnetic fields using these expansions can be
faster than calculations using elliptic integrals. In addition, the harmonic expansion
allows easier optimization, where, for example, we can get better field quality by
eliminating leading error terms in the series.
Consider the spherical coordinate system shown in Figure 7.3. The z axis is the

polar axis of symmetry. We choose a source point z0 along the z axis as the origin of
the coordinate system. We define a central region extending from the origin to
a radius rc that is the shortest distance to the edge of any current element. We define
the remote region to extend from the radius rr, which is the longest distance from
the origin to any part of a current element, to infinity. The zonal harmonic expan-
sion can be written as convergent series for r < rc and for r > rr. The expansion for
a given source point is divergent in the region rc < r < rr. However, it is possible
to extend the region of validity by moving the source point. The conductors are
azimuthally symmetric around the z axis. The field point F is defined to have the
spherical coordinates r and θ.
The magnetic scalar potential V ¼ Vm is a solution of Laplace’s equation. Let us

define u ¼ cos θ. The zonal harmonic solution in the central region is

V ¼
X∞
n¼0

cn r
nPnðuÞ;

where PnðuÞ is the Legendre polynomial6 of order n. We choose to write the
coefficients cn in the following manner in order to simplify the expressions for
the magnetic field.

c0 ¼ Vðz0Þ
cn ¼ � 1

μ0n rn�1
c

Bc
n�1; n > 0:

Figure 7.3 Geometry for zonal harmonic calculations.

6 Some important properties of Legendre functions are discussed in Appendix D.
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The unknown quantities are now contained in the coefficients Bc
n, which are called the

source terms for the central region. These quantities will be related later to the fields
produced by various current elements, such as circular loops. An important feature of
the zonal harmonic method is that the source terms for a given zo only depend on the
coordinates of the current source. Thus once the source terms have been calculated,
they can be used repeatedly in the series expansions for different field points.
With these definitions, V in the central region is written as [10]

V ¼ VðzoÞ � rc
μ0

X∞
n¼1

Bc
n�1

n
r
rc

� �n

PnðuÞ:

In order to compute the cylindrical components of the magnetic field, we first make
use of the following relations from Figure 7.3.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� zoÞ2

q
∂zr ¼ u
∂ρr ¼ sin θ

and

u ¼ z� zo
r

∂zu ¼ 1� u2

r

∂ρu ¼ � u
r
sin θ:

The axial component of the field is

Bz ¼ rc
X∞
n¼1

Bc
n�1

n rnc
rn P0

nðuÞ
1� u2

r

� �
þ PnðuÞn rn�1 u

� �
;

where P0
n is the derivative of Pn with respect to its argument u. The quantity in

square brackets is

½ � ¼ rn�1fP0
nðuÞ ð1� u2Þ þ nuPnðuÞg:

We can use the recursion relation for Legendre polynomials7

ð1� u2Þ P0
n ¼ nPn�1 � unPn (7.16)

7 GR 8.914.2.
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to write

½ � ¼ rn�1nPn�1ðuÞ:

Substituting back into the equation for Bz, we find

Bz ¼
X∞
n¼1

Bc
n�1

r
rc

� �n�1

Pn�1ðuÞ:

Changing the index tom ¼ n� 1, the axial field in the central region can be written as

Bz ¼
X∞
m¼0

Bc
m

r
rc

� �m
PmðuÞ: (7.17)

Following a similar procedure, the transverse field component in the central region is

Bρ ¼ rc
X∞
n¼1

Bc
n�1

n rnc
½rn�1sin θ ð�uP0

n þ nPnÞ�:

Using the recursion relation [12]

nPn ¼ uP0
n � P0

n�1

and shifting the series index again, we find the transverse field in the central region is

Bρ ¼ �sin θ
X∞
m¼0

Bc
m

mþ 1

r
rc

� �m
P0
mðuÞ: (7.18)

In the remote region, we write the scalar potential in the form

V ¼ V0ð�∞Þ þ rr
μ0

X∞
n¼1

Br
nþ1

nþ 1

rr
r

� �nþ1
PnðuÞ:

The axial field is

Bz ¼ �
X∞
n¼1

Br
nþ1

nþ 1

rr
r

� �nþ2
P0
nð1� u2Þ � Pnu ðnþ 1Þ �

:

Using the recursion relation Equation 7.16 and shifting the series index, we find the
axial field component in the remote region is

Bz ¼
X∞
m¼2

Br
m

rr
r

� �mþ1
PmðuÞ: (7.19)
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The transverse field component in the remote region is

Bρ ¼ �
X∞
n¼1

Br
nþ1

nþ 1

rr
r

� �nþ2
sin θ �uP0

n � ðnþ 1ÞPn

 �
:

Using the recursion relation [13]

ðnþ 1ÞPn ¼ P0
nþ1 � uP0

n

and shifting the series index, we find that the transverse field component in the
remote region is

Bρ ¼ sin θ
X∞
m¼2

Br
m

m
rr
r

� �mþ1
P0
mðuÞ: (7.20)

Now that we have determined the series representations of the field components
in the central and remote regions, we turn to the calculation of the source terms.
Consider a field point on the z axis in the central region with z > zo. In this case,
θ = 0, ρ = 0, u = 1, and r ¼ z� zo. From Equation 7.17, we have

B0ðzÞ ¼ Bzð0; zÞ ¼
X∞
n¼0

Bc
n

rnc
ðz� zoÞn:

When n = 0 and z ¼ zo, we see that the coefficient

Bc
0 ¼ Bzð0; zoÞ

is the axial magnetic field at the source point. The Taylor series around the point
z0 is

B0ðzÞ ¼
X∞
n¼0

1

n!
dnB0

dzn

���
zo
ðz� zoÞn: (7.21)

Comparing the two series for B0, we find that [11]

Bc
n ¼

rnc
n!

dnB0

dzn
ðzoÞ: (7.22)

Suppose that the current source is a circular loop, as shown in Figure 7.4. For
a current loop, we have rc ¼ rr ¼ rL. From Equation 7.1, the axial field at the field
point F is

B0ðzÞ ¼ μ0Iρ
2
L

2d3
: (7.23)
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Define ζ ¼ z� zo. From the law of cosines, we have

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ ζ2 � 2 rL ζ uL

q
:

We make use of the following series expansion for Legendre polynomials8

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 � 2hu

p ¼
X∞
n¼0

hn PnðuÞ;

where h < 1. Differentiating both sides of this equation with respect to u, we find

1

f1þ h2 � 2hug3=2
¼
X∞
n¼0

hn P0
nþ1ðuÞ: (7.24)

In the central region, let

h ¼ ζ
rL

< 1;

so that

d ¼ rL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 � 2 huL

p
:

Using Equation 7.24, we find that

1

d3
¼ 1

r3L

X∞
n¼0

hn P0
nþ1ðuLÞ:

Figure 7.4 Source terms for a circular current loop.

8 GR 8.921.
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Substituting this into Equation 7.23 and comparing with the general series expan-
sion Equation 7.17 for the case of a field point on the axis, we can conclude that the
source term for the circular loop in the central region is [11]

Bc
n ¼

μ0Iρ
2
L

2r3L
P0
nþ1ðuLÞ: (7.25)

Note that this expression does not depend on any parameters of a field point.
We follow an analogous procedure in the remote region to find that

Br
n ¼

μ0Iρ
2
L

2r3L
P0
n�1ðuLÞ: (7.26)

7.4 Multiple coil configurations

Combinations of current loops are often used to create regions of space with some
desired magnetic properties. We can generalize the current source as a “small” coil
with N turns, provided the size of the coil is small compared with the separation
between the coils. In this case, we replace the loop current I in the field equationswith
the productNI. The classic example of a multiple coil configuration is the Helmholtz
pair, where two coils are used to create a region of approximately uniform field.
Consider the arrangement of two coaxial current loops shown in Figure 7.5.

The two loops are perpendicular to the z axis and have the same radius a and the
same current I. The axial field of each loop is given by Equation 7.1. In a coordinate
system with the origin midway between the coils, the axial field of the two loops
can be written

Bzð0; zÞ ¼ μ0I a
2

2
FðzÞ; (7.27)

where

FðzÞ ¼ 1

fa2 þ ðb� zÞ2g3=2
� 1

fa2 þ ðbþ zÞ2g3=2
: (7.28)

In the Helmholtz configuration, the spacing 2b between the coils equals the radius
a of the coils. The field of a Helmholtz pair at the origin is

Bzð0; 0Þ ¼ μ0I
a

8

5
ffiffiffi
5

p

≃ 0:7155
μ0I
a

:

(7.29)
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The axial field between the coils falls off slowly with z. At the center of the current
loops the field is

Bz 0;
a
2

� �
¼ μ0I

a
1

2
1þ 1ffiffiffi

8
p

� �
≃ 0:6768

μ0I
a

:

In the vicinity of the origin, the axial field can be expanded in the Taylor series,
Equation 7.21. The field uniformity is determined by the leading-order terms in this
expansion. Because of the symmetry of the coil arrangement, all the odd power
terms in the series have to vanish. The virtue of the Helmholtz configuration is that
the second derivative term in the expansion also vanishes. Thus the leading
correction in the Taylor series is the fourth order term, which is proportional to

∂4Bz

∂z4
≃� 19:8

μ0I
a5

:

Thus in the vicinity of the origin, the axial field is [14]

Bð0; zÞ≃ μ0I
a

0:7155� 0:825
z
a

� �4
þ � � �

� �
: (7.30)

The field at any point off the axis can be found by using the elliptic integral
solutions for the current loop given in Equations 7.7 and 7.8.[15] In the plane
midway between the coils, the field only has an axial component because of
symmetry. Defining the scaled radius u = ρ/a, the elliptic integral parameter is

k2 ¼ 16u
4u2 þ 8uþ 5

Figure 7.5 A two-coil configuration.
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and the axial field is

Bzðu; 0Þ ¼ 2μ0I
πa

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2 þ 8uþ 5

p KðkÞ þ 3� 4u2

4u2 � 8uþ 5
EðkÞ

� �
:

By numerically evaluating this expression, the field is found to be quite uniform in the
vicinity of the axis.[16] It falls off to 99.93% of the on-axis value at a radius of 0.2a.
The Helmholtz pair arrangement has the geometric property that the two coils lie

on the surface of a sphere, as illustrated in Figure 7.6. For this configuration, we have

tan θ ¼ 2

sin θ ¼ a
r
;

so the radius of the sphere is

r ¼ a

sinðtan�12Þ ≃ 1:118 a:

The Helmholtz pair also has interesting asymptotic behavior.[17] Expanding the
on-axis field in powers of a/z, the field at large distance is given by

Bzð0; zÞ ≃ μ0Ia
2

z3
þ 3μ0Ia

2

2z5
ð4b2 � a2Þ þ � � �

The leading term is the magnetic dipole term. However, the next term in the series
vanishes under the Helmholtz condition a = 2b.
An inverse Helmholtz pair has the currents in the two coils flowing in opposite

directions. In this case, the field at the origin vanishes, and the leading multipole
term is the field gradient. The optimum gradient for fixed radius a is [18]

Figure 7.6 Helmholtz coil configuration.
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dBz

dz
¼ 48

25
ffiffiffi
5

p μ0I
a2

≃ 0:8587
μ0I
a2

:

If practical constraints demand it, other gradient optimizations are possible for
fixed spacing b or for fixed radius r2 ¼ a2 þ b2.[19]
The classic design using three coils is the Maxwell tricoil, shown in Figure 7.7.

The tricoil has a pair of identical coils and a third coil with larger radius in the
symmetry plane between the coil pair. The three coils all lie on the surface of
a sphere. This design improves on the field quality from the Helmholtz pair by also
making the fourth-order term in the Taylor series vanish. Thus the first correction
term is sixth-order. Maxwell’s solution is

a ¼
ffiffiffi
4

7

r
R

b ¼
ffiffiffi
3

7

r
R

I ¼ 49

64
I0 :

The magnetic field at the origin is

Bzð0; 0Þ ¼ 60
μ0I
R

:

An improved three coil design with three circular coils of the same radius has
a larger uniform field region than Maxwell’s design.[15] Another sixth-order

Figure 7.7 Maxwell tricoil configuration.
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design used three square coils.[20] An exhaustive study of multi-coil systems using
the methods of zonal harmonics has identified many uniform and gradient field
configurations with higher-order error corrections.[21]

7.5 Sheet model for the solenoid

We consider here the field from a solenoid in the approximation that the radial
thickness of the solenoid coil can be neglected. We assume that the sheet conductor
is composed of circular current loops that are extended in the axial direction for the
length L of the solenoid, as shown in Figure 7.8.We compute the on-axis field at the
location z of a finite length solenoid by integrating the field of a current loop

Bzð0; zÞ ¼
ðL=2
�L=2

μ0Ia
2

2 a2 þ ðz� tÞ2
n o3=2

n dt ;

where n is the number of turns per unit length. Performing the integration9 gives

Bzð0; zÞ ¼ μ0nI
2

zþ L=2

fa2 þ ðzþ L=2Þ2g1=2
� z� L=2

fa2 þ ðz� L=2Þ2g1=2
" #

: (7.31)

This can be written in the form

Bzð0; zÞ ¼ μ0nI
2

ðcos β2 � cos β1Þ; (7.32)

where βi are the angles subtended at location z on the axis of the solenoid to the outer
edges of the two ends of the current sheet. The field in the center of the solenoid is

Figure 7.8 Sheet model of a solenoid.

9 GR 2.264.5.
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Bzð0; 0Þ ¼ μ0n I
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ 4a2
p : (7.33)

In the limit of an infinitely long current sheet, this expression reduces to the field of
an ideal solenoid, Equation 1.28.

Bz ¼ μ0n I:

There is a close connection between the derivatives of the on-axis solenoid field
and the on-axis fields of the current loops at the ends of the solenoid.[9, 10] In the
coordinate system in Figure 7.8,

dBSolenoid
z ð0; zÞ

dz
¼ n BLoop

z 0; zþ L
2

� �
� BLoop

z 0; z� L
2

� �� �
(7.34)

The off-axis expansion method discussed in Section 7.2 can be used in conjunction
with Equation 7.34 to find the field of a sheet solenoid.[9]
We turn next to calculating the field of a solenoid at any point, including points

off the symmetry axis. We will perform a direct calculation of the field using the
Biot-Savart equation

dB
�! ¼ μ0I

4π
dl
!� R

!
R3

:

Consider the solenoid geometry shown in Figure 7.9. Because of the azimuthal
symmetry of the current, the field is also azimuthally symmetric. Thus for

Figure 7.9 Geometry of the sheet solenoid.
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mathematical simplicity, we are free to choose the field point F to lie directly above
the x axis. The distance from the source current element to the field point is

R
! ¼ ðρ� a cos ϕ0Þ x̂ � a sin ϕ0 ŷ þ ðz� z0Þ ẑ; (7.35)

while the current element is

dl
!¼ �a sin ϕ0 dϕ0 x̂ þ a cos ϕ0 dϕ0 ŷ: (7.36)

We first compute the axial component of the field. Taking the z component of the
cross-product in the Biot-Savart equation, we find that the ϕ0 dependence only
involves terms in cos ϕ0. Thus symmetric current elements with respect to the x axis
make identical contributions to the integral. We have

Bz ¼ μ0I
0a

2π

ðL=2
�L=2

ðπ
0

a� ρ cos ϕ0

fa2 þ ρ2 � 2aρ cos ϕ0 þ ðz� z0Þ2g3=2
dz0 dϕ0

¼ μ0I
0a

2π

ðπ
0
ða� ρ cos ϕ0Þ I1 dϕ0;

where I 0 is the sheet current density,

I1 ¼
ðL=2
�L=2

dz0

fe� 2 z z0 þ z02g3=2

and we define

e ¼ a2 þ ρ2 � 2aρcos ϕ0 þ z2: (7.37)

Define the distances from the observation point to the two ends of the solenoids in
terms of the new variables

z1 ¼ �L
2
� z

z2 ¼ L
2
� z:

After doing the integration, we get10

I1 ¼ z2

ðe� z2Þfa2 þ ρ2 � 2aρcos ϕ0 þ z22g1=2
� Ωðz1Þ;

10 GR 2.264.5.
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where we use the symbol Ω here as a shorthand notation that means a second term
similar to the first, but with L replaced by –L, i.e., the other end of the solenoid.
Then we have

Bz ¼ μ0I
0a

2π

ðπ
0

a� ρ cos ϕ0

ða2 þ ρ2 � 2aρ cos ϕ0Þ
z2

a2 þ ρ2 þ z22 � 2aρ cos ϕ0
� �1=2 dϕ0� Ωðz1Þ:

Change the integration variable using

cos ϕ0 ¼ �1þ 2 x2

dϕ0 ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx:
(7.38)

This gives

Bz ¼ μ0I
0a

π

ð1
0

aþ ρ� 2ρx2

½ðaþ ρÞ2� 4aρx2�
z2

fðaþ ρÞ2þ z22 � 4aρx2g1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx�Ωðz1Þ:

We can put the integral into a standard form by defining

k2 ¼ 4aρ

ðaþ ρÞ2 þ z22
(7.39)

and

n ¼ 4aρ

ðaþ ρÞ2 : (7.40)

We find that

Bz ¼ μ0I
0a

πðaþ ρÞ2
z2

fðaþ ρÞ2 þ z22g
1=2

ðaþ ρÞ I2 � 2ρ I3½ � � Ωðz1Þ;

where11

I2 ¼
ð1
0

dx

ð1� n x2Þ ð1� k2x2Þ ð1� x2Þf g1=2
¼ Πðk;�nÞ:

The function Πðk; nÞ is the complete elliptic integral of the third kind. The other
integral is

11 GR 8.111.4.
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I3 ¼
ð1
0

x2

ð1� n x2Þfð1� k2x2Þ ð1� x2Þg1=2
dx:

This can be evaluated by writing it in the form

I3 ¼ 1

n

ð1
0

1� nx2 � 1

ð1� n x2Þfð1� k2x2Þ ð1� x2Þg1=2
dx

¼ 1

n
KðkÞ � 1

n
Πðk; nÞ;

where12

KðkÞ ¼
ð1
0

dx

fð1� k2x2Þ ð1� x2Þg1=2
: (7.41)

Substituting, we find that the axial field of the solenoid is [22]

Bz ¼ μ0I
0

π
a z2

ðaþ ρÞfðaþ ρÞ2 þ z22g
1=2

KðkÞ þ a� ρ
2a

ðΠðk;�nÞ � KðkÞÞ
h i

� Ωðz1Þ:

(7.42)

Selecting instead the x component of the cross-product in the Biot-Savart
equation, the transverse component of the solenoid field is

Bρ ¼ μ0I
0a

2π

ðL=2
�L=2

ðπ
0

ðz� z0Þ cos ϕ0

fa2 þ ρ2 � 2aρ cos ϕ0 þ ðz� z0Þ2g3=2
dz0 dϕ0

¼ μ0I
0a

2π

ðπ
0
cos ϕ0½z I1 � I4� dϕ0:

The integral over z0 involves the integral I1 that we have already considered and the
integral13

I4 ¼
ðL=2
�L=2

z0

fe� 2 z z0 þ z02g3=2
dz0

¼
e� z L

2

ðe� z2Þ a2 þ ρ2 � 2 aρcos ϕ0 þ L
2
� z

� �2
( )1=2

� Ωð�LÞ;

12 GR 8.111.2 and 8.112.1. 13 GR 2.264.6.
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where ewas defined in Equation 7.37. Substituting these back into the equation for
Bρ and simplifying, we get

Bρ ¼ μ0I
0a

2π

ðπ
0

cos ϕ0

fa2 þ ρ2 þ z22 � 2aρ cos ϕ0g1=2
dϕ0 � Ωðz1Þ:

Making the change of variable in Equation 7.38, we find

Bρ ¼ μ0I
0a

π
1

fðaþ ρÞ2 þ z22g
1=2

ð1
0

2x2 � 1

fð1� k2x2Þ ð1� x2Þg1=2
dx� Ωðz1Þ

¼ μ0I
0a

π
1

fðaþ ρÞ2 þ z22g
1=2

½2 I5 � KðkÞ� � Ωðz1Þ;

where k2 was defined in Equation 7.39. The remaining integral is14

I5 ¼
ð1
0

x2

fð1� k2x2Þ ð1� x2Þg1=2
dx

¼ KðkÞ � EðkÞ
k2

:

Substituting and simplifying, we find the transverse component of the solenoid
field is [22]

Bρ ¼ μ0I
0

4π
fðaþ ρÞ2 þ z22g

1=2

ρ
½2ðKðkÞ � EðkÞÞ � k2KðkÞ� �Ωðz1Þ: (7.43)

Equations 7.42 and 7.43 are exact solutions for the sheet solenoid that are valid
for all points in space, except for observation points at the same radius as the
current sheet. For an arbitrary field point with the cylindrical coordinates (ρ, ϕ, z),
we can write the Cartesian values of the transverse field as

Bx ¼ Bρcos ϕ ¼ Bρ
x
ρ

By ¼ Bρsin ϕ ¼ Bρ
y
ρ
:

(7.44)

An alternate solution for the field components has also been given in terms of
related functions known as generalized complete elliptic integrals.[23]
The vector potential for the sheet solenoid may also be expressed exactly in

terms of elliptic integrals [22, 24] as

14 GR 3.153.5.
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Aϕ ¼ μ0I
0

4π
z2
ρ

"
fðaþ ρÞ2 þ z22g

1=2ðKðkÞ � EðkÞÞ

� ða� ρÞ2

fðaþ ρÞ2 þ z22g
1=2

ðΠðk; nÞ � KðkÞÞ
#
�Ωðz1Þ;

(7.45)

where k and n are given by Equations 7.39 and 7.40, respectively. The vector
potential and field for the sheet solenoid may also be expressed as sums of Bessel-
Laplace integrals [25, 26] or in terms of modified Bessel functions.[27]

Example 7.2: radial dependence of the axial solenoid field
Let us examine the dependence of Bz on ρ at the center of a sample solenoid.
The results from using Equation 7.42 are shown in Figure 7.10. Note the reversal
of the field direction at the radius of the sheet.

Example 7.3: mutual inductance and axial force between a solenoid and a loop
Once the vector potential and the field components for the circular current loop and
the sheet solenoid are known, the mutual inductance between a solenoid and a current
loop can be computed as

MðS; LÞ ¼ ΦL

IS
¼ 1

IS

ð
AϕðSÞ dl

¼ 2πρL
IS

AϕðSÞ;

where the symbols S and L refer to the solenoid and the loop.

Figure 7.10 The dependence of Bz on ρ at the center of a solenoid with L = 20 cm,
a = 10 cm, I 0 ¼ 105 A/m.
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Assume the current is flowing in the same direction in the loop and in the solenoid.
The axial force acting on a current loop due to the magnetic field from the solenoid is

FzðS;LÞ ¼ IL

ð
dlL
�!� B

!ðSÞ ¼ �IL

ð2π
0
ρLBρðSÞ dϕ

¼ �2πILρLBρðSÞ;
where the minus sign indicates that the force tries to pull the loop and the solenoid
together.

7.6 Block model for the solenoid

In cases where the accuracy of the field calculated from the sheet model for the
solenoid is inadequate, it may be necessary to take into account the radial thickness
of the coils. Consider the cross-section of a block solenoid shown in Figure 7.11,
where the coil extends from an inner radius a to an outer radius b. We can find the
on-axis axial field by integrating Equation 7.31 for the field due to a current sheet

Bzð0; zÞ ¼ μ0J
2

ðb
a

zþ L=2

fr2 þ ðzþ L=2Þ2g1=2
dr� Ωð�LÞ;

where again Ω is used as a shorthand for the expression in the first term with
L replaced by –L. Performing the integral,15 we find for points along the symmetry
axis

Bzð0; zÞ ¼ μ0J
2

ðzþ L=2Þ ln
bþ fb2 þ ðzþ L=2Þ2g1=2

aþ fa2 þ ðzþ L=2Þ2g1=2
" #( )

� Ωð�LÞ: (7.46)

The axial field at the center of the solenoid is

Bzð0; 0Þ ¼ μ0J L
2

ln
bþ fb2 þ L2=4g1=2
aþ fa2 þ L2=4g1=2
" #

: (7.47)

The off-axis field from the block solenoid is usually treated by summing over the
fields from a set of current sheets, using one of the methods we have previously
discussed. For example, the block conductor may be simulated using a radial
distribution of current sheets expressed in elliptic integrals.[22] It is also possible
to express the thick solenoid field in terms of a radial expansion of the on-axis field,
[9] as a series of zonal harmonics,[10, 11, 21] or in terms of Bessel-Laplace integrals.

15 GR 2.271.5.
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[25, 26, 28] The good field region calculated for a solenoid from a properly designed
block conductor is frequently larger than that for a sheet solenoid.[21]
The flux leaving a solenoid travels outside and returns through the opposite end.

As a result, the fringe field on the outside of the solenoid can be quite significant.
If the fringe field is unacceptable, it can be reduced by adding supplemental bucking
coils or by using iron shielding. Figure 7.12 shows a POISSON model for the
magnetic field in a typical solenoid. The figure shows 1/4 of a plane projection
through the solenoid. The vertical axis is the centerline of the solenoid. The field is
symmetric on both sides of the vertical axis and both sides of the horizontal axis.
The program used Dirichlet boundary conditions on the left, right, and top borders,
and Neumann boundary conditions on the bottom border. The figure on the left
shows the field from just the coil, while the figure on the right illustrates the reduction
in the exterior field from adding a cylindrical iron return yoke. The current in the coil
was the same for both figures.

7.7 Bent solenoid

So far we have been considering configurations where current loops or solenoids
have been symmetrically configured along a straight axis. In the cylindrical coordi-
nate systemwe have been using, the current has been azimuthally symmetric along ϕ,
the system axis has been along z, and the magnetic field only has components along ρ
and z. We now generalize this to consider configurations where a solenoid, for
example, is bent to follow a circular axis. The magnetic field of a bent solenoid
channel is conveniently defined in terms of a rotating coordinate system that follows
some reference curve, as shown in Figure 7.13. In the curvilinear description of
orthogonal coordinate systems,[29] changes in the values of the coordinates
(u1; u2; u3) are related to the distance element by

Figure 7.11 Block model of a solenoid.
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ds2 ¼ h21 u
2
1 þ h22 u

2
2 þ h23 u

2
3;

where (h1; h2; h3) are a set of scale factors. In the Frenet-Serret coordinate system
considered here,[30, 31] the reference curve is a circle and the origin of the unit
vectors moves along the circle. The unit vector s is in the bending plane and tangent
to the circle. The unit vector r is in the bending plane and perpendicular to s.
The unit vector v is perpendicular to the bending plane. The curvilinear scale
factors are
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Figure 7.12 Magnetic field of a solenoid coil (left); field for a coil surrounded by
an iron return path (right).

Figure 7.13 Frenet-Serret coordinate system.
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hr ¼ hv ¼ 1

hs ¼ 1 þ r
ρ
;

where ρ is the radius of curvature.
We can approximate the scalar potential in the magnet aperture in terms of

a power series. To compute the first-order fields, we must include second-order
terms in the potential,

V ¼ μ0Vm ≃ V00 þ V10rþ V01vþ V20r
2 þ V11rvþ V02v

2 :

We also include terms in the potential that allow for the possibility of superimposed
transverse fields. The gradient of V is defined as

rV ¼ ∂rV r̂ þ 1

hs
∂sV ŝ þ ∂vV v̂:

Thus the magnetic field components are

�Br ≃ V10 þ 2V20rþ V11v

�Bv ≃ V01 þ V11rþ 2V02v

�Bs ≃
1

hs
ðV 0

00 þ V 0
10rþ V 0

01vþ V 0
20r

2 þ V 0
11rvþ V 0

02v
2Þ;

where primes indicate derivatives with respect to s. Recalling the midplane expan-
sions of the transverse field components given in Equation 4.9, we can associate the
potential terms with the multipole field coefficients16

V01 ¼ �B1

V10 ¼ A1

V11 ¼ �B2

2V20 ¼ A2:

Thus to the first-order, the field components are

Br ≃ � A1 � A2 rþ B2 v

Bv ≃ B1 þ B2 r� 2 V02 v

Bs ≃
1

hs
ðbs � A0

1 rþ B0
1 vÞ;

(7.48)

16 In the case where a charged particle has to follow the reference path in the horizontal plane, we must have the
horizontal dipole field A1(s) = 0.
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where we identify the on-axis component of the axial field as

bs ¼ �V 0
00

and assume the transverse dipole fields can vary with s.
At this point, we still have one unidentified potential term V02 in Equation 7.48,

so we demand that the field components also satisfy the divergence relation
r·B

! ¼ 0. In the coordinates discussed here, this can be written as

1

hs
∂rðhsBrÞ þ 1

hs
∂sBs þ ∂vBv ¼ 0:

Inserting the field components from Equation 7.48 and using

1

hs
≃ 1� r

ρ
;

we find the constraint

�A2 � 1

ρ
A1 � 2 V02 þ b0s ¼ 0:

Thus the first-order vertical field component is

Bv ≃ B1 þ B2 r� b0s �
A1

ρ
� A2

� �
v: (7.49)

If no superimposed transverse fields are present, the first-order axial field in the
bent channel is

Bs ≃ bs � r
ρ
bs: (7.50)

It is also possible to define an expansion for the field that makes use of “curved
multipoles” that directly correspond to the solution of Laplace’s equation in the
curved coordinate system.[32]

7.8 Toroid

When the bent solenoid channel is extended to form a closed circular ring, we have
a toroid, as shown in Figure 7.14. The current loops from the solenoid are centered
on the circular system axis and the plane of the loops lie in the ρ-z plane.
The direction of the unit vectors ρ̂ and ϕ̂ depend on the azimuthal location around
the toroid. Since the coils are closer together on the side nearer to the center of
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curvature, we expect that the field inside the bent solenoid will have a gradient with
respect to the system axis, in agreement with Equation 7.50.
Because of the symmetry of the configuration, all of the field components must

be independent of the azimuthal angle ϕ. Let the mean radius of the toroid equal
b and the radius of the current loops equal a. Then a simple application of
the Ampère law on the midplane (z = 0) shows that Bϕ ¼ 0 for ρ < b� a and for
ρ > bþ a since no net current is enclosed in a circular path in those regions.
However, applying the Ampère law on a circular path on the midplane, we find
the field inside the toroid is

Bϕ ¼ μ0N I
2πρ

; (7.51)

where N is the number of conductor turns around the circumference and ρ is the
radius of the path. This shows that the field varies like 1=ρ inside the toroid.
A cross-section of the toroid at some azimuthal angle ϕ is shown in Figure 7.15a.

The angle α gives the location of an element of the current loop. The current
element has the Cartesian coordinates

xl ¼ ðbþ a cos αÞ cos ϕ
yl ¼ ðbþ a cos αÞ sin ϕ
zl ¼ a sin α

and the directions

dlx ¼ a sin α cos ϕ dα
dly ¼ a sin α sin ϕ dα
dlz ¼ �a cos α dα:

Figure 7.14 Geometry of the toroid from above.
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The location of the field observation point (ρ, 0, z) is shown in Figure 7.15b. The
resulting distance vector is

R
! ¼ ½ρ� ðbþ a cos αÞcos ϕ� x̂ � ðbþ a cos αÞsin ϕ ŷ þ ðz� a sin αÞ ẑ:

Applying the Biot-Savart law to any point inside the toroid shows that Bz and Bρ

vanish. It follows that the field inside the toroid has to have the form

B ¼ Bϕðρ; zÞ:

The analytic results for Bϕ are complicated [33] expressions defined in terms of
integrals of elliptic integrals. Alternatively, one could examine the field inside the
toroid by evaluating one of the integrals in terms of complete elliptic integrals and
performing the other integral numerically.
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