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Dark-field electron holography (DFEH) is a TEM technique aiming at measuring strain fields in crystals
with high precision, nanometer spatial resolution and large fields of view."! DFEH extracts geometric

phase information ¢ in diffracted beams (denoted by reciprocal lattice vector G) by holographically

interfering diffracted beams from strained and unstr ained regions of the crystal lattice. Two-beam
conditions are utilized to maximize the intensity and thus the signal-to-noise ratio in the diffracted beam.

The current assumption when using DFEH, is that either the strain is uniform, or that the measured
strain corresponds to the average strain over the thickness of the foil. The latter corresponds to strain
fields varying in the viewing (z-)direction which is a ubiquitous feature of thinned TEM specimen and
modern 3D microelectronic devices (e.g. FInFETs) or quantum dots. Whilst z-dependent strain fields in
combination with dynamical scattering are we ll known to produce complicated deviations from the
above average assumption in case of strain studies by means of convergent beam electron diffraction,
high-resolution TEM or nano-beam electron diffraction, a s ystematic investigation of this effect in
DFEH was missing so far.

Here we are filling that gap. We show that within 2-beam scattering conditions analytic solutions can be
derived within a perturbation approach. The analytic solution consists of introducing a weighting kernel
£¢ to the former average approach which depends on the extinction length & of the diffracted beam
and the thickness 7 of the sample: ( )

msin (&, (1-2z)
= 2| f9(2)G-u(z)dz  with £, (z)= :
e w0 CE
Here u denotes the displacement field yielding the strain tensor components after derivation. This
weighting formalism facilitates a straightforward yet sufficiently accurate discussion of z-dependent

strain influence (see Figure 1): For instance, because I(: 1o (z)dz =1, a z-independent displacement field

u yields a reconstructed geometric phase corresponding exactly to G-u. Furthermore ff(z) is
symmetric with respect to the middle of the specimen, and hence antisymmetric strain fields are not
measured by DFEH (and are found in the bright field phase instead). Since the weighting kernel is G-
dependent, different diffracted waves measure differently projected parts of the strain, which is
important for reconstructing 2D strain fields from linearly independent diffracted beams. We
furthermore remark that the weighting kernel formalism is an important prerequisite towards
tomographic reconstruction of strain fields because it provides the link to the projection transformations
used in that context. A comprehensive discussion including the important influence of the excitation
error (i.e., experimentally unavoidable deviations from exact Bragg conditions) can be found in Ref. [2].
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Figure 1. Weighting function f°(z/&,,t/E,) with 4 1D-cuts at special thicknesses t=0.5, 0.75, 1.25,
1.5 &. The black dashed-dotted line indicates the point of symmetry at z=t/2.
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