
J. Aust. Math. Soc. 100 (2016), 374–402
doi:10.1017/S144678871500035X

ON THE TOTAL COMPONENT OF THE PARTIAL
SCHUR MULTIPLIER

H. G. G. DE LIMA and H. PINEDO�

(Received 20 June 2014; accepted 18 August 2015; first published online 26 February 2016)

Communicated by B. Martin

Abstract

In this paper we determine the structure of the total component of the Schur multiplier over an
algebraically closed field of some relevant families of groups, such as dihedral groups, dicyclic groups,
the infinite cyclic group and the direct product of two finite cyclic groups.
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1. Introduction

The partial Schur multiplier pM(G) of a group G was introduced in [3] and [4],
together with the notion of partial projective representations of a group over a field
K. It is a generalization of the classical Schur multiplier M(G) and appeared naturally
in the attempt to introduce a new cohomological theory based on partial actions.
In contrast to its classical version, pM(G) is not a group, but it is a semilattice of
abelian groups pMD(G) (called components), indexed by certain subsets D ⊆ G ×G
(see Theorem 2.11). Each component pMD(G) is formed by partially defined functions
σ : G ×G→ K, having D as domain, the so-called partial factor sets of G. These are
associated to the partial projective representations according to Definition 2.6.

It is known that the domains of the partial factor sets form a semilattice with
respect to the set-theoretic intersection and inclusion, and they were characterized
in [3, Corollary 7] as the T -invariant subsets of G ×G, where T is a monoid acting
on G × G (see (2.2) and (2.3)). In [6], the authors described the structure of these
domains, as well as the structure of the domains which are associated to certain partial
representations called elementary (see also [9]).

The total component pMG×G(G) of pM(G) (corresponding to the totally defined
factor sets) is particularly important, since it contains the usual Schur multiplier M(G)
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as a subgroup and, moreover, according to [5, Corollary 5.8(iv)], any component
of pM(G) is an epimorphic image of pMG×G(G), provided that the base field is
algebraically closed. Some recent works provided a description for pMG×G(G) over
algebraically closed fields, in the case that G is a finite cyclic group [5, Corollary 6.4]
(see also [6, Proposition 6.3]), an elementary abelian 2-group Cn

2 [8, Theorem 3.11]
and the symmetric group S 3 ' D6 [10, Lemma 3.10].

To continue the study of the total component (and consequently the description of
the partial Schur multiplier), in this work we characterize pMG×G(G) for some other
important classes of groups.

The article is structured as follows. After the introduction, in Section 2 we provide
all the necessary background, fix some notation and describe some properties satisfied
by the (total) coboundaries. In Section 3 we give some technical results on the effective
orbits of some specific groups, as well as a full set of representatives of effective
orbits of a direct product of arbitrary groups. A generalization of [10, Lemma 3.10]
for the dihedral groups D2m, where m ∈ N, will be obtained in Theorem 5.2. In
Theorem 5.4, we deal with D∞. Furthermore, Theorem 6.3 in Section 6 describes
the total component for dicyclic groups, which are generalizations of quaternion
groups. Moreover, [5, Corollary 6.4] will be extended to the infinite cyclic group in
Theorem 7.3 and to the direct product Cm ×Cn of finite cyclic groups in Corollary 4.2.

2. Preliminaries

In order to define the partial Schur multiplier of a group, we need to recall some
preliminary facts and definitions. Thus, we start with the next definition.

Definition 2.1. For a field K, a semigroup S with 0 is said to be a K-semigroup
if there is a map K × S → S satisfying the following properties: α(βx) = (αβ)x,
α(xy) = (αx)y = x(αy), 1K x = x and 0K x = 0, for any α, β ∈ K and x, y ∈ S .

Definition 2.2. A K-semigroup M is said to be K-cancellative if, for every α, β ∈ K
and x ∈ M\{0}, the equality αx = βx implies α = β.

Example 2.3. The monoid Matn K formed by n × n matrices with entries in K, is a
K-cancellative monoid.

In a K-cancellative monoid M, one can define a congruence λ as follows: xλy⇔
x = αy, for some α ∈ K∗.

Thus, one obtains the quotient semigroup Proj M = M/λ and the canonical
projection ξ : M→ Proj M. If M = Matn K, then Proj M is precisely the space PMatn K
of projective n × n matrices over K.

Definition 2.4. A (unital) partial homomorphism of a group G with values in a
monoid M is a map φ : G→ M preserving the unity and such that φ(g)φ(h)φ(h−1) =

φ(gh)φ(h−1) and φ(g−1)φ(g)φ(h) = φ(g−1)φ(gh), for all g, h ∈ G.

Partial projective representations of groups appeared in [3]. They naturally extend
the concept of projective representations, as one may notice in the next definition.
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Definition 2.5. A partial projective representation of a group G on a K-cancellative
monoid M is a function Γ : G → M such that the composition ξΓ : G → Proj M is a
partial homomorphism.

The treatment of partial projective representations depends essentially on projective
representations of Exel’s semigroup E(G), which controls the partial actions of
G (see [7]) and whose semigroup algebra KE(G), called a partial group algebra,
is responsible for the partial representations of G (see [2]). Indeed, taking into
consideration the semigroup E(G), it is shown in [3, Proposition 1] that a map
Γ : G→ M is a partial projective representation exactly when Γ factors through some
projective representation Γ̃ : E(G)→ M. Using this characterization, the authors of [3,
Theorem 3] showed that given a partial projective representation Γ : G→ M, there is
a unique partially defined function σ : G ×G→ K∗ such that

domσ = {(x, y) | Γ(x)Γ(y) , 0}, (2.1)
Γ(x−1)Γ(x)Γ(y) = Γ(x−1)Γ(xy)σ(x, y)

and
Γ(x)Γ(y)Γ(y−1) = Γ(xy)Γ(y−1)σ(x, y),

for every (x, y) ∈ domσ. For convenience, we define σ(x, y) = 0 when (x, y) < domσ
(making σ totally defined) and keep the notation domσ for (2.1). Additionally, we
assume (without loss of generality) that Γ(1) = 1.
Definition 2.6. The function σ associated with a partial projective representation Γ as
above is called a factor set of Γ or a partial factor set of G.

Remark 2.7. Observe that according to [3, Corollary 5], the factor sets of partial
projective representations of G form a commutative inverse monoid pm(G), with
respect to point-wise multiplication. Thus, by Clifford’s theorem [1], this semigroup
is isomorphic to a semilattice of abelian groups. Therefore, it is useful to pay attention
to the idempotents of pm(G), which are obviously the partial factor sets whose values
are 0 or 1, so we must obtain a description of their domains.

We recall from [3] the following proposition.

Proposition 2.8. Let G be a group. Then:

• [3, Proposition 4] if σ is a factor set of some partial projective representation of
G and D its domain, then

(x, y) ∈ D⇔ (xy, y−1) ∈ D⇔ (x−1, xy) ∈ D⇔ (y, y−1x−1) ∈ D

⇔ (y−1, x−1) ∈ D⇔ (y−1x−1, x) ∈ D;
• [3, Proposition 5 and Corollary 6] let D be as above. Then

(x, 1) ∈ D⇔ (x−1, x) ∈ D⇔ (1, x−1) ∈ D⇔ (1, x) ∈ D.
Moreover, if a map τ : G ×G→ K satisfies τ(1, 1) = 1, then τ is an idempotent
factor set of some partial projective representation of G, provided that its values
are 0 and 1 and, for any (x, y) ∈ dom τ,

(xy, y−1), (y−1, x−1), (x, 1) ∈ dom τ.
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2.1. The semigroup T and the partial Schur multiplier. Using semigroup
actions, we shall obtain a better description of domains of partial factor sets. Indeed,
Proposition 2.8 motivates us to consider the following maps on G ×G:

u : (x, y) 7→ (xy, y−1), v : (x, y) 7→ (y−1, x−1), t : (x, y) 7→ (x, 1).

These transformations satisfy the equalities

u2 = v2 = (uv)3 = 1, t2 = t, ut = t, tuvt = tvuv, tvt = 0, (2.2)

where 0 stands for the map (x, y) 7→ (1, 1).
In [3, Section 6], there was introduced the abstract monoid T generated by symbols

u, v and t with relations (2.2). Then there is a disjoint union

T = S ∪ tS ∪ vtS ∪ uvtS ∪ 0,

where S = 〈u, v | u2 = v2 = (uv)3 = 1〉 is a group isomorphic to the symmetric group
S 3.

Given an arbitrary group G, there is a left action of T on G × G defined by the
following transformations:

t(x, y) = (x, 1), u(x, y) = (xy, y−1) and v(x, y) = (y−1, x−1), (2.3)

for any x, y ∈ G.

Remark 2.9. Using Proposition 2.8 and the construction of T , we get that the T -
invariant subsets D of G ×G, that is, the elements of C(G) = {D ⊆ G ×G | TD ⊆ D},
are precisely the domains of the partial factor sets of G. Then they form a semilattice
with respect to the set-theoretic inclusion and intersection.

It follows from (2.2) and (2.3) that 0(x, y) = (1, 1), for any x, y ∈ G, and there is an
action of S 3 in G ×G induced by the action of T . Thus, the orbit S 3(x, y) of a pair
(x, y) ∈ G ×G is

{(x, y), (xy, y−1), (y, y−1x−1), (y−1, x−1), (y−1x−1, x), (x−1, xy)}. (2.4)

Consequently, each S 3-orbit contains one, two, three or six elements (see [5,
page 216], where the S 3-orbit containing (a, b) is denoted by A(a,b)). As in [8], the
orbits with two or six elements are called effective orbits. Hence, the noneffective
orbits are of the form

{(1, y), (y, y−1), (y−1, 1)}, y ∈ G. (2.5)

Apart from this characterization of the domains as T -invariant subsets of G ×G,
we have the following result.

Definition 2.10. The partial Schur multiplier of G is the quotient semigroup pM(G) =

pm(G)/ ∼, where the equivalence ∼ is given by

σ ∼ τ⇔ σ(x, y) = η(x)η(xy)−1η(y)τ(x, y), x, y ∈ G,

for some function η : G→ K∗.
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Theorem 2.11 [3, Theorem 5]. The semigroups pm(G) and pM(G) are semilattices of
abelian groups:

pm(G) =
⋃

D∈C(G)

pmD(G), pM(G) =
⋃

D∈C(G)

pMD(G),

where C(G) is the semilattice of T -invariant subsets of G × G with respect to the
intersection of sets.

Assuming that the field K is algebraically closed, there is another characterization
of the partial factor sets of G.

Theorem 2.12 [5, Theorem 5.6]. If τ is a partial factor set of G with domain D, then
there is a partial factor set σ ∼ τ, satisfying

σ(a, b)σ(b−1, a−1) = 1K , (2.6)
σ(a, b) = σ(b−1a−1, a) = σ(b, b−1a−1), (2.7)

σ(a, 1) = 1K , (2.8)

for any (a, b) ∈ D. Conversely, if σ : G × G → K is a partially defined map with
domσ ∈ C(G) such that (2.6)–(2.8) are satisfied for any (a, b) ∈ D, then σ is a partial
factor set of G.

For every D ∈ C(G), the subgroup of pmD(G) formed by all the maps σ : G ×G→
K satisfying (2.6)–(2.8) will be denoted by pm′D(G).

Remark 2.13. It follows from the proof of Theorem 2.12 that a factor set σ ∈ pm′D(G)
is completely determined by its values in a full set of representatives of the effective
orbits of D.

Now we recall the next result.

Corollary 2.14 [5, Corollary 5.8]. Let D ∈ C(G). Then:

(1) every partial factor set of pmD(G) is equivalent to some element of pm′D(G);
(2) the kernel ND = {σ ∈ pm′D(G) | σ ∼ 1} of the natural epimorphism of pm′D(G)→

pMD(G) consists of thoseσ : G ×G→ K for which there is ρ : G→ K∗ satisfying
the following conditions:

ρ(1) = 1K , ρ(a)ρ(a−1) = 1, (2.9)

for any a ∈ G with (a, 1) ∈ D, and

σ(a, b) =

ρ(a)ρ(b)ρ(ab)−1 if (a, b) ∈ D,
0 if (a, b) < D;

(2.10)

(3) let s = s(G, D) be the cardinality of the set of effective S 3-orbits of D and
{(ai, bi)}1≤i≤s a full set of representatives of these orbits. Then the map

φ : (K∗)s 3 x 7→ σx ∈ pm′D(G),

in which x = (xi)1≤i≤s and σx(ai, bi) = xi, is an isomorphism of multiplicative
groups;
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(4) for every domain Y ∈ C(G) such that Y ⊇ D, there is an epimorphism ψY
D :

pMY (G)→ pMD(G). In particular, pMD(G) is an epimorphic image of the total
component pMG×G(G).

Definition 2.15. The partial factor sets σ in ND are called coboundaries in pm′D(G). In
this case we write σ = ∂ρ, where ρ is a function satisfying (2.9) and (2.10).

Setting LD = {x ∈ (K∗)s | σx ∼ 1} = {x ∈ (K∗)s | σx ∈ ND}, one has the following
result.

Theorem 2.16 [5, Theorem 5.9]. If s is the cardinality of the set of effective S 3-orbits
of D as in Corollary 2.14, then

pMD(G) ' pm′D(G)/ND ' (K∗)s/LD.

It follows from Corollary 2.14(4) that each component of pM(G), and thus the
structure of pM(G), depends on the total component pMG×G(G); hence, a first step to
study the semigroup pM(G) is to obtain a description of its total component. For this,
one proceeds as follows: by Corollary 2.14(3), we need first to find the cardinality s
of the set of effective S 3-orbits of G ×G. Then, according to item (4) of the same
corollary, we get a group epimorphism

ψ : (K∗)s 3 x 7→ cls(σx) ∈ pMG×G(G), (2.11)

for which ker(ψ) = LG×G. Here, cls(σx) denotes the class of σx in the component
pMG×G(G), and the calculation of pMG×G(G) will be completed when determining the
quotient group (K∗)s/ ker(ψ).

Let σ ∈ pm′G×G(G). Throughout this work, we will use the following notation.

• Fixing an element x ∈ G, set

π j = π j(x) = σ(x, x)σ(x, x2) · · ·σ(x, x j−1), (2.12)

for each j ∈ N, j ≥ 2.
• More generally, given arbitrary elements x, y ∈ G and j ∈ N, j ≥ 1, let

σ j(x, y) = σ(x, y)σ(x, xy)σ(x, x2y) · · ·σ(x, x j−1y).

Set also σ0(x, y) = 1 and notice that σ j−1(x, x) = π j(x).

Some properties of the coboundaries in pm′G×G(G) are given in the next result.

Lemma 2.17. Given σ ∈ pm′G×G(G), if there is ρ : G→ K∗ such that σ = ∂ρ, then

σ j(x, y) =
ρ j(x)ρ(y)
ρ(x jy)

, (2.13)

σ(xi, xky) =
σi+k(x, y)σ(xi, y)
σi(x, y)σk(x, y)

, (2.14)
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for any i, j, k ≥ 1 and every x, y ∈ G. Moreover,

σ(xi, xk) =
σ(xi, y)σ(xk, xiy)

σ(xi+k, y)
, (2.15)

for every x, y ∈ G and any i, k ∈ Z.

Proof. Given i, j, k, x and y as above,

σ j(x, y) =
ρ(x)ρ(y)
ρ(xy)

ρ(x)ρ(xy)
ρ(x2y)

ρ(x)ρ(x2y)
ρ(x3y)

· · ·
ρ(x)ρ(x j−1y)
ρ(x jy)

=
ρ j(x)ρ(y)
ρ(x jy)

,

which gives (2.13). Consequently,

σ(xi, xky) =
ρ(xi)ρ(xky)
ρ(xi+ky)

=
ρi+k(x)ρ(y)
ρ(xi+ky)

ρ(xi)ρ(y)
ρ(xiy)

ρ(xiy)
ρi(x)ρ(y)

ρ(xky)
ρk(x)ρ(y)

=
σi+k(x, y)σ(xi, y)
σi(x, y)σk(x, y)

,

and one obtains (2.14). Moreover,

σ(xi, xk) =
ρ(xi)ρ(xk)
ρ(xi+k)

=
ρ(xi)ρ(y)
ρ(xiy)

ρ(xk)ρ(xiy)
ρ(xi+ky)

ρ(xi+ky)
ρ(xi+k)ρ(y)

=
σ(xi, y)σ(xk, xiy)

σ(xi+k, y)
,

proving (2.15). �

We will denote by Cm the cyclic group of order m ∈ N. Given two elements a, b of
G, the commutator aba−1b−1 of a and b will be denoted by [a, b]. Finally, given two
semigroups S 1, S 2, we write S 1 ≤ S 2 to indicate that S 1 is a subsemigroup of S 2.

3. Some remarks on effective orbits
As recalled in Remark 2.13, a partial factor set σ ∈ pm′G×G(G) is completely

determined by its values in a full set of representatives of the effective S 3-orbits of G.
Moreover, according to [6, Theorem 6.2], the number s(G,G ×G) of distinct effective
S 3-orbits of G equals the number of T -orbits of the form T (a, b), where 1 < {a, b, ab}
and it is given by

s(G,G ×G) =

(
|G|−1

2

)
+ |G(3)|

3
,

where G(3) denotes the set of elements of order three in G.

Example 3.1. Suppose that G = D2m = 〈a, b | am = b2 = (ab)2 = 1〉 or G = Cm × C2 =

〈a, b | am = b2 = [a, b] = 1〉. Then |o3(G)| = 2 if |G| ≡ 0 mod 3 and |o3(G)| = 0
otherwise. Consequently,

s(G,G ×G) =


(|G| − 1)(|G| − 2) + 4

6
if |G| ≡ 0 mod 3,

(|G| − 1)(|G| − 2)
6

if |G| . 0 mod 3.
(3.1)
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Given σ ∈ pm′G×G(G), equality (2.7) implies

σ(aib, a j) = σ(akb, aib) = σ(a j, akb),

where k = i − j if G = D2m and k = −i − j if G = Cm × C2. It follows that σ is
completely determined by its values on pairs whose first coordinate is an element of
the cyclic subgroup Cm = 〈a〉 < G.

From now on in this work all partial factor sets have their values in an algebraically
closed field K.

In particular, there is a group isomorphism

K∗

{1,−1}
' K∗. (3.2)

Lemma 3.2. Ifσ ∈ pm′Cm×Cm
(Cm) and m ≥ 3, thenσ is uniquely determined by its values

in the set S Cm given by

{(ai, a j) | 1 ≤ i ≤ b(m − 1)/3c and i ≤ j ≤ m − 2i − 1} ∪ Za,m, (3.3)

where Za,m = {(am/3, am/3)} if m ≡ 0 mod 3 and Za,m = ∅ otherwise. Moreover, these
values can be chosen arbitrarily in K∗.

Proof. The proof of [5, Proposition 6.1] implies that for every m ≥ 3, the set

{S 3(ai, a j) | 1 ≤ i ≤ bm/3c, i ≤ j ≤ m − 2i} (3.4)

contains all the effective S 3-orbits of Cm. Moreover, since S 3(ai, ai) = S 3(ai, am−2i),
one gets that for each integer i satisfying i < m − 2i, there are two representatives
for the same S 3-orbit in (3.4). In these cases i < m/3 and it is enough to consider
those S 3(ai, a j) for which j ≤ m − 2i − 1 to get a complete set of representatives of the
effective S 3-orbits. �

Let G = Cm × C2 or G = D2m as in Example 3.1 and m ≥ 3. We will use the
following notation:

σi j = σ(ai, a j) and τi j = σ(ai, a jb), (3.5)

where 0 ≤ i, j ≤ m − 1.

Lemma 3.3. Let G = Cm ×C2 or G = D2m, m ≥ 3 and S Cm as in Lemma 3.2. Then any
σ ∈ pm′G×G(G) is completely determined by its values on the set S G given by

S Cm ∪

{
(ak, alb) | 1 ≤ k ≤

⌊m − 1
2

⌋
and 0 ≤ l ≤ m − 1

}
∪ Za,b,m, (3.6)

where Za,b,m = {(am/2, alb) | 0 ≤ l ≤ (m/2) − 1} if m ≡ 0 mod 2 and Za,b,m = ∅ otherwise.
Moreover, these values can be chosen arbitrarily in K∗.
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Proof. By Lemma 3.2, the restriction of σ to Cm × Cm is completely determined by
its values σi j, where (ai, a j) ∈ S Cm . Consequently, it remains to show that each of the
values τkl is determined by those values whose indexes satisfy the inequalities in (3.6).
Since σ(1, a jb) = 1, for every j, it is enough to consider 1 ≤ k ≤ m − 1.

It follows from (2.4) that (ak, alb) and (am−k, ak+lb) are the only pairs of S 3(ak, alb)
whose first coordinate is a power of a. Therefore, one may assume without loss of
generality that the representative (ak, alb) was chosen in such a way that k ≤ m − k.
Consequently, it suffices to consider 1 ≤ k ≤ m/2.

If there are (ak, alb) , (ak′ , al′b) in the same S 3-orbit, with 1 ≤ k ≤ k′ ≤ m/2 and
0 ≤ l, l′ ≤ m − 1, then ak′ = am−k implies k′ = k = m/2, and al′b = am/2+lb yields
l′ ≡ m/2 + l mod m. In this case, for any l ≥ m/2, we have l′ = l − m/2 ≤ m/2 − 1.
Therefore, when k = m/2 is an integer, it is possible to choose 0 ≤ l ≤ m/2 − 1. This
completes the proof. �

We proceed with a simple result, which is obtained in the proof of [5,
Proposition 6.3].

Lemma 3.4. Let Cm = 〈a | am = 1〉 and σ = ∂ρ ∈ pm′Cm×Cm
(Cm), for some ρ : G→ K∗.

Then π j(a) = ρ j(a)ρ(a j)−1 and

σ(ai, a j) =
πi+ j

πiπ j
=
σ(a, ai) . . . σ(a, ai+ j−1)
σ(a, a) . . . σ(a, a j−1)

,

for any (ai, a j) ∈ S Cm such that i, j ≥ 2. Moreover, σ(a, a j) = σ(a, am− j−1), for all
(a, a j) ∈ S Cm satisfying b(m + 1)/2c ≤ j ≤ m − 3.

3.1. Orbits of a direct product of groups. Given a group G, an action of the
semigroup T on G ×G was defined by means of the transformations given in (2.3).
Recall also that S 3 ' 〈u, v〉 ≤ T .

Denote by GH the direct product of the groups G and H, and by (g1h1, g2h2) an
arbitrary element of GH ×GH, where g1,g2 ∈G and h1,h2 ∈ H. We have the following
result.

Lemma 3.5. For any groups G and H, and arbitrary elements gi, g′i ∈ G, hi, h′i ∈ H,
x ∈ S 3,

(g′1h′1, g
′
2h′2) = x(g1h1, g2h2)⇔ (g′1, g

′
2) = x(g1, g2) and (h′1, h

′
2) = x(h1, h2).

Proof. It is enough to prove the equivalence above for the generators u and v of S 3.
We have

u(g1h1, g2h2) = ((g1h1)(g2h2), (g2h2)−1) = ((g1g2)(h1h2), g−1
2 h−1

2 )

and consequently (g′1h′1, g
′
2h′2) = u(g1h1, g2h2) if and only if

g′1 = g1g2, g′2 = g−1
2 , h′1 = h1h2 and h′2 = h−1

2 .
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Similarly, thanks to

v(g1h1, g2h2) = ((g2h2)−1, (g1h1)−1) = (g−1
2 h−1

2 , g−1
1 h−1

1 ),

it follows that (g′1h′1, g
′
2h′2) = v(g1h1, g2h2) if and only if

g′1 = g−1
2 , g′2 = h−1

2 , h′1 = g−1
1 and h′2 = h−1

1 .

The lemma is now clear. �

Given a group G, let TG be a transversal of the action of S 3 in G ×G, and S G be the
subset of TG formed by those elements which correspond to the effective orbits.

From now on, TG will always be chosen in such a way that TG\S G = {1} ×
G. This is possible because by (2.4) the noneffective orbits are of the form
{(1, a), (a, a−1), (a−1, 1)}, a ∈ G. In particular, for G = Cm, we will always choose S Cm

as in Lemma 3.2, for any m ≥ 3 and S Cm = ∅, if m ∈ {1, 2}.
In order to calculate effective orbits of a direct product of groups, we need to

introduce some more notation. Let G(k) = {g ∈ G | ord(g) = k}, for any k ∈ N and
G∗ = G\{1}. If G(k) , ∅, for some k > 2, we take a subset X(G) of G such that
G\(G(1) ∪G(2)) = X(G) ∪ X(G)−1 and X(G) ∩ X(G)−1 = ∅. Otherwise, we set X(G) = ∅.

Finally, if there exists e ∈ G(2), we denote by Y(e) a subset of G such that G =

Y(e) ∪ eY(e) and Y(e) ∩ eY(e) = ∅.

Example 3.6. If G = Cm = 〈a | am = 1〉 and m ≥ 3, we take

X(Cm) = {a, a2, . . . , ab(m−1)/2c}.

Now, if m is even, then am/2 is the only element of order two in Cm, and a natural
choice is

Y(am/2) = {1, a, . . . , am/2−1}.

For Z = 〈a〉, we choose X(Z) = {ai | i > 0} ' N.

The subsets X(G) and Y(e), with e ∈G(2), play a fundamental role in the calculation
of a full set of representatives for the orbits of a direct product of groups, as we notice
in the following result.

Theorem 3.7. Given groups G and H, fix S G, S H , TG, X(G) and Y(e) (if e ∈ G(2)) as
above. Then the set

S G ∪ (X(G) ×GH∗) ∪
⋃

e∈G(2)

{e} × Y(e)H∗

∪ {(g1h1, g2h2) | g1, g2 ∈ G and (h1, h2) ∈ S H ,

where (h1, h2) < H(3) × H(3) or h1 , h2}

∪ {(g1h, g2h) | (g1, g2) ∈ TG ∪ v(S G), (h, h) ∈ S H ∩ (H(3) × H(3))}

contains exactly one representative of each effective orbit of S 3 on GH ×GH.
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Proof. Consider the following decomposition:

GH ×GH = (G ×G) ∪ (GH∗ ×G) ∪ (G ×GH∗) ∪ (GH∗ ×GH∗).

By (2.4), the orbit S 3(g1h1, g2h2) of any (g1h1, g2h2) ∈ GH ×GH is of the form

{(g1h1, g2h2), (g−1
2 g−1

1 h−1
2 h−1

1 , g1h1), (g2h2, g−1
2 g−1

1 h−1
2 h−1

1 ),

(g−1
2 h−1

2 , g−1
1 h−1

1 ), (g−1
1 h−1

1 , g1g2h1h2), (g1g2h1h2, g−1
2 h−1

2 )}.

In particular, if h1 = h2 = 1, then S 3(g1, g2) ⊆ G × G. It follows that S G contains
exactly one representative of each of these effective orbits. Now take one of the
remaining S 3-orbits, that is, the orbit of a pair from (GH ×GH)\(G ×G). There are
some cases to be considered.

Case 1. If the orbit contains a pair (g1h1, g2) ∈ GH∗ ×G, it also has a representative
of the form (g−1

2 , g−1
1 h−1

1 ) ∈ G ×GH∗. Therefore, one can choose pairs from G ×GH∗

instead of pairs in GH∗ ×G.

Case 2. Suppose that the orbit is effective and has a representative (g1, g2h2) ∈
G ×GH∗. Notice that (g−1

1 , g1g2h2) is also in S 3(g1, g2h2).
If ord(g1) , 1, 2, then g1 , g−1

1 and it suffices to choose one of the (distinct) pairs
(g1, g2h2) or (g−1

1 , g1g2h2). Thus, we may assume without loss of generality that the
pair (g1, g2h2) is such that g1 ∈ X(G), which yields (g1, g2h2) ∈ X(G) ×GH∗.

On the other hand, if g1 ∈ G(2), then g−1
1 = g1 , 1 (because the orbit S 3(g1, g2h2) is

effective) and (g1,g1g2h2) , (g1,g2h2). In this case, to avoid having two representatives
for the same S 3-orbit, without loss of generality one may suppose that g2 belongs to
Y(g1), that is, (g1, g2h2) ∈ {g1} × Y(g1)H∗.

Case 3. Suppose that the orbit contains some (g1h1, g2h2) ∈ GH∗ × GH∗ as a
representative. If the orbit intersects G ×GH∗, we choose a representative as in the
previous case. Otherwise, h1h2 , 1 (thanks to the form of the S 3-orbit) and S 3(h1, h2)
is an effective orbit (see (2.5)). Consequently, (h1, h2) = x(h′1, h

′
2), for some x ∈ S 3

and some (h′1, h
′
2) ∈ S H . Let (g′1, g

′
2) = x−1(g1, g2). Then Lemma 3.5 implies that

(g1h1, g2h2) = x(g′1h′1, g
′
2h′2). Therefore, one may suppose that (g1h1, g2h2) belongs

to
(G ×G)S H = {(g1h1, g2h2) | (g1, g2) ∈ G ×G, (h1, h2) ∈ S H}. (3.7)

If two different pairs (g′1h′1, g
′
2h′2) and (g′′1 h′′1 , g

′′
2 h′′2 ) from (3.7) are in the orbit

S 3(g1h1, g2h2), then, by Lemma 3.5, there is y ∈ S 3\{1} such that (g′1, g
′
2) = y(g′′1 , g

′′
2 )

and (h′1, h
′
2) = y(h′′1 , h

′′
2 ). In that case, since S H contains only one pair from each

effective orbit, it follows that (h′1, h
′
2) = (h′′1 , h

′′
2 ). By inspecting the elements of the

effective orbit S 3(h′′1 , h
′′
2 ), given by (2.4), one sees that

(h′′1 , h
′′
2 ) = y(h′′1 , h

′′
2 )⇔ y ∈ {uv, (uv)2}, h′′1 = h′′2 and ord(h′′1 ) = 3. (3.8)

We conclude that h = h′′1 = h′′2 ∈ H(3), and this leads to (h, h) = (h′′1 , h
′′
2 ) ∈ S H ∩ (H(3) ×

H(3)). Now we consider the orbit S 3(g1, g2).
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Case 3.1. If S 3(g1, g2) is effective, then (g1, g2) = z(g′1, g
′
2), for some (g′1, g

′
2) ∈ S G and

z ∈ S 3. If z ∈ {1, uv, (uv)2}, then, using (3.8), one gets (h, h) = z(h, h) and consequently
(g1h, g2h) = z(g′1h, g′2h) thanks to Lemma 3.5. Otherwise, z = vw with w ∈ {1, uv, (uv)2}

and
(g1, g2) = vw(g′1, g

′
2) = w−1v(g′1, g

′
2) = w−1(g−1

2 , g−1
1 ),

where (g−1
2 , g−1

1 ) = v(g′1, g
′
2) ∈ v(S G). Using (3.8), we get w−1(h, h) = (h, h); thus,

Lemma 3.5 implies that (g1h,g2h) = w−1(g−1
2 h,g−1

1 h). Hence, for any orbit S 3(g1h,g2h)
such that (g1, g2) is effective and (h, h) ∈ S H ∩ (H(3) × H(3)), it can be assumed that
(g1, g2) ∈ S G ∪ v(S G) ⊆ TG ∪ v(S G).

Case 3.2. If S 3(g1, g2) is not effective, then (g1, g2) = z(g′1, g
′
2), for some (g′1, g

′
2) ∈

TG\S G and z ∈ S 3. Since v(S 3(g1, g2)) = S 3(g1, g2), it is possible to choose z ∈
{1, uv, (uv)2} and get (g1h, g2h) = z(g′1h, g′2h) by (3.8), for any (h, h) ∈ S H ∩ (H(3) ×

H(3)).
To finish the proof, it is enough to observe that if (G ×G)S H contains exactly one

element of S 3(g1h1, g2h2), then (h1, h2) < H(3) × H(3) or h1 , h2. �

Using Theorem 3.7, we obtain as an example a full set of representatives for the
effective orbits of products of finite cyclic groups. In fact, Theorem 3.7, and in
particular the construction of the subsets X(G), were inspired by this particular case.

Example 3.8. Let G = Cm ×Cn = 〈a,b | am = bn = [a,b] = 1〉, for some m,n ∈ N. Using
(3.3) and Example 3.6, set

S Cm×Cn = S Cm ∪ X(Cm) ×CmC∗n ∪ {a
m/2} × Y(Cm)C∗n

∪ (Cm ×Cm)(S Cn\{(b
n/3, bn/3)})

∪ (({1} ×Cm) ∪ S Cm ∪ v(S Cm )){(bn/3, bn/3)},

where Y(Cm) = Y(am/2) if m ≡ 0 mod 2, Y(Cm) = ∅ if m . 0 mod 2 and {(bn/3,bn/3)} = ∅
if n . 0 mod 3. Then S Cm×Cn contains precisely one representative of each effective
S 3-orbit. In particular, any σ ∈ pm′G×G(G) is uniquely determined by its values in the
elements of S Cm×Cn , and these values can be chosen arbitrarily from K∗.

4. Direct product of two cyclic groups
4.1. Product of cyclic groups. Now we calculate pMG×G(G) for G = Cm ×

Cn,m, n ∈ N. We start with the next result.

Proposition 4.1. Let G = Cm × Cn, m, n ∈ N and σ ∈ pm′G×G(G) be such that σ ∼ 1.
Then σ is uniquely determined by its values on the pairs

(a, akbl), where 0 ≤ k ≤ m − 1, 1 ≤ l ≤ b(n − 1)/2c, (4.1)

(a, akbn/2), where 0 ≤ k ≤ b(m − 1)/2c (if n is even), (4.2)

(ai, b), where 2 ≤ i ≤ bm/2c, (4.3)

(b, bl), where 1 ≤ l ≤ b(n − 1)/2c (if n ≥ 3), (4.4)

and these values can be chosen arbitrarily in K∗.
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Proof. Assume that G = Cm × Cn is generated by a and b as in Example 3.8. Since
σ ∼ 1, there is a map ρ : G→ K∗ satisfying (2.9) such that σ(x, y) = ∂ρ(x, y), for any
x, y ∈G. By (2.15) and Example 3.8, the value of σ on any (ai, ak) ∈ S Cm is determined
by its values on elements from

B1 = (X(Cm) ×CmC∗n) ∪ ({am/2} × Y(Cm)C∗n)

= {(ai, akbl) | 1 ≤ i ≤ b(m − 1)/2c, 0 ≤ k ≤ m − 1 and 1 ≤ l ≤ n − 1}

∪ {(am/2, akbl) | 0 ≤ k ≤ m/2 − 1 and 1 ≤ l ≤ n − 1}.

By (2.14), if i, k ≥ 1, then

σ(ai, akbl) =
σi+k(a, bl)σ(ai, bl)
σi(a, bl)σk(a, bl)

=
σ(a, aibl) . . . σ(a, ai+k−1bl)σ(ai, bl)

σ(a, bl) . . . σ(a, ak−1bl)
.

Moreover, sinceσ(ai,bl)
(2.7)
= σ((aibl)−1,a)

(2.6)
= σ(am−i,aibl)−1, we see that for any i ≥ 2

the value of σ(ai, akbl) is determined by the values σ(a, ak′bl′) and σ(ai′ , bl′) such that
1 ≤ k′ ≤ m − 1, 1 ≤ l′ ≤ n − 1 and 1 ≤ i′ ≤ bm/2c.

Now we will consider the values σ(a, akbl) and σ(ai, bl). In the first case,

σ(a, akbl) =
ρ(a)ρ(akbl)
ρ(ak+1bl)

=
ρ(a)ρ(am−1−kbn−l)

ρ(am−kbn−l)
= σ(a, am−1−kbn−l),

so we can choose 1 ≤ l ≤ n/2. Further, if n is even and l = n/2, then σ(a, akbn/2) =

σ(a, am−1−kbn/2), and it can be supposed that k ≤ m − 1 − k, that is, k ≤ b(m − 1)/2c.
With respect to the values σ(ai, bl),

σ(ai, bl)
σi(a, bl)

=
ρ(ai)ρ(bl)
ρ(aibl)

ρ(aibl)
ρi(a)ρ(bl)

=
ρ(ai)
ρi(a)

,

for every l and i ≥ 1. In particular, taking l = 1, it follows that

σ(ai, bl′)
σi(a, bl′)

=
σ(ai, b)
σi(a, b)

,

for any i, l′ ≥ 2 and, consequently,

σ(ai, bl) = σ(ai, b)
σi(a, bl)
σi(a, b)

,

for all i, l ≥ 2. We conclude that the values of σ on elements of B1 are determined by

σ(a, akb), σ(a, akb2), . . . , σ(a, akbb(n−1)/2c), where 0 ≤ k ≤ m − 1, (4.5)
σ(ai, b), where 2 ≤ i ≤ bm/2c, (4.6)

and (if n is even)

σ(a, akbn/2), where 0 ≤ k ≤ b(m − 1)/2c. (4.7)
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It follows from Lemma 3.2, applied to Cn = 〈b〉, that the set

B2 = (Cm ×Cm)(S Cn\{(b
n/3, bn/3)})

∪ (({1} ×Cm) ∪ S Cm ∪ v(S Cm )){(bn/3, bn/3)}

from Example 3.8 is nonempty if n ≥ 3, where {(bn/3, bn/3)} = ∅ if n . 0 mod 3.
Furthermore, for all i, j, k, l ∈ Z,

σ(aib j, akbl) =
ρ(aib j)ρ(akbl)
ρ(ai+kb j+l)

=
ρ(ai)ρ(b j)ρ(akbl)
σ(ai, b j)ρ(ai+kb j+l)

=
σ(ai, akbl)ρ(ai+kbl)ρ(b j)
σ(ai, b j)ρ(ai+kb j+l)

=
σ(ai, akbl)ρ(ai+k)ρ(bl)ρ(b j)
σ(ai, b j)σ(ai+k, bl)ρ(ai+kb j+l)

= σ(b j, bl)
σ(ai, akbl)σ(ai+k, b j+l)
σ(ai, b j)σ(ai+k, bl)

.

Therefore, the values of σ on any (aib j, akbl) ∈ B2 are determined by the values
specified in (4.5)–(4.7) and σ(b j, bl), where (b j, bl) ∈ S Cn . Applying Lemma 3.4 to
Cn, one concludes that the values σ(b j, bl), (b j, bl) ∈ S Cn are determined by

σ(b, bl), where 1 ≤ l ≤ b(n − 1)/2c,

by means of

σ(b j, bl) =
π j+l

π jπl
=

σ j+l−1(b, b)
σ j−1(b, b)σl−1(b, b)

,

where π j = π j(b) is given by (2.12), and by

σ(b, bl) = σ(b, bn−l−1).

Conversely, denote by I the list of pairs in (4.1)–(4.4) and fix a family (ν(x, y))(x,y)∈I

of elements in K∗. In what follows, our intention is to show that these values determine
a partial factor set σ ∼ 1. By Corollary 2.14(2), it is enough to construct a map
ρ : G→ K∗ satisfying (2.9) and (2.10) such that σ(x, y) = ∂ρ(x, y), for any (x, y) ∈ I.

Let ν0(x, y) = 1 and ν j(x, y) = ν(x, y)ν(x, xy) . . . ν(x, x j−1y), x, y ∈ G.
First we want to define ρ(b), . . . , ρ(bb(n+1)/2c) in such a way that ρ satisfies (2.9) and

ν j(b, b) =
ρ j+1(b)
ρ(b j+1)

, (4.8)

for any 1 ≤ j ≤ b(n − 1)/2c (this is already true for j = 0). The values of ρ on the other
powers of b (if n ≥ 3) will be defined using (2.9). Since n = bn/2c + b(n + 1)/2c, this
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is possible only if

ρn(b) = ρbn/2c(b)ρb(n+1)/2c(b)
(4.8)
= (νbn/2c−1(b, b)ρ(bbn/2c))(νb(n−1)/2c(b, b)ρ(bb(n+1)/2c))

(2.9)
= νbn/2c−1(b, b)νb(n−1)/2c(b, b).

Thus, we define

ρ(b) =
1

ρ(bn−1)
= ω2, where ωn

2 = νbn/2c−1(b, b)νb(n−1)/2c(b, b). (4.9)

For 2 ≤ j ≤ bn/2c, let

ρ(b j) =
1

ρ(bn− j)
=

ω
j
2

ν j−1(b, b)
. (4.10)

Notice that (4.10) coincides with (4.9) when j = 1. Now, for j = b(n + 1)/2c,

ρ(bb(n+1)/2c) =
1

ρ(bbn/2c)
=
νbn/2c−1(b, b)

ωbn/2c2

(4.9)
=

ωb(n+1)/2c
2

νb(n−1)/2c(b, b)
.

We also want

ν j(a, bl) =
ρ j(a)ρ(bl)
ρ(a jbl)

(4.11)

in the following cases:

• 1 ≤ j ≤ m and 1 ≤ l ≤ b(n − 1)/2c (if n ≥ 3);
• 1 ≤ j ≤ b(m + 1)/2c and l = n/2 (if n is even).

Thus, we set

ρ(a) =
1

ρ(am−1)
= ρ(1) = 1

and

ρ(a jbl) =
1

ρ(am− jbn−l)
(4.11)
=

ρ j(a)ρ(bl)
ν j(a, bl)

(4.10)
=

ωl
2

ν j(a, bl)νl−1(b, b)
(4.12)

in these cases.
Finally, in order to get ν(ai, b) = ρ(ai)ρ(b)ρ(aib)−1 when 1 ≤ i ≤ bm/2c, define

ρ(ai) =
1

ρ(am−i)
=
ν(ai, b)ρ(aib)

ρ(b)
(4.12)
=

ν(ai, b)ω2

ω2νi(a, b)ν0(b, b)
=
ν(ai, b)
νi(a, b)

.

The map ρ just defined satisfies the following conditions.

• If 1 ≤ k ≤ m − 1 and 1 ≤ l ≤ b(n − 1)/2c, or if n is even, l = n/2 and 1 ≤ k ≤
b(m − 1)/2c, then

ρ(a)ρ(akbl)
ρ(ak+1bl)

=
ωl

2

νk(a, bl)νl−1(b, b)
νk+1(a, bl)νl−1(b, b)

ωl
2

= ν(a, akbl).
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• For 1 ≤ i ≤ bm/2c,

ρ(ai)ρ(b)
ρ(aib)

=
ν(ai, b)
νi(a, b)

ω2
νi(a, b)ν0(b, b)

ω2
= ν(ai, b).

• If n ≥ 3 and 1 ≤ l ≤ b(n − 1)/2c, then

ρ(b)ρ(bl)
ρ(bl+1)

= ω2
ωl

2

νl−1(b, b)
νl(b, b)
ωl+1

2

= ν(b, bl).

This completes the proof. �

Let cm,n = |S Cm×Cn | be the number of effective S 3-orbits of the group Cm × Cn.
By Example 3.8, cm,n = |S Cm | + |B1| + |B2|, where B1 and B2 are as in the proof of
Proposition 4.1. Thus,

|B1| =


⌊m − 1

2

⌋
m(n − 1) +

m(n − 1)
2

if m ≡ 0 mod 2,⌊m − 1
2

⌋
m(n − 1) if m . 0 mod 2,

|B2| =


m2(|S Cn | − 1) + m + 2|S Cm | if n ≥ 3 and n ≡ 0 mod 3,
m2|S Cn | if n ≥ 3 and n . 0 mod 3,
0 if n = 2

and, using (3.1),

|S Cn | =


(n − 1)(n − 2)

6
if n . 0 mod 3,

(n − 1)(n − 2) + 4
6

if n ≡ 0 mod 3.

Now we give the principal result of this section.

Theorem 4.2. If G = Cm × Cn, then pMG×G(G) ' (K∗)cm,n−|Q1 |−|Q2 |, where Q1 ⊆ S Cm×Cn

is the set of pairs given by (4.1)–(4.3) and Q2 ⊆ S Cm×Cn is given by (4.4).

Proof. Considering S Cm×Cn as in Example 3.8, write

(K∗)cm,n = {{x(u, v)}(u,v)∈S Cm×Cn
}.
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By Proposition 4.1, the subgroup L = LG×G = {x ∈ (K∗)cm,n | σx ∼ 1} of (K∗)cm,n is

L =

{
x ∈ (K∗)cm,n

∣∣∣∣∣ x(ai, a j) =
x(a, ai) . . . x(a, ai+ j−1)
x(a, a) . . . x(a, a j−1)

, for (ai, a j) ∈ J1;

x(a, a j) = x(a, am− j−1), for j ∈ J2; x(a, a j) =
x(a, b)x(a j, ab)

x(a1+ j, b)
, for j ∈ J3;

x(ai, akbl) =
x(a, aibl) . . . x(a, ai+k−1bl)x(ai, bl)

x(a, bl) . . . x(a, ak−1bl)
, for (ai, akbl) ∈ J4;

x(a, akbl) = x(a, am−1−kbn−l), for (k, l) ∈ J5;

x(a, akbn/2) = x(a, am−1−kbn/2), for k ∈ J6;

x(ai, bl) = x(ai, b)
x(a, bl) . . . x(a, ai−1bl)
x(a, b) . . . x(a, ai−1b)

, for (i, l) ∈ J7;

x(aib j, akbl) = x(b j, bl)
x(ai, akbl)x(ai+k, b j+l)

x(ai, b j)x(ai+k, bl)
, for (i, l) ∈ J8;

x(b j, bl) =
x(b, b j) . . . x(b, b j+l−1)

x(b, b) . . . x(b, bl−1)
, for (b j, bl) ∈ J9;

x(b, bl) = x(b, bn−l−1), for l ∈ J10

}
,

where

J1 = {(ai, a j) ∈ S Cm | i, j ≥ 2},
J2 = { j ∈ N | b(m + 1)/2c ≤ j ≤ m − 3},
J3 = { j ∈ N | 1 ≤ j ≤ b(m − 1)/2c},

J4 = {(ai, akbl) ∈ B1 | 2 ≤ i and 1 ≤ k},
J5 = {(k, l) ∈ N × N | 1 ≤ k ≤ m − 1 and bn/2c + 1 ≤ l ≤ n − 1},
J6 = {k ∈ N | bm/2c ≤ k ≤ m − 1},
J7 = {(i, l) ∈ N × N | 1 ≤ i ≤ m/2 and 2 ≤ l ≤ n/2},

J8 = {(aib j, akbl) ∈ B2 | (i, k) , (0, 0)},

J9 = {(b j, bl) ∈ S Cn | j, l ≥ 2},
J10 = {l ∈ N | b(n + 1)/2c ≤ l ≤ n − 3}.

Notice that

|Q1| =

mb(n − 1)/2c + bm/2c − 1 + b(m + 1)/2c if n ≡ 0 mod 2,

mb(n − 1)/2c + bm/2c − 1 if n . 0 mod 2

and that

|Q2| =

b(n − 1)/2c if n ≥ 3,

0 if n = 2.
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Furthermore, |B1\Q1| = |J4| + |J5| + |J6| + |J7| and |B2\Q2| = |J8| + |J9| + |J10|. In
addition, cm,n − |Q1| − |Q2| = |S Cm×Cn | + |B1\Q1| + |B2\Q2|.

Inspired by the relations defining L, we consider the homomorphism Λ : (K∗)cm,n →

(K∗)cm,n−|Q1 |−|Q2 | which maps any {x(u, v)}(u,v)∈S Cm×Cn
to(( x(a, ai) . . . x(a, ai+ j−1)

x(ai, a j)x(a, a) . . . x(a, a j−1)

)
(ai,a j)∈J1

,
( x(a, am− j−1)

x(a, a j)

)
j∈J2

,

( x(a, b)x(a j, ab)
x(a, a j)x(a1+ j, b)

)
j∈J3

,

( x(a, aibl) . . . x(a, ai+k−1bl)x(ai, bl)
x(ai, akbl)x(a, bl) . . . x(a, ak−1bl)

)
(ai,akbl)∈J4

,

( x(a, am−1−kbn−l)
x(a, akbl)

)
(k,l)∈J5

,
( x(a, am−1−kbn/2)

x(a, akbn/2)

)
k∈J6

,

( x(ai, b)x(a, bl) . . . x(a, ai−1bl)
x(ai, bl)x(a, b) . . . x(a, ai−1b)

)
(i,l)∈J7

,

( x(b j, bl)x(ai, akbl)x(ai+k, b j+l)
x(aib j, akbl)x(ai, b j)x(ai+k, bl)

)
(i,l)∈J8

,

( x(b, b j) . . . x(b, b j+l−1)
x(b j, bl)x(b, b) . . . x(b, bl−1)

)
(b j,bl)∈J9

,
( x(b, bn−l−1)

x(b, bl)

)
l∈J10

)
.

It follows by construction that Λ is an epimorphism of groups whose kernel is L.
Consequently, by Theorem 2.16,

pMG×G(G) '
(K∗)cm,n

L
' (K∗)cm,n−|Q1 |−|Q2 |. �

5. Dihedral groups

In this section we calculate pMG×G(G) for any dihedral group G.

5.1. Finite dihedral group. Consider the dihedral group D2m = 〈a, b | am = b2 =

(ab)2 = 1〉,m ∈ N. We denote by dm = s(D2m,D2m × D2m) the number of effective orbits
of D2m, which is given by (3.1).

In the proof of Theorem 5.2, we will not determine explicitly the kernel of the map
ψ; instead, we shall obtain a chain of subgroups W ≤ kerψ ≤ R: then

(K∗)dm

ker(ψ)
'

(K∗)dm

W
ker(ψ)

W

.

As to the quotients (K∗)dm/W and ker(ψ)/W, we construct a map Λ with domain (K∗)dm

and whose kernel will be W; then Λ induces a group isomorphism Λ̄ : (K∗)dm/W →
im(Λ). Finally, to obtain the desired quotient (K∗)dm/ ker(ψ), we apply to Λ̄ the
following result.
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Lemma 5.1. Let f : H→ A be an isomorphism of abelian groups and H1 ≤ H; then the
map H/H1 3 hH1 → f (h) f (H1) ∈ A/ f (H1) is an isomorphism.

This argument will be used not only for pMD2m×D2m (D2m) but in the calculation of
other total components.

Theorem 5.2. We have pMD2m×D2m (D2m) ' (K∗)dm−bm−1/2c.

Proof. Let ψ : (K∗)dm → pMD2m×D2m (D2m) be the group epimorphism given by (2.11)
and x ∈ ker(ψ) = LD2m×D2m , where σx is as in Corollary 2.14(3). Then σ = σx ∈

ND2m×D2m . By Corollary 2.14(2), there is a map ρ : D2m → K∗ such that

σ(ai, a j) =
ρ(ai)ρ(a j)
ρ(ai+ j)

and σ(ak, alb) =
ρ(ak)ρ(alb)
ρ(ak+lb)

,

for all i, j, k, l ∈ N. Moreover, ρ satisfies

ρ(1) = ρ(ai)ρ(a−i) = ρ(aib)2 = 1,

for all i ∈ N. From the equalities above, it is easily verified that σ2(ak, alb) = ρ2(ak),
for every k and l. In particular, if m is even, then σ2(am/2, alb) = 1, for any l. It follows
from (2.15) that

σ(a, a j) =
σ(a, b)σ(a j, ab)
σ(a j+1, b)

,

for any j = 1, . . . , b(m − 1)/2c. Consequently, considering σi j and τkl as in (3.5) and,
using Lemmas 3.3 and 3.4,

ker(ψ) ⊆ R =

{
(σi j, τkl) ∈ (K∗)dm

∣∣∣∣∣ σi j =
σ1i . . . σ1,i+ j−1

σ11 . . . σ1, j−1
, for (i, j) ∈ J1;

σ1 j = σ1,m− j−1, for j ∈ J2; σ1 j =
τ10τ j1

τ1+ j,0
, for j ∈ J3;

τ2
kl = τ2

k0, for (k, l) ∈ J4; τ2
m/2,l = 1, for l ∈ J5

}
,

where

J1 = {(i, j) ∈ N × N | i, j ≥ 2 and (ai, a j) ∈ S Cm},

J2 = { j ∈ N | b(m + 1)/2c ≤ j ≤ m − 3},
J3 = { j ∈ N | 1 ≤ j ≤ b(m − 1)/2c},
J4 = {(i, j) ∈ N × N | 1 ≤ i ≤ b(m − 1)/2c; 0 ≤ j ≤ m − 1},

J5 =

{l ∈ N | 0 ≤ l ≤ (m/2) − 1} if m ≡ 0 mod 2,
∅ if m . 0 mod 2.

Notice that
∑5

i=1 |Ji| = dm. Now we consider the group

W = {(σi j, τkl) ∈ R | τkl = µk ∈ K∗, for (k, l) ∈ J4,

τm/2,l = µm/2, for l ∈ J5, where µm/2 = 1 if m ≡ 0 mod 2},
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which is obtained from R by removing the squares in the relations corresponding to J4

and J5.
We shall show that W ≤ ker(ψ). Indeed, given (σi j, τkl) ∈ W, let λ : G→ K∗ be the

map defined by

λ(aib) = λ(1) = 1 for each 0 ≤ i ≤ m − 1,

λ(ai) =
1

λ(am−i)
= µi for each 1 ≤ i ≤ b(m − 1)/2c

and λ(am/2) = 1 if m ≡ 0 mod 2. Then, by the construction of W, it follows that

σ1 j =
τ10τ j1

τ1+ j,0
=
µ1µ j

µ1+ j
=
λ(a)λ(a j)
λ(a1+ j)

, for all j ∈ J3

and

σ1 j = σ1,m− j−1 =
λ(a)λ(am− j−1)

λ(am− j)
=
λ(a)λ(a j)
λ(a j+1)

, for any j ∈ J2.

These imply that

σi j =
σ1i . . . σ1,i+ j−1

σ11 . . . σ1, j−1
=
λ j(a)λ(ai)
λ(ai+ j)

λ(a j)
λ j(a)

=
λ(ai)λ(a j)
λ(ai+ j)

,

for every (i, j) ∈ J1, and

τkl = µk =
λ(ak)λ(alb)
λ(ak+lb)

, for each (k, l) ∈ J4 ∪ ({m/2} × J5).

Consequently, any partial factor set σx, x ∈ W, is a coboundary, that is, W / ker(ψ).
We will construct an epimorphism whose kernel is W. Since

∑5
i=1 |Ji| = dm and

|(k, l) ∈ J4, l , 0| = |J4| − b(m − 1)/2c, we may define a homomorphism Λ : (K∗)dm →

(K∗)dm−b(m−1)/2c sending (σi j, τkl) to ((σ1 jτ j+1,0/τ10τ j1) j∈J3 , (σ1 j/σ1,m− j−1) j∈J2 ,
(σi jσ11 . . . σ1, j−1/σ1i . . . σ1,i+ j−1)(i, j)∈J1 , (τkl/τk0)(k,l)∈J4,l,0, (τm/2,l)l∈J5 ).

Then, by construction, W = ker(Λ), and Λ is an epimorphism, because for any z =

((ui)i∈J3 , (vi)i∈J2 , (wi, j)(i, j)∈J1 , (xi, j)(i, j)∈J4, j,0, (yi)i∈J5 ) belonging to (K∗)dm−b(m−1)/2c, one
has Λ(σi j, τkl) = z, where

τk0 = 1, for (k, 0) ∈ J4,

τkl = xkl, for (k, l) ∈ J4, l , 0,
τ(m/2)l = yl, for l ∈ J5,

σ1 j =
u jτ10τ j1

τ j+1,0
, for j ∈ J3,

σ1 j = v jσ1,m− j−1, for j ∈ J2

and
σi j =

wi jσ1i . . . σ1,i+ j−1

σ11 . . . σ1, j−1
, for (i, j) ∈ J1.
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On the other hand,

Λ(x) = (1, . . . , 1, ε1, . . . , εt), for any x ∈ ker(ψ) ⊆ R, (5.1)

where the number of ones in (5.1) is |J3| + |J2| + |J1| and ε2
i = 1, for every 1 ≤ i ≤

t = |J4| − b(m − 1)/2c + |J5|. In other words, Λ(ker(ψ)) / Cdm−b(m−1)/2c
2 . We get that

pMD2m×D2m (D2m) is isomorphic to

(K∗)dm

ker(ψ)
'

(K∗)dm

ker(Λ)
ker(ψ)
ker(Λ)

'
(K∗)dm−b(m−1)/2c

Λ(ker(ψ))
' (K∗)dm−b(m−1)/2c,

where the last isomorphism follows from (3.2) and (5.1). �

5.2. Infinite dihedral group. Now we proceed with the calculation of the total
component of the partial Schur multiplier, for D∞ = 〈a, b | b2 = (ab)2 = 1〉. First we
give a result that can be proved similarly to Lemma 3.3.

Lemma 5.3. Any element of pm′D∞×D∞
(D∞) is uniquely determined by its values on

pairs in
{(ai, a j) | (i, j) ∈ N × N} ∪ {(ak, alb) | (k, l) ∈ N × Z}.

Moreover, these values can be chosen arbitrarily in K∗.

Theorem 5.4. We have pMD∞×D∞(D∞) ' (K∗)(N×N)×(N×Z∗).

Proof. By Lemma 5.3, the effective orbits of D∞ can be indexed by the set (N × N)
× (N × Z). So, we may consider ψ : (K∗)(N×N)×(N×Z) → pMD∞×D∞(D∞) as the
epimorphism of groups given by (2.11) and take x ∈ ker(ψ) = LD∞×D∞ . Then σ = σx ∈

ND∞×D∞ and there is a map ρ : D∞ → K∗ such that (2.9) and (2.10) are satisfied. As
above, it is easily verified that σ2(ak, alb) = ρ2(ak), for every k and l.

For i, j ≥ 1, we get from (2.15) that

σ(ai, a j) =
σ(ai, b)σ(a j, aib)

σ(ai+ j, b)
.

Given j ∈ Z and x, y ∈ D∞, set

σ j(x, y) =


σ(x, y)σ(x, xy) . . . σ(x, x j−1y) if j > 0,
1 if j = 0,
σ(x, x−1y)σ(x, x−2y) . . . σ(x, x jy) if j < 0.

(5.2)

In particular, for x = a and y = b,

σ j(a, b) =
ρ| j|(a)ρ(b)
ρ(a jb)

,

for any j ∈ Z.
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Using (5.2), it is also seen that for any i, j ∈ Z,

σ(ai, a jb)
σi+ j(a, b)σ(ai, b)

=
ρ(aib)ρ(a jb)
ρ|i+ j|(a)

=


σ−1

i (a, b)σ−1
j (a, b) if i, j > 0,

σ−1
i (a, b)σ j(a, b) if 0 < − j ≤ i,

σi(a, b)σ−1
j (a, b) if 0 < i ≤ − j.

Consequently, the values of σ are determined by its values on

{(ak, b) | k ∈ N} ∪ {(a, alb) | l ∈ Z}.

Therefore, using Lemma 5.3 and considering σi j and τkl as in (3.5), and πi as in (2.12),
we conclude that

ker(ψ) ⊆ R =

{
(σi j, τkl) ∈ (K∗)N×N × (K∗)N×Z

∣∣∣∣∣ σi j =
πi+ j

πiπ j
, for i, j ≥ 2;

σi1 = σ1i, for i ≥ 2; σ1 j =
τ10τ j1

τ1+ j,0
, for j ∈ N;

τ2
kl = τ2

k0, for (k, l) ∈ N × Z
}
.

Consider the group

W = {(σi j, τkl) ∈ R | τkl = µk, for (k, l) ∈ N × Z and some µk ∈ K∗}.

Given (σi j, τkl) ∈ W, let λ : G→ K∗ be the map defined by

λ(aib) = λ(1) = 1, for i ∈ Z,

λ(ai) =
1

λ(am−i)
= µi, for i ∈ N.

Then it follows from the definition of R and W that σ1 j = τ10τ j1/τ1+ j,0 = µ1µ j/µ1+ j =

λ(a)λ(a j)/λ(a1+ j), for j ∈ N, and σi1 = σ1i = λ(a)λ(ai)/λ(a1+i), for i ≥ 2. The latter
equality implies that

σi j
σ1i . . . σ1,i+ j−1

σ11 . . . σ1, j−1
=
λ j(a)λ(ai)
λ(ai+ j)

λ(a j)
λ j(a)

=
λ(ai)λ(a j)
λ(ai+ j)

,

for every i, j ≥ 2 and

τkl = µk =
λ(ak)λ(alb)
λ(ak+lb)

, for each (k, l) ∈ N × Z.

We conclude that for every x ∈ W, the partial factor set σx is a coboundary.
Consequently, W / ker(ψ).

As in the proof of Theorem 5.2, we will construct an epimorphism of groups whose
kernel is W. Let Λ : (K∗)(N×N)×(N×Z) → (K∗)(N×N)×(N×Z∗) be the homomorphism of
groups defined by mapping (σi j, τkl) to((

σi1

σ1i

)
i∈N\{1}

,
(σi jσ11 . . . σ1, j−1

σ1i . . . σ1,i+ j−1

)
i, j∈N\{1}

,(σ1 jτ j+1,0

τ10τ j1

)
j∈N
,
(
τkl

τk0

)
(k,l)∈N×Z∗

)
.
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Taking any z = ((ui1)i∈N\{1}, (vi j)i, j∈N\{1}, (w1 j) j∈N, (xk,l)(k,l)∈N×Z∗) in the group
(K∗)(N×N)×(N×Z∗), one gets Λ(σi j, τkl) = z, where

τk0 = 1, for (k, 0) ∈ N × {0},
τkl = xkl, for (k, l) ∈ N × Z∗,

σ1 j =
w1 jτ10τ j1

τ j+1,0
, for (1, j) ∈ {1} × N,

σi1 = σ1,iui1, for (i, 1) ∈ N × {1}

and
σi j =

vi jσ1i . . . σ1,i+ j−1

σ11 . . . σ1, j−1
, for (i, j) ∈ (N\{1}) × (N\{1}).

Then Λ is an epimorphism. Moreover, it is immediate that W = ker(Λ) and, given
µ ∈ ker(ψ), it follows that

Λ(µ) = ((1i j)(i, j)∈N×N, (εkl)(k,l)∈N×Z∗),

where 1i j = 1 = ε2
kl, for every (i, j) ∈ N × N and (k, l) ∈ N × Z∗. Hence, Λ(ker(ψ)) /

C(N×N)×(N×Z∗)
2 .
Therefore,

pMD∞×D∞(D∞) =
(K∗)(N×N)×(N×Z)

ker(ψ)
'

(K∗)(N×N)×(N×Z)

ker(Λ)
ker(ψ)
ker(Λ)

'
(K∗)(N×N)×(N×Z∗)

Λ(ker(ψ))
' (K∗)(N×N)×(N×Z∗),

where the last isomorphism follows from (3.2). �

6. Dicyclic groups

Take m ∈ N, m > 0 and let Dicm = 〈a, b | a2m = 1, b2 = am, b−1ab = a−1〉. Our aim
in this section is to determine pMDicm×Dicm (Dicm).

Notice that every element of Dicm can be written in the form aibl, where 0 ≤ i ≤
2m − 1 and l ∈ {0, 1}. Moreover,

(akb)−1 = ak+mb and (ak)−1 = a2m−k. (6.1)

In the next result, S C2m denotes the full set of representatives of the effective orbits of
C2m defined in (3.3).

Lemma 6.1. The set S Dicm defined by

S C2m ∪ {(a
i, akb) | 1 ≤ i ≤ m − 1, 0 ≤ k ≤ 2m − 1}

∪ {(am, akb) | 0 ≤ k ≤ m − 1}

contains exactly one representative of each effective orbit of S 3 on Dicm × Dicm.
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Proof. By (2.4), we have S 3(x, ak) = S 3(a2m−k, x−1); then every orbit S 3(x, ak), where
x ∈ Dicm, is represented by a pair whose first coordinate is a power of a. Moreover,
since ba = a−1b,

aibakb = ai−1bak−1b = ai−2bak−2b = · · · = ai−kb2 = am+i−k

and, consequently, S 3(aib, akb) = S 3(aibakb, (akb)−1) = S 3(am+i−k, ak+mb), thanks to
(2.4).

Since the set S C2m from (3.3) contains precisely one element of each effective S 3-
orbit in C2m × C2m, then, to find the effective orbits, it remains to consider the pairs
(ai, akb). But

S 3(ai, akb) = S 3((ai)−1, aiakb) = S 3(a2m−i, ai+kb),

and we can assume that i ≤ 2m − i, that is, i ≤ m.
Finally, for i = m, one gets S 3(am, akb) = S 3(am, am+kb), and we can choose k ≤ m −

1. Indeed, am+kb = am+k−2mb = ak−mb and, if m ≤ k ≤ 2m − 1, then 0 ≤ m − k ≤ m − 1.
This completes the proof. �

Proposition 6.2. Let G = Dicm, for some natural number m ≥ 2. If σ ∈ pm′G×G(G) and
σ ∼ 1, then σ is uniquely determined by its values on the pairs

(a, akb), where 0 ≤ k ≤ m and (6.2)

(ai, b), where 2 ≤ i ≤ m − 1, (6.3)

which can be chosen in K∗ arbitrarily, and also by its value on (am, b), which must
satisfy

σ2(am, b) =
(σm(a, b))2

(σ(a, b)σ(a, amb))m . (6.4)

Proof. Let σ ∈ pm′G×G(G) and suppose that σ ∼ 1. By (2.15),

σ(ai, ak) =
σ(ai, b)σ(ak, aib)

σ(ai+k, b)
,

for any i, k. Thus, using Lemma 6.1, it is clear that each value of σ on the pairs (ai, ak)
from S C2m is determined by its value on the set B = S Dicm\S C2m given by

{(ai, akb) | 1 ≤ i ≤ m − 1, 0 ≤ k ≤ 2m − 1} ∪ {(am, akb) | 0 ≤ k ≤ m − 1}. (6.5)

By (2.14), the values of σ on those pairs for which i ≥ 2 and k ≥ 1 are determined by
the values σ(a, akb) and σ(ai, b), where 0 ≤ k ≤ 2m − 1 and 2 ≤ i ≤ m. Indeed,

σ(ai, akb) =
σi+k(a, b)σ(ai, b)
σi(a, b)σk(a, b)

=
σ(a, aib) . . . σ(a, ai+k−1b)σ(ai, b)

σ(a, b) . . . σ(a, ak−1b)
.

Using (6.1) and the fact that σ is a coboundary,

σ(a, akb) =
σ(a, b)σ(a, amb)
σ(a, ak−mb)

, where 1 ≤ k − m ≤ m − 1
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or, equivalently, for m + 1 ≤ k ≤ 2m − 1. Hence, the values of σ(a, akb), for k =

m + 1, . . . , 2m − 1, are determined by the values σ(a, akb) for which 1 ≤ k ≤ m.
Consequently, the values of σ on elements of B are determined by those on pairs
from (6.2) and (6.3).

Moreover, let σ = ∂ρ, for some ρ : G→ K∗ verifying (2.9) and (2.10). Then

σ(a, akb)σ(a, ak+mb) =
ρ(a)ρ(akb)
ρ(ak+1b)

ρ(a)ρ(ak+mb)
ρ(ak+m+1b)

= ρ2(a). (6.6)

Further, (6.4) follows from

σ2(am, b)(σ(a, b)σ(a, amb))m (6.6)
=

(
ρ(am)ρ(b)
ρ(amb)

)2
(ρ2(a))m

=

(
ρm(a)ρ(b)
ρ(amb)

)2
= (σm(a, b))2.

Now fix a family (ν(x, y))(x,y)∈I of elements of K∗, indexed by the list of pairs given
by (6.2) and (6.3). Write

ν j(a, b) = ν(a, b)ν(a, ab) . . . ν(a, a j−1b), (6.7)

for each 1 ≤ j ≤ m + 1. Suppose that these values satisfy a condition analogous to
(6.4), that is,

ν2(am, b) =
(νm(a, b))2

(ν(a, b)ν(a, amb))m . (6.8)

Our intent is to show that these values determine a partial factor set σ ∼ 1. By
Corollary 2.14(2), if we construct a map ρ : G→ K∗ satisfying (2.9) and (2.10) such
that σ(x, y) = ρ(x)ρ(y)ρ(xy)−1, for any of the pairs (x, y) listed above, then this equality
will define a partial factor set σ ∈ pm′G×G(G) such that σ ∼ 1.

Motivated by (6.6), we start by defining

ρ(a) =
1

ρ(a2m−1)
= ω1,

where ω1 satisfies ω2
1 = ν(a, b)ν(a, amb). Define also

ρ(1) = 1 and ρ(am) =
ωm

1 ν(a
m, b)

νm(a, b)
;

by (6.8), this implies that ρ2(am) = (ω2m
1 ν(am, b)2/νm(a, b)2) = 1. Since we want the

equality ν(am, b) = (ρ(am)ρ(b)/ρ(amb)) = ρ(am)ρ2(b), define

ρ(b) =
1

ρ(amb)
= ω2,

where ω2 satisfies

ω2
2 =

ν(am, b)
ρ(am)

=
ν(am, b)νm(a, b)
ωm

1 ν(a
m, b)

=
νm(a, b)
ωm

1
.
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Furthermore, set

ρ(a jb)
(6.1)
=

1
ρ(am+ jb)

=
ρ j(a)ρ(b)
ν j(a, b)

=
ω

j
1ω2

ν j(a, b)
,

for each j = 1, . . . ,m − 1, and

ρ(a j)
(6.1)
=

1
ρ(a2m− j)

=
ν(a j, b)ρ(a jb)

ρ(b)
=
ν(a j, b)ω j

1ω2

ω2ν j(a, b)
=
ν(a j, b)ω j

1

ν j(a, b)
,

for each j = 1, . . . ,m − 1 (notice that the same formula is also valid for j = m).
With these definitions, it follows that

ρ(a)ρ(b)
ρ(ab)

= ω1ω2
ν(a, b)
ω1ω2

= ν(a, b),

ρ(a)ρ(amb)
ρ(am+1b)

=
ω1

ω2

ω1ω2

ν(a, b)
=

ω2
1

ν(a, b)
= ν(a, amb)

and, for any k = 1, . . . ,m − 1,

ρ(a)ρ(akb)
ρ(ak+1b)

= ω1
ωk

1ω2

νk(a, b)
νk+1(a, b)
ωk+1

1 ω2
=
νk+1(a, b)
νk(a, b)

(6.7)
= ν(a, akb).

In addition,

ρ(am)ρ(b)
ρ(amb)

=
ωm

1 ν(a
m, b)

νm(a, b)
ω2

2 =
ωm

1 ν(a
m, b)

νm(a, b)
νm(a, b)
ωm

1
= ν(am, b)

and, finally, for any 2 ≤ i ≤ m − 1,

ρ(ai)ρ(b)
ρ(aib)

=
ν(ai, b)ωi

1

νi(a, b)
ω2
νi(a, b)
ωi

1ω2
= ν(ai, b).

Thus, we have obtained a map ρ : G→ K∗ with the desired properties. �

Let dcm = |S Dicm | be the number of effective S 3-orbits of Dicm, which, by
Lemma 6.1, is given by the formula

dcm =


(4m − 1)(4m − 2) + 4

6
if m ≡ 0 mod 3,

(4m − 1)(4m − 2)
6

if m . 0 mod 3.

Notice that dcm = |S C2m | + |B|, where S C2m is given by (3.3) and B is as in (6.5).

Theorem 6.3. If G = Dicm, then pMG×G(G) ' (K∗)dcm−2m+1.

https://doi.org/10.1017/S144678871500035X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871500035X


400 H. G. G. de Lima and H. Pinedo [27]

Proof. Considering σi j and τkl as in (3.5), write (K∗)dcm = (K∗)|S C2m | × (K∗)|B|. By
Proposition 6.2, the subgroup L = LG×G = {x ∈ (K∗)dcm | σx ∼ 1} of (K∗)dcm is given
by

L =

{
(σi j, τkl) ∈ (K∗)|S C2m | × (K∗)|B|

∣∣∣∣∣
σi j =

σ1i . . . σ1,i+ j−1

σ11 . . . σ1, j−1
, for (i, j) ∈ J1;

σ1 j = σ1,2m− j−1, for j ∈ J2; σ1 j =
τ10τ j1

τ1+ j,0
, for j ∈ J3;

τi,k =
(τ1,i . . . τ1,i+k−1)τi,0

τ1,0 . . . τ1,k−1
for (i, k) ∈ J4;

τ1,kτ1,m+k = τ1,0τ1,m, for k ∈ J5;

τ2
m,0 =

(τ1,0τ1,1 . . . τ1,m−1)2

(τ1,0τ1,m)m

}
,

where

J1 = {(i, j) ∈ N × N | i, j ≥ 2 and (ai, a j) ∈ S C2m},

J2 = { j ∈ N | m ≤ j ≤ 2m − 3},
J3 = { j ∈ N | 1 ≤ j ≤ b(2m − 1)/2c = m − 1},

J4 = {(i, k) ∈ N × N | (ai, akb) ∈ B, 2 ≤ i and 1 ≤ k},
J5 = {k ∈ N | 1 ≤ k ≤ m − 1}.

Let Q be the set of pairs given by (6.2) and (6.3). Then |Q| = 2m − 1, Q ⊆ B
and |B\Q| = |J4| + |J5| + 1. Write (K∗)dcm−2m+1 = (K∗)|S C2m | × (K∗)|B\Q| and consider the
group homomorphism Λ : (K∗)dcm → (K∗)dcm−2m+1 which maps (σi j, τkl) to((σi jσ11 . . . σ1, j−1

σ1i . . . σ1,i+ j−1

)
(i, j)∈J1

,
( σ1 j

σ1,m− j−1

)
j∈J2

,
(σ1 jτ j+1,0

τ10τ j1

)
j∈J3

,( (τ1,i . . . τ1,i+k−1)τi,0

(τ1,0 . . . τ1,k−1)τi,k

)
(i,k)∈J4

,
( τ1,0τ1,m

τ1,kτ1,m+k

)
k∈J5

,
(τ1,0τ1,1 . . . τ1,m−1)2

τ2
m,0(τ1,0τ1,m)m

)
.

Then Λ is an epimorphism whose kernel is L. Consequently, pMG×G(G) ' (K∗)dcm/L '
(K∗)dcm−2m+1. �

7. The total component pMZ×Z(Z)

For maps σ : Z × Z→ K and ρ : Z→ K∗, denote σi j = σ(i, j) and ρi = ρ(i), for
every i, j ∈ Z. To determine pMZ×Z(Z), we need a couple of facts.

Lemma 7.1. Any element of pm′Z×Z(Z) is uniquely determined by its values on pairs
(i, j) ∈ N × N. Moreover, these values can be chosen arbitrarily in K∗.
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Proof. For any i, j ∈ Z,

S 3(i, j) = {(i, j), (−i − j, i), ( j,−i − j), (− j,−i), (−i, i + j), (i + j,− j)}.

Let S 3(i, j) be an effective orbit, that is, 0 < {i, j, i + j}. If (i, j) ∈ (Z × Z)\(N × N), we
shall prove that there is exactly one (m, n) ∈ (N × N) ∩ S 3(i, j). There are a few cases
to consider.

• If i, j < 0, then (− j,−i) ∈ N × N.
• If i < 0 < j and i + j > 0, then (−i, i + j) ∈ N × N. On the other hand, if i + j < 0,

then ( j,−i − j) ∈ N × N.
• If j < 0 < i and i + j > 0, then (i + j, − j) ∈ N × N. Finally, if i + j < 0, then

(−i − j, i) ∈ N × N.

When (i, j) ∈ N × N, it is clear that the other elements of its S 3-orbit are not in
N × N. �

Proposition 7.2. If σ ∈ pm′Z×Z(Z) and σ ∼ 1, then σ is uniquely determined by its
values on {1} × N, which can be chosen arbitrarily in K∗.

Proof. Let σ ∈ pm′Z×Z(Z) and suppose that σ ∼ 1. This means that there is a map
ρ : Z→ K∗ such that σi j = ρiρ j/ρi+ j, for all (i, j) ∈ Z × Z, and ρ0 = ρiρ−i = 1, for all
i ∈ Z. Observe that σi j = σ ji and, setting π j = σ11σ12 . . . σ1, j−1, for each j ≥ 2,

π j =
ρ

j
1

ρ j
(7.1)

and, in addition, σi j = πi+ j/πiπ j, for every i, j ≥ 2. Therefore, σ is completely
determined by its values σ1n, n ∈ N, which, by Lemma 7.1, correspond to pairs
belonging to distinct S 3-orbits.

On the other hand, fixing (ν1 j) j∈N arbitrarily in (K∗)N, let us show that these values
determine a partial factor set σ ∼ 1. By Corollary 2.14(2), it is enough to construct a
map ρ : Z→ K∗ satisfying (2.9) and such that

ν1 j =
ρ1ρ j

ρ j+1
, (7.2)

for any j ∈ N. For j ≥ 2, write π j = ν11 . . . ν1, j−1. In order to get (7.1), for all j ≥ 2,
define ρ1 = 1 and ρ j = 1/(ρ− j) = 1/π j. Hence, we have constructed a map ρ : Z→ K∗

satisfying (2.9) and (7.2). Indeed, σ11 = π2 = ρ2
1/ρ2 and, for every j ≥ 2,

σ1 j =
π j+1

π j
=

1
ρ j+1

1
ρ j

=
ρ j

ρ j+1
=
ρ1ρ j

ρ j+1
. �

Theorem 7.3. We have pMZ×Z(Z) ' (K∗)N.

Proof. Using Lemma 7.1 and Proposition 7.2, we get pMZ×Z(Z) ' (K∗)N×N/(K∗){1}×N '
(K∗)N. �
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