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THE STRUCTURE OF C*-CONVEX SETS 

PHILLIP B.MORENZ 

ABSTRACT. Compact C*-convex subsets of Mn correspond exactly to n-th matrix 
ranges of operators. The main result of this paper is to discover the "right" analog of 
linear extreme points, called structural elements, and then to prove a generalised Krein-
Milman theorem for C*-convex subsets of M„. The relationship between structural el
ements and an earlier attempted generalisation, called C*-extreme points, is examined, 
solving affirmatively a conjecture of Loebl and Paulsen [8]. An improved bound for a 
C*-convex version of the Caratheodory theorem for convex sets is also given. 

0. Introduction. For T a bounded linear operator on a Hilbert space, Arveson [1] 
introduced a generalisation of the familiar numerical range, called the n-th matrix range 
of 7, and defined by W"(r) = {(f(T) : ip: ^{91) —• Mn unital, completely positive}. 
Among other things, he observed that W"(T) has a particularly strong convexity property. 
Loebl and Paulsen [8] named this property C*-convexity and defined it as follows: 

DEFINITION 0.1. Let A be a C*-algebra. A C*-convex combination of x\ • • • xm e A 
is a sum of the form £S=i *?*/*/ where the t{ E A satisfy ££L, t*tt = 1. A set S C A is 
C*-convex iff it is closed under C*-convex combinations of elements of S-

The analogy with linear convexity is obvious, and the paper [8] is a good introduction 
to the basic facts about C*-convexity. The motivation for studying C*-convex sets is 
their connection with n-th matrix ranges of operators: n-th matrix ranges are compact 
C*-convex sets. Furthermore, by reinterpreting some earlier work of Salinas [10], Loebl 
and Paulsen observed that the converse also holds: for any compact, C*-convex subset 
S C Mn, there exists a separable Hilbert space !H, and some T G (B(9{) satisfying 
5 = W"(7). Thus compact C*-convex subsets of Mn correspond exactly to n-th matrix 
ranges of operators. The importance of the structure of C*-convex sets is an immediate 
corollary to the widespread interest in n-th matrix ranges. (The survey paper [6] is a good 
introduction to the literature on n-th matrix ranges. An example of the usefulness of n-th 
matrix ranges is Arveson's result [1 ] that an irreducible compact operator is characterised 
up to unitary equivalence by the set of its n-th matrix ranges.) The main goal of a structure 
theory of C* -convex sets is to prove a generalised version of the Krein-Milman theorem 
for ordinary convex sets. That is, we seek to identify the "right" analog of extreme points, 
and to prove that these are necessary and sufficient to reconstruct the original set (using 
C*-convex combinations). 

The paper is organised as follows. Section 1 presents some elementary preliminaries 
(although, for the most part, the reader is assumed to be already familiar with the basic 
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facts about C*-convexity, see [8]), along with references to some more substantial results 
already in the literature which will be needed later in the paper. Section 2 introduces 
structural elements and uncovers some elementary facts about them. The C*-summands, 
pieces, and weights, and the C*-faces defined in Section 3 are the technical tools used 
to prove a generalised Krein-Milman theorem and its converse in Section 4. Section 5 
examines the relationship between structural elements and C*-extreme points, and the 
paper ends with an improved bound for the Caratheodory type theorem for C*-convex 
sets. 

1. Preliminaries and previous results. The definition of a C*-convex set was 
given in the introduction. Three elementary examples of C*-convex sets are the follow
ing: 

i) {T E $dH) : 0 < T < 1}, 
ii) the unit ball of Si, and 

iii) W\ = {T E ^(Oi) : w(T) < 1} (where w(T) is the numerical radius of T). 
The proofs that these sets are C*-convex are elementary, and can be found in [8]. We will 
reuse these three examples throughout to illustrate new concepts as they are introduced. 
It is a trivial consequence of the definition that a C*-convex set S is closed under unitary 
equivalence. That is, if u E A is unitary, and x E S, then y = u*xu E S. This is a 
recurrent theme, and many of the concepts introduced (e.g. C*-extreme points, structural 
elements) are "up to unitary equivalence". We write y ~ x for y is unitarily equivalent to 
JC, and we write Zl(x) for the unitary orbit of x. 

Loebl and Paulsen [8] first proposed the search for a generalised Krein-Milman theo
rem, and suggested the following definitions as the appropriate analogue to the definition 
of an extreme point. 

DEFINITION 1.1. Let A be a C*-algebra. A proper C*-convex combination of 
x\,..., xm E A is a sum of the form YOJLi t*xiU where, in addition to the condition 
52/ t*ti = 1 (for a C*-convex combination) each ti E A is invertible. 

DEFINITION 1.2. Let S C S\. be C*-convex. x E S is a C*-extreme point of S, written 
JC E 5*5, provided that if x = £ ; f[XiU is a proper C*-convex combination of JC, E 5, then 
x ~ xi V/. 

Once again the analogy with linear extreme points is clear. In fact, C* -extreme points 
are linearly extreme [8], but not conversely ([7]—see iii) below). Elementary examples 
of C*-extreme points include: 

i) for {x E Mn : 0 < x < 1} the C*-extreme points are exactly the orthogonal 
projections (including 0 and 1); 

ii) for the unit ball the C*-extreme points are exactly the isometries [7]; and 

iii) for W\ C M2, the C*-extreme points are {Al : |A| = 1} U Iii ( j? 2 j ] [7]. 

It should be noted that the restriction to proper C*-convex combinations is often quite 
significant, more so than in the case of linear convexity. The definition of C*-extreme 
points is one example; we shall encounter others (see, for instance, Remark 3.5.8). 

https://doi.org/10.4153/CJM-1994-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-058-0


THE STRUCTURE OF C-CONVEX SETS 1009 

Earlier efforts to prove a generalised Krein-Milman theorem have focused on Loebl 
and Paulsen's definition of C*-extreme points, although it wasn't until 1990 that Farenick 
[3] proved that every compact C*-convex set must have C*-extreme points. At the same 
time it is clear that although C*-extreme points might be sufficient to recover the original 
set, they certainly cannot be necessary. A simple example is 

and these two elements of S are not even linearly extreme let alone C*-extreme. The 
main result of this paper is to overcome this difficulty by defining the structural elements 
of 5, str(5), (S C Mn compact and C*-convex), and proving that this set is the right 
analog of linear extreme points in the sense that str(S) is both necessary and sufficient to 
reconstruct the original compact C*-convex set using C*-convex combinations. 

The next two results are elementary, but they will be used later, and perhaps also serve 
to give the newcomer to C*-convexity some of the flavour of the proofs. 

PROPOSITION 1.3. Let S CMnbe C*-convex, x — Y%L\ $*& a C*-convex combina
tion ofxi 6 S- Then by combining the terms with i > 2 we can find y G S and r € Mn so 
that we can rewrite x as a C*-convex combination of elements of S with only two terms 
x = fxx\t\ + r*yr, (x\,y € 5, t\t\ + r*r = 1). 

PROOF. It is clear that essentially what we want to do is the following: let r = 
(Hï>2t*td1/2 (notice r = r*), and let y = r~l{T,i>2t*Xiti)r~x. It is obvious that y G 
C* — conv{jt2 • • • xm} C S because J2i>2 r~lt*tir~l = 1. Then x = t*x\t\ + r*yr 6 5 
because t*t\ + r*r = 1. The difficulty is, of course, that r need not be invertible. Choose 

unitary u € Mn so that r7 = u*ru = I with r" > 0 invertible. The idea is that it 

is enough to be able to invert r". The rest is merely details. 
L e t / = u*xu = T>i(u*t*u)(u*XiU)(u*tiu) = £/ tfx'rf a C* -con vex combination. With

out loss of generality we may assume 0 6 S. Let 

and y' = j ' ( E , > 2 ^ ï j y + sOs. y' € S because 0,x e S and £,>2j'*f ^ ' + s2 = 1„. 
Notice ft < Z1 so f^V = $. Thus 

t«x\ t[ + r'y'r' = t\*x\ t[ + r' is' ( ]£ tfx'^s' + sOs] t> 

i>2 

= x' 

= u*xu, 

https://doi.org/10.4153/CJM-1994-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-058-0


1010 PHILLIP B.MORENZ 

but 

SO 
x = ux'u* — ut'*x\t\u* + ur'y'r'u* 

= (ut\* u*)(ux\ u*)(ut\ u*) + u [Y, */**/*/ )u* 

i>2 

Thus x = t\x\ t\ + r*yr where r = urJu* and y = uy'w* E S- • 
Notice that, unlike ordinary convexity, if JC£- = JC7- it is not usually possible to combine 

the terms t*xiti + t*Xjtj into a single term s*xis. As an example 

(i o\ = r\ o u i o u i oA (o o u i ouo n 
l̂ o \) [o oj ô oj vo oJ + ^i o j ^ o oJvo o) 

(o ? ) ^ w * ( i o)M 

for any (unitary) u. 
In order to define the compression of a C*-convex set from Mn to M* (/: < /?), we 

define 

Thus for x E Mn, P*nkxPnk is the compression of JC to Mk. 

PROPOSITION 1.4. Ler S C Mn be C*-convex. Let Sk = P^SPnk be its compression 
to Mk. Then Sk is C*-convex, and if S is compact then so is Sk- Furthermore, if S = 
C* - conv(Ç) for some set Ç C Mn, then Sk = C* - con\(p*nk(îl(Ç))Pnk\ 

PROOF. Suppose x = E; t*xiti is a C*-convex combination of xi E Sk 0 = 1, • • •, w). 
To show x E Sk we must find x E S such that x = P*nkxPnk. Since xv E Sk, 3*/ £ S such 
that xi = P*nkXiPnk. Let tt = t{ © (^1„-*) , so E/ t*h = ln, and let x = E, %%% E S. 
Clearly P*nkxPnk = x. The statement about compactness is trivial because compression is 
continuous. 

Let S = C* — conv( Ç). Let x E Sk where x = P*nkxPnk for some x E 5. Thus 
x = E/ t*gtti C*-convex combination of gi E Ç. Choose unitaries ut E Mn such that 

UitiPnk = UiU f 0* J = f Q J for some st E Mk. Now E, s*st = E, P*nkt*u*UiUPnk = lk so 

X = P*nkxPnk = ^PlkAU*Mi8i^i)uiUPnk 
i 

^Yi^iKkUiSiUiPnkSi 
i 

eC-conv(p*nkU(Ç)Pnk). m 

We will also require the following more substantial results, already in the literature. 
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DEFINITION 1.5. Given B,M e Mn,r> 0, (r G R), define the matrix-valued disk 
D(5,M;r) = {AGM„ : | |A®£ + 1®M|| < r}. 

These sets were introduced by Farenick [4] where he shows that they are compact 
and C*-convex. They are called matrix-valued disks because if n = 1 they give rise to a 
classical disk and the next result reduces to a well known result in linear convexity theory. 
Although little is known of their structure (e.g. C*-extreme points), and for n > 1 they 
are not disks in the usual sense, their importance is the following separation theorem, 
proved by Farenick. 

THEOREM 1.6. Let S C Mn be compact and C* -convex. IfTfiS then 3 matrix-
valued disk D(B, M; r) separating T from S, Le., D(B, M;r) D S but T (£ D(B, M\ f). 

This separation theorem is central to the later proof of the generalised Krein-Milman 
theorem in Section 4, somewhat analogously to the use of the Hahn-Banach separation 
theorem in the proof of the original Krein- Milman theorem. 

Much of what is already known about C*-extreme points can be found in [3] and [6]. 
We will require the following theorem from [6] and its corollary from [9]. 

THEOREM 1.7. Suppose that S — C* — conv{xa : a G /} C Mn, where I is any index 
set (finite or infinite). Ifx is C*-extreme in S then x is unitarily equivalent to some xa or 
x is reducible. Moreover, there exist projections qi such that £/#/ = l,x = Y,iqiXr

aqi, 
and each x!a ~ xar 

COROLLARY 1.8. Let S = C*—conv{xa : a 6 /} C Mn, and let x E S be irreducible 
and C*-extreme. Ifx = Y%L\ s*ZiS( (Zi G 5, Si ^ 0), then 3 unitaries ut € Mn and À/ G R, 
(0 < A/ < 1, Z)/A/ = 1), such that S[ = A/M/, and zi = uixu*. (i.e. any C*-convex 
combination x = J2iS*ZiSt = E/(A/«*)(w/Xw*)(w/A/) = £/ A;2* is essentially trivial.) 

PROOF. First we will show that Zi ~ x V/. Suppose, on the contrary, that z\ */ x. From 
Proposition 1.3 we can write x = s*z\S\ +r*yr, C*-convex combination withj G S- Using 
the same procedure as in the proof of the previous theorem (polar decomposition of s\, 
r, absorbing unitaries, etc.) and the same application of Technique B (for all A G (0,1)), 
we reach the conclusion that x is reducible, which is once again a contradiction. Thus we 
must have x ~ z\. Similarly, x ~ Zi V/. 

Thus 3ui unitary such that zi = uixu* and x = T,i$*ZiSi — Y,i(s*Ui)x(u*Si). Next we 
show that u*si = A/1. 

Let <j>(z) = Y2i(s*Ui)z(u*Si) so </>:Mn —> Mn is (unital) completely positive. Further 
(j>(x) = x and x is irreducible so <j>(z) = z Vz [1]. Now it follows from Choi's result [2] 
on the uniqueness of the decomposition of <j> that u*S[ = A/1 (A/ G C) and £/ A/A/ = 1. 
To get A/ G R, (instead of A/ G C), we simply absorb the argument of A/ into w/. That is, 
if A, = e^'|A/|, replace A/ by |A/|, and w/ by elBiui. m 

https://doi.org/10.4153/CJM-1994-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-058-0


1012 PHILLIP B.MORENZ 

2. Structural elements. In this section we change the focus of our attention from 
C*-extreme points as defined by Loebl and Paulsen to structural elements, as defined 
shortly. The existence of the generalised Krein- Milman Theorem in terms of structural 
elements (Theorem 4.5) shows that they are a better analog of linear extreme points than 
C*-extreme points are. Some of the relation between C*-extreme points and structural 
elements is apparent in Propositions 2.2, 5.1, 5.2, and 5.3. 

DEFINITION 2.1. Let S C Mn be a compact C*-convex set. For x E 5, call x a 
structural element (of S) of size n if whenever x = 52; t*Xiti is a C*-convex combination 
of elements of 5, then there exist unitaries ut E Mn, and scalars À, E [0,1], such that 
X[ — fyxu*, ti = M/À/, and 52; A? = 1. We write x E str(5, n). 

A necessary consequence of the definition of str(5, n) is that if x = 52/ ***/*/ then each 
ftXiti — Xfx. Thus structural elements of size n have a certain similarity to linear extreme 
points in that the only ways to write them as a C*-convex combination are essentially 
trivial. The following gives the first relation between structural elements and C*-extreme 
points. 

PROPOSITION 2.2. Let S C Mn be compact and C*-convex. Then the structural ele
ments of S of size n correspond exactly to the irreducible C* -extreme points. 

PROOF. It is immediate from the definition that if x is structural of size n then x is 
C*-extreme. Furthermore if JC is reducible then choose any scalar Al E S and observe 

(xi <M (i oAfjti o u i o\ fo OUA OÏÏO en x~{o x2) [o oAo \){o o j + \̂ o l j l̂ o x2)[o i) 

where the coefficient I cannot be of the form At«t for any scalar A; and unitary 

U[. Thus x E str(5, n) implies x is irreducible and C*-extreme. 
The converse is Corollary 1.8. • 
Unfortunately a C*-convex set S may not have any structural elements of size n, let 

alone enough to reconstruct S, so now we extend the definition of structural elements to 
sizes other than n. 

DEFINITION 2.3. For S C Mn compact and C*-convex let Sk be its compression to 
Mfc (Sk is still compact, C*-convex; see Proposition 1.4). Define JC E Af* to be a structural 
element (ofS) of size k provided 

i) x is a structural element of 5* of size k, and 
ii) x £ {compressions to M* of structural elements (of S) of size), k < j < n}. 

(The definition is inductive, starting from structural elements of size n as defined 
previously.) We write x E str(5, k). We also define the structure set of S to be 
str(5) = ULiStr(5,£). 

The following examples of structural elements should be compared with the C*-
extreme points of the same sets (as given in a previous example): 

i) for S = the unit ball of Mn: str(5) = {A E C : |A| = 1}, 
ii) for S = {x E Mn : 0 < x < 1}: str(5) = {0,1} C C, 
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iii) for S = {x E M2 : w(x) < 1}: str(5) = u\ (°Q
 2

Q) 

Because the elements of str(5) are not necessarily all the same size we need the fol
lowing notation. For x E str(5, k) and m > k define x(m) E Mm by x(m) = x © (Alw_*) 
for some À € W(x). (It is not important which À E W(x) is chosen since any such choice 
will ensure x(m) E Sm- It is important that A E W(x) in order that C* — conV{JC} = 
P*mk ( C* — convLx(m)J )Pm£, see the next Lemma.) Further define C* — convm(str(,5)) = 
C* — conv{;c(m) : x E str(5)} C Mm\ i.e., extend all the structural elements to m x m 
matrices and take the C*-convex hull in Mm. Of course this makes sense only when all 
elements of str(5) are of size < m. We will continue to use the notation C* — conv( Ç), 
with no subscript, provided all elements of Ç are the same size (i.e. Ç C Mn). 

In order to prove the generalised Krein-Milman theorem we need some elementary 
facts about structural elements. The following lemma, useful for this purpose, can also be 
used to show that C* — convn(s) (for s E Mk) doesn't depend on the choice of A E W(s). 

LEMMA 2.4. Let s E Mk be irreducible, A E W(s), s(n) = s (B Aln_*. Let S = 
C* — conv(s(n)) (= C* — conv^s)). Then Sk — C* — conv(s) (independentof X). 

PROOF. Consider 

(tt E Mn, E/ t*ti = 1). We must show that P*nkxPnk e C* - convey). Let (ta ta\ 
V U3 UA J 

The condition £/f*f,- = ln implies E/(^Vn + t*3tn) — \k where ta E Mk,ti3 E Mn-kik. 
Now P*nkxPnk = Ei(tnstn + t%Xln-kti3). 

If n-k<k\ti 

so t*3ti3 = t*3ti3 and P*nkxPnk = E« t*nsti\ + t*3Xlkti3 E C* - conv^). (Recall A E W(s) => 
XlkeC* - conv(s).) 

If n — k > k then there exist unitaries w, E Mn_* such that 

Ufa = ( Q 1 f o r s o m e 4 ^ Af* 

Hence /*3Aln_*//3 = t*3u* Xln-kUiti3 = t'i3X\kt'i3. Also f*3f/3 = t*3u*uiti3 = *'*3̂ 3 s o 

/ ^ P n * = E/(*?i tf/i + O V' 3 ) € C* - conv(j). • 

PROPOSITION 2.5. Lef s E Mk be irreducible and let S = C* — convn(s) (AZ > /:). 
77K?/I str(5) = U(s). 

PROOF. In order for x E Mj to be in str(5), x must be irreducible and C*-extreme in 
Sj. If7 > & then it is easy to see that Sj•== C* — couvas) = C* — conv(5"(/)) ; and since s(j) 
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is reducible, so are the C*-extreme points of Sj (by Theorem 1.7), and so str(5,y) = <t> 
(j > k). If j = k, Sk = C* — convia), and s is irreducible so str(5, k) = U(s). Finally for 
j < k, Sj = P*kjSkPkj = P%a - convk(s)Pkj, so str(5j) = (j>(J<k). m 

The next two propositions concern the behaviour of the set of structural elements 
under compression. 

PROPOSITION 2.6. Let S C Mn be compact and C*-convex, Sk its compression to 
Mk (1 < k < n). Then str(5,&) C str(5jt,&) C str(5,&)U {compressions of str(Sj) to 
Mk,k <j <n}. 

PROOF. Let JC G str(5, k). Then JC is irreducible and C*-extreme in Sk so x G str(5jt, k). 
Next, suppose JC € str(5jb&). Then x is irreducible and C*-extreme in Sh so either 

x G str(5, k) or x G {compressions of str(5, j) to M*, k <j < n}. u 

PROPOSITION 2.7. Same hypotheses as in the previous proposition, plus 1 < m < L 

Then str(5, m) C str(5jb ^ ) C str(5, m) U {compressions ofsti(Sj) to Mm, m <j < n}. 

PROOF. Notice Sm = (Sk)m (the compression of Sk to Mm). We have proven the case 
m = k above. Let m = k — 1. Let JC G ,Sn be irreducible and C*-extreme. If x £ str(5fc, rn) 
then JC belongs to the compression of str(5jb k) to Mk C {compressions of str(5,7) to Mm, 
m<j<n}=>xfi str(5, m). Thus str(5, m) C str(5jt, w). 

Next, JC G str(5jt,w) => JC irreducible, C*-extreme in Sm => x G str(5, m) or JC G 
{compressions of str(5j) to Mm, m <j < n}. Continuing inductively gets the result for 
all m < k. 

3. Technical tools. We will have more to say about structural elements, including 
their relation to C*-extreme points, after we have proved the main theorem. Now we 
introduce some concepts whose main interest is their usefulness in proving the Krein-
Milman theorem. They are generalisations of similar concepts in the linear convexity 
case, and it may help the reader to translate the definitions and the results immediately 
following into the more familiar setting of linear convexity where the geometry is more 
transparent. The idea behind the next set of definitions is as follows: Suppose* = a* y a + 
b*zb is a C*-convex combination (i.e. a*a + b*b = 1) with a ^ 0. Then y (also z) is 
called a C*-summand of x, a*ya is called a C*-piece of x, and a*a is called the weight of 
a* y a as a piece of JC. These three sets are useful in proving the generalised Krein-Milman 
theorem. The precise definitions are given next. 

DEFINITIONS 3.1. Let S C Mn be compact and C*-convex, JC G 5. 
i) The set of C*-summands ofx, C* — summ(jc) = {y G S : =k G 5, a, b G Mn, a ^ 

0, such that JC = a*ya + b*zb (C*-convex combination)}, 
ii) The set of C*-pieces of JC, pcs(jc) = {a* y a : 3y,z G S,a,b G Mn such that 

JC = a*ya + b*zb(C* -convex combination)}, 
iii) Given r G pcs(jc), the set ofweights of ras a piece ofx, W(r;x) = {a* a :3a, b G 

Mn, vi,V2 G 5withjc = a*y\a + b*y2b and r = a*y\a}. 
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REMARKS 3.2. 1) In i) above the restriction a ^ 0 keeps the set of C*-summands 
proper. In ii) taking a = 0 implies 0 E pcs(x) Vx which is convenient—see 3) below. 

2) C* — summ(jc) need not be convex. Let 5 = {t E M2 : 0 < t < 1}. 

J and I J are C*-summands of I ) but 

is not. It is easy to see that J : G C * - summ(l) iff x is unitarily equivalent to a matrix of 

the fo rmic ) , 0 < a < l . \0 a) ~ -
3) Unlike ordinary convexity, y E C*—summ(x)andz E C*—summ(y) does not imply 

z E C* — summ(i). As an example, let S be as in the previous remark, x = I 0 n J, 

y~[0 l/2j'Z~[ 0 l / 4 j " 
4) pcs(jc) is compact and convex. 
5) 'WAV;x) is compact and convex. 
6) Let r,rur2 E pcs(x), a E (0,1), with r = arx + (1 - a)r2. Then W(r;jc) D 

aW(ri\x) + (1 - a)W(r2;x). 
7) IfOE5thenpcs(;c) C 5. 
We illustrate the above definitions with some examples taken from S = Wi C M2. 

Let x = I n . J E 5. x is extreme but not C*-extreme in S [7]. In fact 

x _ f l / 2 1/2 U 0 2 U 1 / 2 1/2) 

* " U / 2 -«72jlo 0JI1/2 ,y2J 
J 1/2 1/2) (0 2 U 1 / 2 - 1 / 2 ) 

I-1/2 ,y2JU 0JU/2 -i/i)-
PROPOSITION 3.3. y eC* — summ(jc) iff at least one oflje W(y). 

PROOF. Suppose 1 E W(y). Then y ~ 

(i *) 
so 

f l 0A H 0A (0 0\ (0 0\ 

and so y E C* — summ(jc). Similarly for / E W(y). 
On the other hand, suppose y E C* — summ(x), s o i = a*ya + &*z£, a C*-convex 

combination with a ^ 0. Let {^1, ̂ 2} be the usual orthonormal basis for C2. If ae\ =̂  0 
then 

1 = (xeue\) 

= (y^i ,a^i ) + ( z ^ i , ^ i ) 

"'-',(>(pl|)-(El)) + |te'"2('(KlMiSl)) 
= ||flei||

2a + \\be,fp. 
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This represents 1 as a convex combination (since ||tf£i||2 + | | ^ i | | 2 = 1) of a 6 W(y) C 
A = {A € C : |A| < 1}, and p E W(z) C A. But 1 is extreme in A so a = 1 E W(y). If 
ae\ = 0, then aei ^ 0 and a similar argument shows / E W(y). m 

The set pcs(x) is slightly harder to describe, and we will begin by giving some ex

amples. Obviously , . 1 E pcs(x). Also, from the C*-convex combination 

given above, 

( 1 / 2 ' - / 2 W 1 / 2 1/2 W O 2 U 1 / 2 i m 
il/2 ,-/2j U/2 - ' /2j l0 oJU/2 «72 J 

and, 

( 1/2 - « 7 2 W 1/2 1 / 2 U 0 2 U 1 / 2 - 1 / 2 ) 
1-1/2 */2 J -1-1/2 i/2)[0 oJU/2 _ / /2j6 p C S ( x )-

The set pcs(x) can be described completely as follows. For any k E N and 7 < k, 
choose orthogonal unit vectors (a\,..., ctk), (J3\,... ,/?*) E C*. Let p = J^-=1 aw> 

<7 = £j=1#ft, A = Ej=1 a/ft- Then y = (J °) (^ J ) 6 pcs(jc)' and every 

y E pcs(x) is of this form. The conditions on /?, q, and A are, of course, equivalent to 

requiring I %r J > 0. 

**>- (i 's). «v.» - (J S } * — (°°), ^ > - (jj ?). 
To see an easy example where 14A>;jt) is not a singleton, take x = ' J E 5, 

r = f ! / 4 1 / 2 Y j c = ( l / x / 2 W l / v ^ ) + ( l / v ^ W l / v ^ ) s o r = ( l / 2 ) j c E p c s ( x ) a n d 

l /2 E (W{r\x). But we can also write 

H < ' M o ?W«>(J ?Wo ,AH~O' - . ) («.%)\ 

This is a C*-convex combination, and the sum of the first three terms is r = x/2 so 

I ' 1 J E tW{r\x). The sum of the last two terms is also r, so I ' . J E 

W(r; JC). This shows that ^ ( r ; x) need not be a singleton. It is easy to construct a similar 

C*-convex combination to show I ' 1 / 9 ^ VV{r\x\ which shows that not all ele

ments of ^ ( r ; x) need be comparable. If we had examined the analog of these définitions 

in the linear convexity case, there too it would be true that W(r, x) need not be a single

ton. However in that case of course, every element of W(r,x) would be comparable. 
Another useful concept that we can borrow from linear convexity theory is that of a 

face, generalised below to a C*-face. 
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DEFINITION 3.4. A C*-face Joi a C*-convex set S is a non-empty subset of S such 
that if x G J- and x = £/ t*XiU is a proper C*-convex combination of elements JC; E 5 
(i.e. £//*£/ = 1, and r, invertible V/), then necessarily JC; 6 ^FV/. 

REMARKS 3.5. 1) C*-faces exist; 5 is a C*-face of S- Also if S C Mn is compact and 
C*-convex and B,M e Mn then {JC 6 S : ||JC 0 B + 1 0 M|| = sup,e5{||.r ® 5 +1 ® M||}} 
is a compact C*-face of 5 [9]. 

2) Unlike faces of ordinary convex sets, C*-faces are not usually C*-convex, or even 
convex. In view of Remark 8 below, our previous example that C* — summ(jc) need not 
be convex also serves as an example that C*-faces need not be convex. 

The fact that C*-faces are not C*-convex seems unavoidable. The difficulty is that 
almost all C*-convex subsets of Mn have non-empty interior. Specifically, if S is C*-
convex, let W(S) = (J{ W(JC) (m e numerical range of x): x G 5}. S has non-empty interior 
iff W(S) does [11]. Furthermore, W(S) has empty interior iff it is the line segment [a, /?] 
(in C), and so S = (J3 — a)!P + a\ (where fP = {x £ Mn : 0 < j c < l } i s a particularly 
simple C*-convex set). If we included in the definition of a C*-face the requirement that 
it be C*-convex (and hence convex, and hence a face in the usual sense), then most ef
faces would have non-empty interior, and so would be the trivial face, all of S- The only 
other possibilities would be of the form J = (J3 — a)(P + ot\ where [a, /?] was a face 
of W(S). This would clearly give too little structural information to be useful. See also 
Corollary 5.4 which is the C*-version of the usual result that a minimal compact face is 
an extreme point. 

3) If 7 is a C*-face andx G ^then U(x) C f J = U{x) if and only if JC € d*S. 
4) If ^isaC*-faceof5and^ï C ^TisaC*-faceof C*-conv ^Tthen J\ isaC*-face 

of S. 
5) Let 7 be a C*-face of S and let JC E 7 be C*-extreme in C* — conv J. Then 

JC € d*S. 
6) The intersection of C*-faces is a C*-face, provided it is non-empty. 
7) Every compact C*-face contains a minimal compact C*-face (by Zorn's lemma). 

Furthermore, a minimal compact C*-face "is" a C*-extreme point—see Proposition 5.4. 
8) C* — summ(jc), as defined previously, is obviously a C*-face, but because the 

definition of a C*-face requires the coefficients to be invertible, and the definition of 
C* — summ(jc) does not, C* — summ(x) need not be the minimal C*-face containing JC. 
We will see (Lemma 4.1) that in Mn, C* — summ(i) is closed. 

We will also need the following elementary properties of minimal compact C*-faces. 

PROPOSITION 3.6. Let J be a minimal compact C*-face of S. Then Vjc,y E jF, 
C* — conv{x} = C* — conv{)>}. 

PROOF. Suppose y ^ C* - conv{jc}. Then by [4] 35, M € Mn, r > 0, so that 
D(B,M\ r) separates y from C* — conv{jc}. Let r* = supz6 j{||z 0 5 + 1® M\\}. Then 
p = {ze f : \\z®B + l®M\\ = r /}isacompactC*-faceof5:ifz € T C ^Tand 
z = T,it*Xiti is a proper C*-convex combination, then JC, 6 ^"(because ^~is a C*-face) 
so ||JC/|| < \\z\\ = r* Vi. Using the invertibility of the tt it is clear that ||;c/|| = \\zi\\ = r* V/, 
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so Xi £ J' V/. Now J' C^ 7 (since x £ 7 \ J') contradicting minimality of J. Thus 
y £ C* — conv{jc} and similarly x E C* — conv{v} so C* — conv{x} = C* — conv{y}. • 

COROLLARY 3.7. Let J be a minimal compact C*-face of S. If 7 = tl(x)for some 
x £ S, then x E 3*5. In particular, if any x E J- is irreducible then J = U(x) and 
x E d*eS. 

PROOF. Suppose J = W(JC) and JC = 52/ t*xit( is a proper C*-convex combination of 
xt E 5. Then JC, E jF V/ (by definition of a C*-face), so JC, ~ JC V/ and JC E 3*5-

Suppose some x E jF is irreducible. By Proposition 3.6, C* — conv{jc} = 
C* — conv{y} Vy E ^F. By [6], because JC is irreducible, it follows that JC ~ y Vy E jF, so 
jF = W(JC). Thus by the first paragraph above, JC E 3*5. • 

4. Generalised Krein-Milman theorem. Our first step is to prove that 
C* — summ(jc) is closed. It would be nice if we could use the following argument. Let 
y E C* — summ(jc). That is, 3y,-,z,- EC* — summ(jc) (JC = <2*y;#; + b*Zibt C*-convex 
combinations) with y,- —> y. Passing to subsequences if necessary, we may assume 
<z, —• a, £/ —* b, n —• Z and so JC = a*ya+b*zb, and we could conclude y E C* — summ(jc), 
except that a might be 0. The following result essentially ensures that this can be avoided. 

LEMMA 4.1. Let S be compact and C*-convex, x E S- Then 3e > 0 such that if y E 
C* — summ(jc) and a*a is maximal in {a*a : JC = a* y a + b*zb (C* -convex combination)}, 
then \\a*a\\ > e. 

PROOF. Without loss of generality, we will assume 0 E S. Consider the set Pw — 
{(r,a*a) : r E pcs(jc),a*a E ^(nx)} C Mn x M+. This set is convex by 3, 4, and 5 of 
Remarks 3.2, and (0,0) E Pw (because 0 E S) so it is contained in a ^-dimensional sub-
space Fk CMnxM+. Furthermore Pw is symmetric with respect to the point (JC/2, 1/2). 
To see this, if (r, a*a) E Pw then 3y,z £ S,b £ Mn such that JC = a*ya+b*zb a C*-convex 
combination with r = a*ya. Thus (b*zfr, b*b) £ Pw and 

(jc/2,l /2)=^(fl>,fl*fl) + i(**zft,ft*ft). 

From this symmetry it follows that 3e > 0 so that Bt(x/2,1/2)H^C /V. (Define the 
open ball £C(JC/2, 1/2) = {(r, w) £ Mn x M+

n : \\r- x/2\\ + \\w - 1/2|| < e}.) 
Now suppose JC E S and JC = a*ya + b*zb (a C*-convex combination of y,z £ S) 

with a*a < el (i.e. \\a*a\\ < e). Without loss of generality we will assume that \/s E 5, 
||s|| < 1, and so \\a*ya\\ < e Vy £ 5. Let 

b*zb b*zb % ^ / N 

n = -y~ ' r2 = ~y~ + a ya e PC SW 
with 

— E ^ (n ; j c ) , — + tf*a E W(r2\x). 

Notice 

(n,—), (̂ 2, — +fl*fl) eBe(x/2,i/2)nFkcPw 
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because 

(*Ai/2)=(^±^,2^) 
and ||<z*;ya|| < 6. Thus there exists S > 0 such that 

(l+<5)(r2 ,— +aa^J, (rx -<5r2,(l -<$)—-<fo*a) E Bt(x/2,l/2)nFk C PW-

Thus there exists z' € 5, &' G Mn such that rx -8r2 = fc'Vfc' and b'*b' = (1 -6)b*b/2 -
8a*a, and so 

x = (l+£)r2 + (ri -<5r2) 

( 1 + f i ) ( ^ + £ ! > ) + 6 V * ; 

(1 + S)a> + ( I I * ) ^ + b'*z'b' 

= (1 + <S)a V + b"*z"b" (using Proposition 1.2.1 ) 

a C*-convex combination . But (1 +8)a*a > a*a, so (if ||a*a|| < e) a*a is not maximal. 
This completes the proof. • 

Now it is a simple matter to prove the following. 

PROPOSITION 4.2. Let S C Mn be compact and C*-convex. Then C* — summ(jc) is 
closed. 

PROOF. Let y E C* — summ(jc). Then 3ak, bk E Mn,yk,zk E 5 such that x = 
a*k(yk)ak + b\zkbk with a\ak + b\bk = 1 and y* —• y. Without loss of generality we 
can assume the a\ak are maximal in the same sense as the previous lemma. Passing to 
subsequences if necessary we may assume ak —• a,bk—> b, zk —» z, and x = a*ya + b*zb 
(C*-convex combination). By maximality of a\a and the previous lemma, it follows that 
\\a*a\\ > e, (in particular a ^ 0), so y E C* — summ(jc). • 

The proof of the generalised Krein-Milman theorem involves induction, and the fol
lowing Lemma is an essential part of the inductive step. In proving the following Lemma 
we make use of two facts about convex sets in a finite dimensional space. First, if C and 
C' are convex with C a dense subset of C, and if x E int C, then x € C. (If C is contained 
in a hyperplane H, x € int C is understood to mean x E int(C D //)). Second, let C be a 
ray {kx : k > 0} (x ^ 0), and let C be a closed pointed cone with CHC' = {0}. Then 
there is a linear functional p separating C from C in the sense that p(C) > 0, p(C) < 0, 
and for x E C, p(x) = 0 iff JC = 0. The proofs of these two facts are elementary and are 

omitted. We write Ĵ -ed f° r x E S '• x is reducible, i.e., x ~ (o :)}• 
LEMMA 4.3. Let S C Mn be compact and C*-convex. Then S = C* — 

conv^ed U str(5, nyj. 

PROOF. Suppose x E S\C* — conv( Jied U str(5, «)). Clearly x is irreducible. In fact 
we can restrict ourselves to those x which are maximal in the sense that 

C* - conv({x} U Sed) <£C*- conv({y} U £ed) 
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for any y E S,y </> x. (If 3x E S\C*—conv(^-edUstr(5, nfj the existence of such maximal 

x is easily shown using Zorn's Lemma and Lemma 4.4 following.) Such an x cannot have 

any C*-summands in Std without violating maximality so C*—summ(x) consists entirely 

of irreducibles. This fact ensures that if x = a*ya + b*zb is a C*-convex combination 

then both a and b must be in vertible, and so we can conclude that if y E C* — summ(jc) 

then C* — summOO C C* — summ(jc). Thus any y E C* — summ(jc) also has no C*-

summands in &td, and furthermore, for any such y, there must be z E str(J>, n) with 

z E C * - summ(jy). (C* — summ(y) is a compact C*-face consisting only of irreducibles, 

thus it contains a minimal compact C*-face containing only irreducibles, that is U(z) for 

some z € str(5, n).) 

Consider the set Pw = {(f\w) : r E pcs(jc), w E T4^(r;jc)} and its subset Pf
w = 

{(r,w) : (r,w) E Pw,r = E / ^ A ^ w = £/<2*a; and yt E str(S,n) V/}. (P7^ is those 

pieces of JC, and their weights, which can be generated by structural elements of size 

n.) P'w is clearly convex, and since x must have a C*-summand in str(5,ft), non-empty. 

Furthermore, for any k > 0, if (r7, w') E P'^ and &(V, w') E P ^ , then k(/, u/) E P'^. 

Next we show that P'w is dense in Pw- Suppose not. Then there exists (r, w) E P^\P /
VV. 

Let C be the ray {k(r, w) : k > 0} and let C' be the closed, pointed cone generated by 

P'w. Then by the second fact preceding the lemma, there is a linear functional p such that 

p(r, w) > 0, and p(/, w') < 0 V ^ , W) E P ^ \ {(0,0)}. Choose ( n , wi) E Pw such that 

p (n , w\) is maximal. Now (n,vvi) = (a*ya,a*a) for some y E C * — summ(i). By the 

first paragraph above, there exists z E str(5, n)DC* — summ(y) so y = b*zb + c*z'c and 

( n , wi ) = (a*b*zba, a*b*ba) + (a*c*z'ca, a*c*ca) 

with 

(a*b*zba,a*b*ba) E P ^ \ {(0,0)}, 

and 

(a*cVca,<2*c*c<2) E Pw-

But p(a*b*zba, a*b*ba) < 0 => p(a*c*z'ca, a*c*ca) > p(r\, u>i ) which is a contradiction. 

Thus P'^ is dense in Pw-

Now by the first fact preceding the Lemma, applied to P ^ , P'w and (JC/2, 1/2) E 

intPw, we conclude that (JC/2, 1/2) E P ^ . But then 2 ( J C / 2 , 1 / 2 ) = (JC, 1) E Pf
w, that is 

JC E C* — conv(str(5, n)\ m 

LEMMA 4.4. Let S C Mn be compact and C*-convex. Let {x^ : k E N} be a sequence 

in Mn, converging to x, satisfying C* — conv(5U {xk}) DC* — conv(5U {JC,}) V/C > / 

Then C* - conv(5U {JC}) DC*- conv(5U {JC*}) V*. 

PROOF. It suffices to show xk e C* — conv ( 5 U {JC}) V£. Fix k. Given e > 0 choose 

j so that \\XJ — x\\ < e. Write x^ as a C*-convex combination JC* = ]£/ ^ / /V/ / + £ / w*jXjWy 

of yij E 5, and JC/. Thus 

[** - E vlyuvij + E *4*H = E wcK*/ ~ *H-
i i " " / 
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and soxk E C* — conv(5 U {x}). m 
Now we are in a position to state and prove the generalised Krein-Milman theorem 

and its converse. 

THEOREM 4.5. Let S C Mnbe compact and C* -convex. Then S = C*—convn(str 5). 
Conversely, if S — C* — conv( Ç) then Vs E str(5), 3 unitary u E Mn, and g E Q such 
that g' = u*gu = s © s' for some appropriate s1. That is, every structural element of S 
must appear as a direct summand (irreducible block) of some g' unitarily equivalent to 

g eg. 
PROOF. We begin by proving the first statement using induction on n. n = 1 is the 

usual Krein-Milman theorem because C*-convexity and structural elements (C*-extreme 
points) correspond to ordinary convexity and extreme points. 

We begin the inductive step by showing that C* — convn (sir 5) D «5red- For S as in 
the statement of the theorem, let Sn-\ be its compression to Mn-\. Sn-\ is compact and 
C*-convex so by induction Sn-\ = C* — convn_i(str(5n-i)). For any x E <5ted,* ~ 
t\ © • • • © tm, where tt E Mki are irreducible. It is easy to see that if we can show each 
ti(n) EC* — convn(str S) then x E C* — convn(str S)- Now by Propositions 2.6 and 2.7 

str(5n-i) C U [str(5,/;)U ( Û PJkstr(S,j)Pjk]\ 
k=\l yj=k+l n 

and notice that if t E P*kstr(Sj)Pjk then t(j) EC*- conv7(str(5,y)); in fact t(n) E 
C* — conv„(str(5j')).Nowforanyx^ t\ ©• --©^m E J*ed> it is clear that ti(n—\) E Sn-\ 
and so 

ti(n) E C* - convn(str(Sn-iJ) = C* - c o n v J U \str(S,k)U ( \J P*kstr(Sj)Pjk)}} 
{k=\l Xj=k+l n ) 

C C * - c o n v „ ( U s t r ( 5 , £ ) i 

= C*-convn(str(5)). 

Thus C* — convn(str S) D &ed, and by the previous lemma, S = C* — convn(str 5). 
To prove the converse, we begin by assuming Q is closed under unitary equivalence, 

thus making the unitary u in the statement of the theorem redundant. Let 5*, Qk be the 
compressions of 5, Q to Mk, and recall that Sk = C* — conv(^) (see Proposition 1.4). 
For t E str(5), t is irreducible and C*-extreme in Sk for some k, so t = P*nkgPnk for some 
g E Q. We wish to show that in fact g = £© t! (some t' E Mn-k). The proof is completed 
by the following Lemma 4.6. • 

LEMMA 4.6. Let S C Mn be compact and C*-convex, and let t E str(J>,&). Ift = 
P*nkgPnkfor some g E S then, in fact, g — t® r1 for some t' E Mn_k. 

PROOF. It follows from the first half of Theorem 4.5 that g E C* — conv„ (str(5)), 
so g = Yli a*Si(n)at where 57 E str(5). Now there exist unitaries wf such that 

UidiP, nk = (o:) 
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with a\ E Mk so 

t = P*nkgPnk 

= ^Kkalsi(n)aiPnk 

a C*-convex combination in Mk. Now t is C*-extreme in Sk so V/, P*nkUiSi(n)ulPnk = 
v*tvt ~ t and <2- = A,v* for some À E [0,1] and v, E Mk unitary. Without loss of 
generality we may absorb the V; and write P*nkUiSi(ri)u*Pnk = t, a\ = À/. It follows that 
t(n) e C* - con\(si(n)). But t E str(5) implies t E str{C* - conv(^OO)} = U(si\ 
so t ~ St, and t(ri) ~ s/Oz). Without loss of generality, g = T,ib*t(n)bi, a C*-convex 
combination where 

and 
(A,l cA 

with Xi E [0,1], ci E Mkfn-k, and d/ E Mn_£. 

fE;|A,f E«A*c, 
IE,C*A, Efàd+dfdi) 

( i ï ) 
Equating entries in the above matrices and applying the results to the following we see 
that, 

g = YJb*t(n)bl 
i 

= ^f\Xi\2t X*tCi 
Y \c*tXt c*tCi+d*iidi 

•( i ?)• 
Thus î is in fact a direct summand of g and we're done. • 

5. Loose ends. With the proof of the generalised Krein-Milman theorem in hand 
we can easily show the relationship between structural elements and C*-extreme points 
as defined in [8]. 

Using Lemma 4.6 we can prove the following. 
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PROPOSITION 5.1. Let S C Mn be compact and C*-convex. Let m + k = n and let 
Sk be the compression of S to Mk. Ifx = s © z with s E str(5, m) and z E 3* (Sk) then 
x e d*S 

PROOF. Let x — E/f*}^; be a proper C*-convex combination (i.e. tt invertible, 
Eit*ti = 1) of yt E S. Since* = s ©z, it follows that* = P*nmxPnm = E / 0 * M A m . 

As usual, there exist unitaries ut E Mn so that UiUPnm = ' ] and t\ ^ 0 because tt is 

invertible. Letting yt = uiyiu* we can write s = E/ f'P*my/Pnmr'. 
Since s E str(5, m) it follows that there exist unitaries v/ E Mm and scalars A/ E [0,1] 

with E/ \] = 1, such that P*nmyiPnm = v/sv* ^ s and ^ = A/V/ V/. (No A/ = 0 since 
/• ^ 0). By Lemma 4.6 it follows that yi = (v/sv*) ©z* for some z/ E M*. Let v- = v/ © 1,, 
which is unitary in Mn, to get yt = v^s © Z/)v'*. Let w/ = v[*w/ to get yt = w*(s © Z/)w/. 
Thus we can write 

x = £ r?M = 5 » ? X * © z«)(w,-ft). 

At the same time, notice 

f A,lm p , ^ 

for some p, € A/m,t, TJ, € Mk<k, and 77, must be invertible (because t, was). Thus 

_ „ ( A , l m O W 5 W A , l m pA 

(I9-

A/5/0/ 

Equating lower right hand corners we find z = E/(p*sp/ + T7*Z/7//). We can consider this 
to be a C*-convex combination of elements of Sk by suitable modifications of the s and 
the pi, as the following paragraph shows. 

If m > k, then p, has rank at most k, so choose unitaries r, so that r,p/ = I y* , 

p\ E Af*. Let s\ = Pnknsr*Pnk E 5*, and we see that £/ p*spt = E/ p-*^P/- A l s o £/ P'V'+ 

r?*r?/ = E« P*Pi + Î?*Î7I = 1*. Thus z = E^p'^ 'p ' + rfzWi) is a C*-convex combination 

of the s\ and z/ E A- The case m < k requires only replacing s by s' = I n n E A/*, 

andp/byp;=^gj EM,. 
Now the r)i are invertible (even though the p- may not be), and it is an easy application 

of Proposition 1.3 and the definition of a C*-extreme point (in Sk) to show that z ~ Z/ Vf. 

Thus if x — E/ t*ytti is a proper C*-convex combination, then yi ~ I J ~ 

J = x \fi, and so x E 9*5. • 
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COROLLARY 5.2. Let S C Mn be compact and C*-convex, x = x\ © • • • © xm E S 
with xt E str(5,&;) C A/*.. Thenx E d*S-

PROOF. The proof is by induction on m (the number of summands). The case m = 1 
is Proposition 2.2. The induction step is Proposition 5.1. • 

The converse to the above corollary is false: it is not true that if x = x\®- • -©jcm E d*S 
then each x, E str(5, kj), as can easily be shown by example [9]. 

Another relationship between structural elements and C*-extreme points is the follow
ing, which says essentially that any structural element can be extended to a C*-extreme 
point, and so we can substitute C*-extreme points for structural elements in the forward 
direction of the generalised Krein-Milman theorem (Theorem 4.5). 

COROLLARY 5.3. LetSC Mn be compact and C*-convex, x E str(5, k), A E d* W(S). 
Then x © (Xln-k) £ 3*5, and S = C* - conv d*S-

PROOF. Notice that Al„_* € d*e(Sn-k) by [3]. Thusx®(\ln- k) E 9*5by Proposition 
5.1. Since S = C* — conv(str(5)) (by Theorem 4.5), and every element of str(5) can be 
extended to a C*-extreme point of S as above, S = C* — conv(3*5). • 

This settles in the affirmative a conjecture of [8]. At this point, we can also prove the 
following C*-analog to the theorem that a minimal compact face is an extreme point. 

PROPOSITION 5.4. Let S C M„ be compact and C*-convex. Let $ C S be a minimal 
compact C*-face. Then 3x E d*S such that f = U{x), i.e., a minimal compact C*-face 
"is" a C*-extremepoint. 

PROOF. The proof is by induction on n, with the case n = 1 being trivial. Let x E 
J- C Mn. We know (Proposition 3.6) that for any y E J-, C* — conv{x} = C* — conv{y}. 
If x is irreducible, or if x ~ y \fy E jF, we're done by Corollary 3.7. 

Suppose now that JC is reducible. Write x ~ x\ © • • • © xm where each xt E Mk. is 

irreducible. The (converse to the) generalised Krein-Milman theorem tells us that the 

structural elements of C* — conv{;c} are some subset of the JC,. SO without loss of gener

ality we can assume that JC ~ with s E str(C* — conv{x}), r E Mk. Similarly, for 

any y E 7 we may assume y ~ \ . (Since C* —conv{jc} = C*—conv{y}, they have 

the same structural elements.) Define J1 = It : y ~ J for some y E !f\. J1 is a 

compact C*-face of Sk* 1° fact 7' is a minimal compact C*-face (else ^Tis not minimal). 

By induction, jT is a C* -extreme point, i.e., $' = U{r). Thus ? = u[S ) = U(x) 

and JC ~ I I E 3*5 by Proposition 5.1 or Corollary 3.7. • 

An obvious question to ask at this point is whether there is a C*-analog to the 
Caratheodory theorem for convex sets in finite dimensions. That theorem says that every 
point in a convex set S contained in an n-dimensional (real) linear space is a convex com
bination of at most n + 1 extreme points of S. Farenick [3] showed that for a C*-convex 
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set S C Mn, with S = C* — conv Ç, then any x E S can be written as a C*-convex 
combination of at most n3(n2 + 1) elements of Ç. The following result improves this 
upper bound to 3n2, but it is still unclear whether or not this bound is the best possible. 
In particular, if n = 1, it is (Notice n—\ corresponds to C which is 2 dimensional as a 
real linear space.). 

PROPOSITION 5.5. Let S C Mn be compact and O-convex, and let x E 5. Then x is 
a C*-convex combination of at most 3n2 elements ofstr(S)-

PROOF. Without loss of generality assume 0 6 5. Let C = {[a*s{n)a, a*a) : s E 
sir S, a*a < l} C Mn x M+. Let C' be the convex cone C = {£/=i kaiCi : k E 
N, OLi > 0, c, € C}. 0 € C' since 0 G 5, and C' is a proper cone because S is com
pact. C is clearly a pointed cone. To see that C is closed, consider the following sim
ilar construction. Let B = {(a*xa,a*a) : x G S,a*a < 1}, and B' = {£/=i /:/?/£; : 
/: G N,/3/ > 0,/?/ G 5} . -6 is closed because 5 is compact, hence B' is closed. But 
B' = C because S — C* — conv(str S)'- if b = (a*xa, a*a) G B and x = J2i t*si(n)ti then 
& = Hi(a*t*si(n)tia,a*t*tia

>) G C. 

The space Mn x M^ has dimension 2n2 + n2 = 3n2 as a real linear space, and any 
c' G Cf can be expressed as a convex combination of the extreme rays of Cr. Also, any 
extreme ray of C' must contain some c — (a*s(n)a, a*a) G c. 

Finally, if x G 5 then (x, 1) G C so (x, 1) = £/ \i(a*Si{n)ai,a*ai) a convex combina
tion of at most 3n2 terms (by the usual Caratheodory theorem applied to a pointed cone). 
Thus x = J2i \f\ia*Si(ri)ai^f\i is a C*-convex combination of at most 3n2 terms (since 
Ei^ia*ai^/Xi = l). m 
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