THE STRUCTURE OF C^{*}-CONVEX SETS

PHILLIP B. MORENZ

Abstract

Compact C^{*}-convex subsets of M_{n} correspond exactly to n-th matrix ranges of operators. The main result of this paper is to discover the "right" analog of linear extreme points, called structural elements, and then to prove a generalised KreinMilman theorem for C^{*}-convex subsets of M_{n}. The relationship between structural elements and an earlier attempted generalisation, called C^{*}-extreme points, is examined, solving affirmatively a conjecture of Loebl and Paulsen [8]. An improved bound for a C^{*}-convex version of the Caratheodory theorem for convex sets is also given.

0. Introduction. For T a bounded linear operator on a Hilbert space, Arveson [1] introduced a generalisation of the familiar numerical range, called the n-th matrix range of T, and defined by $W^{n}(T)=\left\{\varphi(T): \varphi: \mathcal{B}(\mathcal{H}) \rightarrow M_{n}\right.$ unital, completely positive $\}$. Among other things, he observed that $W^{n}(T)$ has a particularly strong convexity property. Loebl and Paulsen [8] named this property C^{*}-convexity and defined it as follows:

DEFINITION 0.1. Let \mathcal{A} be a C^{*}-algebra. A C^{*}-convex combination of $x_{1} \cdots x_{m} \in \mathcal{A}$ is a sum of the form $\sum_{i=1}^{m} t_{i}^{*} x_{i} t_{i}$ where the $t_{i} \in \mathcal{A}$ satisfy $\sum_{i=1}^{m} t_{i}^{*} t_{i}=\mathbf{1}$. A set $\mathcal{S} \subset \mathcal{A}$ is C^{*}-convex iff it is closed under C^{*}-convex combinations of elements of S.

The analogy with linear convexity is obvious, and the paper [8] is a good introduction to the basic facts about C^{*}-convexity. The motivation for studying C^{*}-convex sets is their connection with n-th matrix ranges of operators: n-th matrix ranges are compact C^{*}-convex sets. Furthermore, by reinterpreting some earlier work of Salinas [10], Loebl and Paulsen observed that the converse also holds: for any compact, C^{*}-convex subset $\mathcal{S} \subset M_{n}$, there exists a separable Hilbert space \mathcal{H}, and some $T \in \mathcal{B}(\mathcal{H})$ satisfying $S=W^{n}(T)$. Thus compact C^{*}-convex subsets of M_{n} correspond exactly to n-th matrix ranges of operators. The importance of the structure of C^{*}-convex sets is an immediate corollary to the widespread interest in n-th matrix ranges. (The survey paper [6] is a good introduction to the literature on n-th matrix ranges. An example of the usefulness of n-th matrix ranges is Arveson's result [1] that an irreducible compact operator is characterised up to unitary equivalence by the set of its n-th matrix ranges.) The main goal of a structure theory of C^{*}-convex sets is to prove a generalised version of the Krein-Milman theorem for ordinary convex sets. That is, we seek to identify the "right" analog of extreme points, and to prove that these are necessary and sufficient to reconstruct the original set (using C^{*}-convex combinations).

The paper is organised as follows. Section 1 presents some elementary preliminaries (although, for the most part, the reader is assumed to be already familiar with the basic

[^0]facts about C^{*}-convexity, see [8]), along with references to some more substantial results already in the literature which will be needed later in the paper. Section 2 introduces structural elements and uncovers some elementary facts about them. The C^{*}-summands, pieces, and weights, and the C^{*}-faces defined in Section 3 are the technical tools used to prove a generalised Krein-Milman theorem and its converse in Section 4. Section 5 examines the relationship between structural elements and C^{*}-extreme points, and the paper ends with an improved bound for the Caratheodory type theorem for C^{*}-convex sets.

1. Preliminaries and previous results. The definition of a C^{*}-convex set was given in the introduction. Three elementary examples of C^{*}-convex sets are the following:
i) $\{T \in \mathcal{B}(\mathcal{H}): 0 \leq T \leq \mathbf{1}\}$,
ii) the unit ball of \mathcal{A}, and
iii) $W_{1}=\{T \in \mathcal{B}(\mathcal{H}): w(T) \leq 1\}$ (where $w(T)$ is the numerical radius of T).

The proofs that these sets are C^{*}-convex are elementary, and can be found in [8]. We will reuse these three examples throughout to illustrate new concepts as they are introduced. It is a trivial consequence of the definition that a C^{*}-convex set \mathcal{S} is closed under unitary equivalence. That is, if $u \in \mathcal{A}$ is unitary, and $x \in \mathcal{S}$, then $y=u^{*} x u \in S$. This is a recurrent theme, and many of the concepts introduced (e.g. C^{*}-extreme points, structural elements) are "up to unitary equivalence". We write $y \sim x$ for y is unitarily equivalent to x, and we write $\mathcal{U}(x)$ for the unitary orbit of x.

Loebl and Paulsen [8] first proposed the search for a generalised Krein-Milman theorem, and suggested the following definitions as the appropriate analogue to the definition of an extreme point.

Definition 1.1. Let \mathcal{A} be a C^{*}-algebra. A proper C^{*}-convex combination of $x_{1}, \ldots, x_{m} \in \mathcal{A}$ is a sum of the form $\sum_{i=1}^{m} t_{i}^{*} x_{i} t_{i}$ where, in addition to the condition $\sum_{i} t_{i}^{*} t_{i}=\mathbf{1}$ (for a C^{*}-convex combination) each $t_{i} \in \mathcal{A}$ is invertible.

Definition 1.2. Let $\mathcal{S} \subset \mathcal{A}$ be C^{*}-convex. $x \in \mathcal{S}$ is a C^{*}-extreme point of \mathcal{S}, written $x \in \partial_{e}^{*} \mathcal{S}$, provided that if $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a proper C^{*}-convex combination of $x_{i} \in \mathcal{S}$, then $x \sim x_{i} \forall i$.

Once again the analogy with linear extreme points is clear. In fact, C^{*}-extreme points are linearly extreme [8], but not conversely ([7]-see iii) below). Elementary examples of C^{*}-extreme points include:
i) for $\left\{x \in M_{n}: 0 \leq x \leq 1\right\}$ the C^{*}-extreme points are exactly the orthogonal projections (including 0 and $\mathbf{1}$);
ii) for the unit ball the C^{*}-extreme points are exactly the isometries [7]; and
iii) for $W_{1} \subset M_{2}$, the C^{*}-extreme points are $\{\lambda \mathbf{1}:|\lambda|=1\} \cup \mathcal{U}\left\{\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)\right\}[7]$.

It should be noted that the restriction to proper C^{*}-convex combinations is often quite significant, more so than in the case of linear convexity. The definition of C^{*}-extreme points is one example; we shall encounter others (see, for instance, Remark 3.5.8).

Earlier efforts to prove a generalised Krein-Milman theorem have focused on Loebl and Paulsen's definition of C^{*}-extreme points, although it wasn't until 1990 that Farenick [3] proved that every compact C^{*}-convex set must have C^{*}-extreme points. At the same time it is clear that although C^{*}-extreme points might be sufficient to recover the original set, they certainly cannot be necessary. A simple example is

$$
\mathcal{S}=\left\{x \in M_{2}: 0 \leq x \leq 1\right\}=C^{*}-\operatorname{conv}\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & 1 / 2
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)\right\}
$$

and these two elements of S are not even linearly extreme let alone C^{*}-extreme. The main result of this paper is to overcome this difficulty by defining the structural elements of $\mathcal{S}, \operatorname{str}(\mathcal{S}),\left(\mathcal{S} \subset M_{n}\right.$ compact and C^{*}-convex), and proving that this set is the right analog of linear extreme points in the sense that $\operatorname{str}(\mathcal{S})$ is both necessary and sufficient to reconstruct the original compact C^{*}-convex set using C^{*}-convex combinations.

The next two results are elementary, but they will be used later, and perhaps also serve to give the newcomer to C^{*}-convexity some of the flavour of the proofs.

PROPOSITION 1.3. Let $\mathcal{S} \subset M_{n}$ be C^{*}-convex, $x=\sum_{i=1}^{m} t_{i}^{*} x_{i} t_{i} a C^{*}$-convex combination of $x_{i} \in S$. Then by combining the terms with $i \geq 2$ we can find $y \in \mathcal{S}$ and $r \in M_{n}$ so that we can rewrite x as a C^{*}-convex combination of elements of \mathcal{S} with only two terms $x=t_{1}^{*} x_{1} t_{1}+r^{*} y r,\left(x_{1}, y \in S, t_{1}^{*} t_{1}+r^{*} r=\mathbf{1}\right)$.

Proof. It is clear that essentially what we want to do is the following: let $r=$ $\left(\sum_{i \geq 2} t_{i}^{*} t_{i}\right)^{1 / 2}$ (notice $\left.r=r^{*}\right)$, and let $y=r^{-1}\left(\sum_{i \geq 2} t_{i}^{*} x_{i} t_{i}\right) r^{-1}$. It is obvious that $y \in$ $C^{*}-\operatorname{conv}\left\{x_{2} \cdots x_{m}\right\} \subset S$ because $\sum_{i \geq 2} r^{-1} t_{i}^{*} t_{i} r^{-1}=1$. Then $x=t_{1}^{*} x_{1} t_{1}+r^{*} y r \in S$ because $t_{1}^{*} t_{1}+r^{*} r=1$. The difficulty is, of course, that r need not be invertible. Choose unitary $u \in M_{n}$ so that $r^{\prime}=u^{*} r u=\left(\begin{array}{ll}r^{\prime \prime} & \\ & 0\end{array}\right)$ with $r^{\prime \prime} \geq 0$ invertible. The idea is that it is enough to be able to invert $r^{\prime \prime}$. The rest is merely details.

Let $x^{\prime}=u^{*} x u=\sum_{i}\left(u^{*} t_{i}^{*} u\right)\left(u^{*} x_{i} u\right)\left(u^{*} t_{i} u\right)=\sum_{i} t_{i}^{t_{i}^{*}} x_{i}^{\prime} t_{i}^{\prime}$ a C^{*}-convex combination. Without loss of generality we may assume $0 \in S$. Let

$$
s^{\prime}=\left(\begin{array}{cc}
\left(r^{\prime \prime}\right)^{-1} & 0 \\
0 & 0
\end{array}\right), \quad s=\left(\begin{array}{ll}
0 & 0 \\
0 & \mathbf{1}
\end{array}\right)
$$

and $y^{\prime}=s^{\prime}\left(\sum_{i \geq 2} t_{i}^{\prime *} x_{i}^{\prime} t_{i}^{\prime}\right) s^{\prime}+s \mathbf{0} s . y^{\prime} \in S$ because $\mathbf{0}, x \in S$ and $\sum_{i \geq 2} s^{\prime} t_{i}^{\prime *} t_{i}^{\prime} s^{\prime}+s^{2}=\mathbf{1}_{n}$. Notice $t_{i}^{\prime *} t_{i}^{\prime} \leq r^{n}$ so $t_{i}^{\prime} s^{\prime} r^{\prime}=t_{i}^{\prime}$. Thus

$$
\begin{aligned}
t_{1}^{\prime *} x_{1}^{\prime} t_{1}^{\prime}+r^{\prime} y^{\prime} r^{\prime} & =t_{1}^{\prime *} x_{1}^{\prime} t_{1}^{\prime}+r^{\prime}\left(s^{\prime}\left(\sum_{i \geq 2} t_{i}^{\prime *} x_{i}^{\prime} t_{i}^{\prime}\right) s^{\prime}+s \mathbf{0} s\right) r^{\prime} \\
& =t_{1}^{\prime *} x_{1}^{\prime} t_{1}^{\prime}+\sum_{i \geq 2} t_{i}^{\prime *} x_{i}^{\prime} t_{i}^{\prime} \\
& =x^{\prime} \\
& =u^{*} x u
\end{aligned}
$$

so

$$
\begin{aligned}
x & =u x^{\prime} u^{*}=u t_{1}^{*} x_{1}^{\prime} t_{1}^{\prime} u^{*}+u r^{\prime} y^{\prime} r^{\prime} u^{*} \\
& =\left(u t_{1}^{*} u^{*}\right)\left(u x_{1}^{\prime} u^{*}\right)\left(u t_{1}^{\prime} u^{*}\right)+u\left(\sum_{i \geq 2} t_{i}^{* *} x_{i}^{\prime} t_{i}^{\prime}\right) u^{*} \\
& =t_{1}^{*} x_{1} t_{1}+\sum_{i \geq 2} t_{i}^{*} x_{i} t_{i} .
\end{aligned}
$$

Thus $x=t_{1}^{*} x_{1} t_{1}+r^{*} y r$ where $r=u r^{\prime} u^{*}$ and $y=u y^{\prime} u^{*} \in S$.
Notice that, unlike ordinary convexity, if $x_{i}=x_{j}$ it is not usually possible to combine the terms $t_{i}^{*} x_{i} t_{i}+t_{j}^{*} x_{j} t_{j}$ into a single term $s^{*} x_{i} s$. As an example

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

but

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \neq u^{*}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) u
$$

for any (unitary) u.
In order to define the compression of a C^{*}-convex set from M_{n} to $M_{k}(k<n)$, we define

$$
P_{n k}=\binom{\mathbf{1}_{k}}{0} \in M_{n, k}
$$

Thus for $x \in M_{n}, P_{n k}^{*} x P_{n k}$ is the compression of x to M_{k}.
Proposition 1.4. Let $\mathcal{S} \subset M_{n}$ be C^{*}-convex. Let $\mathcal{S}_{k}=P_{n k}^{*} S P_{n k}$ be its compression to M_{k}. Then \mathcal{S}_{k} is C^{*}-convex, and if \mathcal{S} is compact then so is \mathcal{S}_{k}. Furthermore, if $\mathcal{S}=$ $C^{*}-\operatorname{conv}(\mathcal{G})$ for some set $\mathcal{G} \subset M_{n}$, then $\mathcal{S}_{k}=C^{*}-\operatorname{conv}\left(P_{n k}^{*}(\mathcal{U}(\mathcal{G})) P_{n k}\right)$.

Proof. Suppose $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a C^{*}-convex combination of $x_{i} \in S_{k}(i=1, \ldots, m)$. To show $x \in \mathcal{S}_{k}$ we must find $\tilde{x} \in \mathcal{S}$ such that $x=P_{n k}^{*} \tilde{x} P_{n k}$. Since $x_{i} \in \mathcal{S}_{k}, \exists \tilde{x}_{i} \in \mathcal{S}$ such that $x_{i}=P_{n k}^{*} \tilde{x}_{i} P_{n k}$. Let $\tilde{t}_{i}=t_{i} \oplus\left(\frac{1}{\sqrt{m}} \mathbf{1}_{n-k}\right)$, so $\sum_{i} \tilde{\tau}_{i}^{*} \tilde{t}_{i}=\mathbf{1}_{n}$, and let $\tilde{x}=\sum_{i} \tilde{t}_{i}^{*} \tilde{x}_{i} \tilde{t}_{i} \in S$. Clearly $P_{n k}^{*} \tilde{x} P_{n k}=x$. The statement about compactness is trivial because compression is continuous.

Let $\mathcal{S}=C^{*}-\operatorname{conv}(\mathcal{G})$. Let $x \in \mathcal{S}_{k}$ where $x=P_{n k}^{*} \tilde{x} P_{n k}$ for some $\tilde{x} \in S$. Thus $\tilde{x}=\sum_{i} t_{i}^{*} g_{i} t_{i} C^{*}$-convex combination of $g_{i} \in \mathcal{G}$. Choose unitaries $u_{i} \in M_{n}$ such that $u_{i} t_{i} P_{n k}=u_{i} t_{i}\binom{\mathbf{1}_{k}}{0}=\binom{s_{i}}{0}$ for some $s_{i} \in M_{k}$. Now $\sum_{i} s_{i}^{*} s_{i}=\sum_{i} P_{n k}^{*} k_{i}^{*} u_{i}^{*} u_{i} t_{i} P_{n k}=\mathbf{1}_{k}$ so

$$
\begin{aligned}
x & =P_{n k}^{*} \tilde{x} P_{n k}=\sum_{i} P_{n k}^{*} t_{i}^{*} u_{i}^{*}\left(u_{i} g_{i} u_{i}^{*}\right) u_{i} t_{i} P_{n k} \\
& =\sum_{i}\binom{s_{i}}{0}^{*} u_{i} g_{i} u_{i}^{*}\binom{s_{i}}{0} \\
& =\sum_{i} s_{i}^{*} P_{n k}^{*} u_{i} g_{i} u_{i}^{*} P_{n k} s_{i} \\
& \in C^{*}-\operatorname{conv}\left(P_{n k}^{*} \mathcal{U}(\mathcal{G}) P_{n k}\right) .
\end{aligned}
$$

We will also require the following more substantial results, already in the literature.

Definition 1.5. Given $B, M \in M_{n}, r \geq 0,(r \in \mathbf{R})$, define the matrix-valued disk $D(B, M ; r)=\left\{\Lambda \in M_{n}:\|\Lambda \otimes B+\mathbf{1} \otimes M\| \leq r\right\}$.

These sets were introduced by Farenick [4] where he shows that they are compact and C^{*}-convex. They are called matrix-valued disks because if $n=1$ they give rise to a classical disk and the next result reduces to a well known result in linear convexity theory. Although little is known of their structure (e.g. C^{*}-extreme points), and for $n>1$ they are not disks in the usual sense, their importance is the following separation theorem, proved by Farenick.

Theorem 1.6. Let $S \subset M_{n}$ be compact and C^{*}-convex. If $T \notin S$ then \exists matrixvalued disk $D(B, M ; r)$ separating T from \mathcal{S}, i.e., $D(B, M ; r) \supset S$ but $T \notin D(B, M ; r)$.

This separation theorem is central to the later proof of the generalised Krein-Milman theorem in Section 4, somewhat analogously to the use of the Hahn-Banach separation theorem in the proof of the original Krein- Milman theorem.

Much of what is already known about C^{*}-extreme points can be found in [3] and [6]. We will require the following theorem from [6] and its corollary from [9].

Theorem 1.7. Suppose that $S=C^{*}-\operatorname{conv}\left\{x_{\alpha}: \alpha \in I\right\} \subset M_{n}$, where I is any index set (finite or infinite). If x is C^{*}-extreme in S then x is unitarily equivalent to some x_{α} or x is reducible. Moreover, there exist projections q_{i} such that $\sum_{i} q_{i}=1, x=\sum_{i} q_{i} x_{\alpha_{i}}^{\prime} q_{i}$, and each $x_{\alpha_{i}}^{\prime} \sim x_{\alpha_{i}}$.

Corollary 1.8. Let $\mathcal{S}=C^{*}-\operatorname{conv}\left\{x_{\alpha}: \alpha \in I\right\} \subset M_{n}$, and let $x \in S$ be irreducible and C^{*}-extreme. If $x=\sum_{i=1}^{m} s_{i}^{*} z_{i} s_{i}\left(z_{i} \in S, s_{i} \neq 0\right)$, then \exists unitaries $u_{i} \in M_{n}$ and $\lambda_{i} \in \mathbf{R}$, $\left(0 \leq \lambda_{i} \leq 1, \sum_{i} \lambda_{i}^{2}=1\right)$, such that $s_{i}=\lambda_{i} u_{i}$, and $z_{i}=u_{i} x u_{i}^{*}$. (i.e. any C^{*}-convex combination $x=\sum_{i} s_{i}^{*} z_{i} s_{i}=\sum_{i}\left(\lambda_{i} u_{i}^{*}\right)\left(u_{i} x u_{i}^{*}\right)\left(u_{i} \lambda_{i}\right)=\sum_{i} \lambda_{i}^{2} x$ is essentially trivial. $)$

Proof. First we will show that $z_{i} \sim x \forall i$. Suppose, on the contrary, that $z_{1} \nsim x$. From Proposition 1.3 we can write $x=s_{1}^{*} z_{1} s_{1}+r^{*} y r, C^{*}$-convex combination with $y \in \mathcal{S}$. Using the same procedure as in the proof of the previous theorem (polar decomposition of s_{1}, r, absorbing unitaries, etc.) and the same application of Technique B (for all $\lambda \in(0,1)$), we reach the conclusion that x is reducible, which is once again a contradiction. Thus we must have $x \sim z_{1}$. Similarly, $x \sim z_{i} \forall i$.

Thus $\exists u_{i}$ unitary such that $z_{i}=u_{i} x u_{i}^{*}$ and $x=\sum_{i} s_{i}^{*} z_{i} s_{i}=\sum_{i}\left(s_{i}^{*} u_{i}\right) x\left(u_{i}^{*} s_{i}\right)$. Next we show that $u_{i}^{*} s_{i}=\lambda_{i} \mathbf{1}$.

Let $\phi(z)=\sum_{i}\left(s_{i}^{*} u_{i}\right) z\left(u_{i}^{*} s_{i}\right)$ so $\phi: M_{n} \rightarrow M_{n}$ is (unital) completely positive. Further $\phi(x)=x$ and x is irreducible so $\phi(z)=z \forall z[1]$. Now it follows from Choi's result [2] on the uniqueness of the decomposition of ϕ that $u_{i}^{*} s_{i}=\lambda_{i} \mathbf{1}\left(\lambda_{i} \in \mathbf{C}\right)$ and $\sum_{i} \overline{\lambda_{i}} \lambda_{i}=1$. To get $\lambda_{i} \in \mathbf{R}$, (instead of $\lambda_{i} \in \mathbf{C}$), we simply absorb the argument of λ_{i} into u_{i}. That is, if $\lambda_{i}=e^{i \theta_{i}}\left|\lambda_{i}\right|$, replace λ_{i} by $\left|\lambda_{i}\right|$, and u_{i} by $e^{i \theta_{i}} u_{i}$.
2. Structural elements. In this section we change the focus of our attention from C^{*}-extreme points as defined by Loebl and Paulsen to structural elements, as defined shortly. The existence of the generalised Krein- Milman Theorem in terms of structural elements (Theorem 4.5) shows that they are a better analog of linear extreme points than C^{*}-extreme points are. Some of the relation between C^{*}-extreme points and structural elements is apparent in Propositions 2.2, 5.1, 5.2, and 5.3.

Definition 2.1. Let $\mathcal{S} \subset M_{n}$ be a compact C^{*}-convex set. For $x \in S$, call x a structural element (of \mathcal{S}) of size n if whenever $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a C^{*}-convex combination of elements of \mathcal{S}, then there exist unitaries $u_{i} \in M_{n}$, and scalars $\lambda_{i} \in[0,1]$, such that $x_{i}=u_{i} x u_{i}^{*}, t_{i}=u_{i} \lambda_{i}$, and $\sum_{i} \lambda_{i}^{2}=1$. We write $x \in \operatorname{str}(S, n)$.

A necessary consequence of the definition of $\operatorname{str}(\mathcal{S}, n)$ is that if $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ then each $t_{i}^{*} x_{i} t_{i}=\lambda_{i}^{2} x$. Thus structural elements of size n have a certain similarity to linear extreme points in that the only ways to write them as a C^{*}-convex combination are essentially trivial. The following gives the first relation between structural elements and C^{*}-extreme points.

Proposition 2.2. Let $S \subset M_{n}$ be compact and C^{*}-convex. Then the structural elements of \mathcal{S} of size n correspond exactly to the irreducible C^{*}-extreme points.

Proof. It is immediate from the definition that if x is structural of size n then x is C^{*}-extreme. Furthermore if x is reducible then choose any scalar $\lambda \mathbf{1} \in S$ and observe

$$
x \sim\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{1} & 0 \\
0 & \lambda
\end{array}\right)\left(\begin{array}{ll}
\mathbf{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda & 0 \\
0 & x_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

where the coefficient $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ cannot be of the form $\lambda_{i} u_{i}$ for any scalar λ_{i} and unitary u_{i}. Thus $x \in \operatorname{str}(S, n)$ implies x is irreducible and C^{*}-extreme.

The converse is Corollary 1.8.
Unfortunately a C^{*}-convex set S may not have any structural elements of size n, let alone enough to reconstruct \mathcal{S}, so now we extend the definition of structural elements to sizes other than n.

Definition 2.3. For $S \subset M_{n}$ compact and C^{*}-convex let \mathcal{S}_{k} be its compression to M_{k} (S_{k} is still compact, C^{*}-convex; see Proposition 1.4). Define $x \in M_{k}$ to be a structural element (of \mathcal{S}) of size k provided
i) x is a structural element of S_{k} of size k, and
ii) $x \notin\left\{\right.$ compressions to M_{k} of structural elements (of \mathcal{S}) of size $\left.j, k<j \leq n\right\}$. (The definition is inductive, starting from structural elements of size n as defined previously.) We write $x \in \operatorname{str}(\mathcal{S}, k)$. We also define the structure set of \mathcal{S} to be $\operatorname{str}(\mathcal{S})=\bigcup_{k=1}^{n} \operatorname{str}(\mathcal{S}, k)$.
The following examples of structural elements should be compared with the C^{*} extreme points of the same sets (as given in a previous example):
i) for $\mathcal{S}=$ the unit ball of $M_{n}: \operatorname{str}(\mathcal{S})=\{\lambda \in \mathbf{C}:|\lambda|=1\}$,
ii) for $\mathcal{S}=\left\{x \in M_{n}: \mathbf{0} \leq x \leq \mathbf{1}\right\}: \operatorname{str}(S)=\{0,1\} \subset \mathbf{C}$,
iii) for $\mathcal{S}=\left\{x \in M_{2}: w(x) \leq 1\right\}$: $\operatorname{str}(\mathcal{S})=\mathcal{U}\left\{\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)\right\}$.

Because the elements of $\operatorname{str}(\mathcal{S})$ are not necessarily all the same size we need the following notation. For $x \in \operatorname{str}(\mathcal{S}, k)$ and $m>k$ define $x(m) \in M_{m}$ by $x(m)=x \oplus\left(\lambda \mathbf{1}_{m-k}\right)$ for some $\lambda \in W(x)$. (It is not important which $\lambda \in W(x)$ is chosen since any such choice will ensure $x(m) \in S_{m}$. It is important that $\lambda \in W(x)$ in order that $C^{*}-\operatorname{conv}\{x\}=$ $P_{m k}^{*}\left(C^{*}-\operatorname{conv}(x(m))\right) P_{m k}$, see the next Lemma.) Further define $C^{*}-\operatorname{conv}_{m}(\operatorname{str}(\mathcal{S}))=$ $C^{*}-\operatorname{conv}\{x(m): x \in \operatorname{str}(S)\} \subset M_{m}$; i.e., extend all the structural elements to $m \times m$ matrices and take the C^{*}-convex hull in M_{m}. Of course this makes sense only when all elements of $\operatorname{str}(\mathcal{S})$ are of size $\leq m$. We will continue to use the notation $C^{*}-\operatorname{conv}(\mathcal{G})$, with no subscript, provided all elements of \mathcal{G} are the same size (i.e. $\mathcal{G} \subset M_{n}$).

In order to prove the generalised Krein-Milman theorem we need some elementary facts about structural elements. The following lemma, useful for this purpose, can also be used to show that $C^{*}-\operatorname{conv}_{n}(s)$ (for $s \in M_{k}$) doesn't depend on the choice of $\lambda \in W(s)$.

Lemma 2.4. Let $s \in M_{k}$ be irreducible, $\lambda \in W(s), s(n)=s \oplus \lambda \mathbf{1}_{n-k}$. Let $\mathcal{S}=$ $C^{*}-\operatorname{conv}(s(n))\left(=C^{*}-\operatorname{conv}_{n}(s)\right)$. Then $S_{k}=C^{*}-\operatorname{conv}(s)($ independent of $\lambda)$.

Proof. Consider

$$
x=\sum_{i} t_{i}^{*}\left(\begin{array}{ll}
s & \\
& \lambda \mathbf{1}_{n-k}
\end{array}\right) t_{i} \in S
$$

$\left(t_{i} \in M_{n}, \sum_{i} t_{i}^{*} t_{i}=1\right)$. We must show that $P_{n k}^{*} x P_{n k} \in C^{*}-\operatorname{conv}(s)$. Let

$$
t_{i}=\left(\begin{array}{cc}
t_{i 1} & t_{i 2} \\
t_{i 3} & t_{i 4}
\end{array}\right)
$$

The condition $\sum_{i} t_{i}^{*} t_{i}=\mathbf{1}_{n}$ implies $\sum_{i}\left(t_{i 1}^{*} t_{i 1}+t_{i 3}^{*} t_{i 3}\right)=\mathbf{1}_{k}$ where $t_{i 1} \in M_{k}, t_{i 3} \in M_{n-k, k}$. Now $P_{n k}^{*} x P_{n k}=\sum_{i}\left(t_{i 1}^{*} s t_{i 1}+t_{i 3}^{*} \lambda \mathbf{1}_{n-k} t_{i 3}\right)$.

If $n-k \leq k$ let

$$
\tilde{t}_{i 3}=\binom{t_{i 3}}{0} \in M_{k}
$$

so $\tilde{t}_{i 3}^{*} \tilde{t}_{i 3}=t_{i 3}^{*} t_{i 3}$ and $P_{n k}^{*} x P_{n k}=\sum_{i} t_{i 1}^{*} s t_{i 1}+\tilde{t}_{i 3}^{*} \lambda \mathbf{1}_{k} \tilde{t}_{i 3} \in C^{*}-\operatorname{conv}(s)$. (Recall $\lambda \in W(s) \Rightarrow$ $\left.\lambda \mathbf{1}_{k} \in C^{*}-\operatorname{conv}(s).\right)$

If $n-k>k$ then there exist unitaries $u_{i} \in M_{n-k}$ such that

$$
u_{i} t_{i 3}=\binom{t_{i 3}^{\prime}}{0} \quad \text { for some } t_{i 3}^{\prime} \in M_{k} .
$$

Hence $t_{i 3}^{*} \lambda \mathbf{1}_{n-k} t_{i 3}=t_{i 3}^{*} u_{i}^{*} \lambda \mathbf{1}_{n-k} u_{i} t_{i 3}=t_{i 3}^{\prime} \lambda \mathbf{1}_{k} t_{i 3}^{\prime}$. Also $t_{i 3}^{*} t_{i 3}=t_{i 3}^{*} u_{i}^{*} u_{i} t_{i 3}=t_{i 3}^{\prime *} t_{i 3}^{\prime}$ so $P_{n k}^{*} x P_{n k}=\sum_{i}\left(t_{i 1}^{*} s t_{i 1}+t_{i 3}^{\prime *} \lambda 1_{k} t_{i 3}^{\prime}\right) \in C^{*}-\operatorname{conv}(s)$.

Proposition 2.5. Let $s \in M_{k}$ be irreducible and let $S=C^{*}-\operatorname{conv}_{n}(s)(n \geq k)$. Then $\operatorname{str}(\mathcal{S})=\mathcal{U}(s)$.

Proof. In order for $x \in M_{j}$ to be in $\operatorname{str}(\mathcal{S})$, x must be irreducible and C^{*}-extreme in \mathcal{S}_{j}. If $j>k$ then it is easy to see that $\mathcal{S}_{j}=C^{*}-\operatorname{conv}_{j}(s)=C^{*}-\operatorname{conv}(s(j))$; and since $s(j)$
is reducible, so are the C^{*}-extreme points of S_{j} (by Theorem 1.7), and so $\operatorname{str}(\mathcal{S}, j)=\phi$ $(j>k)$. If $j=k, \mathcal{S}_{k}=C^{*}-\operatorname{conv}_{k}(s)$, and s is irreducible so $\operatorname{str}(\mathcal{S}, k)=\mathcal{U}(s)$. Finally for $j<k, \mathcal{S}_{j}=P_{k j}^{*} \mathcal{S}_{k} P_{k j}=P_{k j}^{*} C^{*}-\operatorname{conv}_{k}(s) P_{k j}$, so $\operatorname{str}(S, j)=\phi(j<k)$.

The next two propositions concern the behaviour of the set of structural elements under compression.

Proposition 2.6. Let $S \subset M_{n}$ be compact and C^{*}-convex, \mathcal{S}_{k} its compression to $M_{k}(1 \leq k<n)$. Then $\operatorname{str}(\mathcal{S}, k) \subset \operatorname{str}\left(\mathcal{S}_{k}, k\right) \subset \operatorname{str}(\mathcal{S}, k) \cup\{$ compressions of $\operatorname{str}(\mathcal{S}, j)$ to $\left.M_{k}, k<j \leq n\right\}$.

Proof. Let $x \in \operatorname{str}(\mathcal{S}, k)$. Then x is irreducible and C^{*}-extreme in $S_{k} \operatorname{so} x \in \operatorname{str}\left(\mathcal{S}_{k}, k\right)$.
Next, suppose $x \in \operatorname{str}\left(\mathcal{S}_{k}, k\right)$. Then x is irreducible and C^{*}-extreme in S_{k}, so either $x \in \operatorname{str}(\mathcal{S}, k)$ or $x \in\left\{\right.$ compressions of $\operatorname{str}(\mathcal{S}, j)$ to $\left.M_{k}, k<j \leq n\right\}$.

Proposition 2.7. Same hypotheses as in the previous proposition, plus $1 \leq m<k$. Then $\operatorname{str}(\mathcal{S}, m) \subset \operatorname{str}\left(\mathcal{S}_{k}, m\right) \subset \operatorname{str}(S, m) \cup\left\{\right.$ compressions of $\operatorname{str}(\mathcal{S}, j)$ to $\left.M_{m}, m<j \leq n\right\}$.

Proof. Notice $S_{m}=\left(\mathcal{S}_{k}\right)_{m}$ (the compression of S_{k} to M_{m}). We have proven the case $m=k$ above. Let $m=k-1$. Let $x \in S_{m}$ be irreducible and C^{*}-extreme. If $x \notin \operatorname{str}\left(\mathcal{S}_{k}, m\right)$ then x belongs to the compression of $\operatorname{str}\left(\mathcal{S}_{k}, k\right)$ to $M_{k} \subset\left\{\right.$ compressions of $\operatorname{str}(S, j)$ to M_{m}, $m<j \leq n\} \Rightarrow x \notin \operatorname{str}(\mathcal{S}, m)$. Thus $\operatorname{str}(\mathcal{S}, m) \subset \operatorname{str}\left(\mathcal{S}_{k}, m\right)$.

Next, $x \in \operatorname{str}\left(S_{k}, m\right) \Rightarrow x$ irreducible, C^{*}-extreme in $S_{m} \Rightarrow x \in \operatorname{str}(\mathcal{S}, m)$ or $x \in$ \{compressions of $\operatorname{str}(\mathcal{S}, j)$ to $\left.M_{m}, m<j \leq n\right\}$. Continuing inductively gets the result for all $m<k$.
3. Technical tools. We will have more to say about structural elements, including their relation to C^{*}-extreme points, after we have proved the main theorem. Now we introduce some concepts whose main interest is their usefulness in proving the KreinMilman theorem. They are generalisations of similar concepts in the linear convexity case, and it may help the reader to translate the definitions and the results immediately following into the more familiar setting of linear convexity where the geometry is more transparent. The idea behind the next set of definitions is as follows: Suppose $x=a^{*} y a+$ $b^{*} z b$ is a C^{*}-convex combination (i.e. $a^{*} a+b^{*} b=\mathbf{1}$) with $a \neq 0$. Then y (also z) is called a C^{*}-summand of $x, a^{*} y a$ is called a C^{*}-piece of x, and $a^{*} a$ is called the weight of $a^{*} y a$ as a piece of x. These three sets are useful in proving the generalised Krein-Milman theorem. The precise definitions are given next.

Definitions 3.1. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex, $x \in S$.
i) The set of C^{*}-summands of $x, C^{*}-\operatorname{summ}(x)=\left\{y \in \mathcal{S}: \exists z \in \mathcal{S}, a, b \in M_{n}, a \neq\right.$ 0 , such that $x=a^{*} y a+b^{*} z b$ (C^{*}-convex combination) $\}$.
ii) The set of C^{*}-pieces of $x, \operatorname{pcs}(x)=\left\{a^{*} y a: \exists y, z \in \mathcal{S}, a, b \in M_{n}\right.$ such that $x=a^{*} y a+b^{*} z b\left(C^{*}\right.$-convex combination $\left.)\right\}$.
iii) Given $r \in \operatorname{pcs}(x)$, the set of weights of r as a piece of $x, \mathcal{W}(r ; x)=\left\{a^{*} a: \exists a, b \in\right.$ $M_{n}, y_{1}, y_{2} \in \mathcal{S}$ with $x=a^{*} y_{1} a+b^{*} y_{2} b$ and $\left.r=a^{*} y_{1} a\right\}$.

REMARKS 3.2. 1) In i) above the restriction $a \neq 0$ keeps the set of C^{*}-summands proper. In ii) taking $a=0$ implies $0 \in \operatorname{pcs}(x) \forall x$ which is convenient-see 3) below.
2) $C^{*}-\operatorname{summ}(x)$ need not be convex. Let $S=\left\{t \in M_{2}: 0 \leq t \leq 1\right\}$.

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { are } C^{*} \text {-summands of }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { but } \\
\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)=1 / 2\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+1 / 2\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

is not. It is easy to see that $x \in C^{*}-\operatorname{summ}(\mathbf{1})$ iff x is unitarily equivalent to a matrix of the form $\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right), 0 \leq a \leq 1$.
3) Unlike ordinary convexity, $y \in C^{*}-\operatorname{summ}(x)$ and $z \in C^{*}-\operatorname{summ}(y)$ does not imply $z \in C^{*}-\operatorname{summ}(x)$. As an example, let S be as in the previous remark, $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, $y=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right), z=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 4\end{array}\right)$.
4) $\operatorname{pcs}(x)$ is compact and convex.
5) $\mathcal{W}(r ; x)$ is compact and convex.
6) Let $r, r_{1}, r_{2} \in \operatorname{pcs}(x), \alpha \in(0,1)$, with $r=\alpha r_{1}+(1-\alpha) r_{2}$. Then $\mathcal{W}(r ; x) \supset$ $\alpha \mathcal{W}\left(r_{1} ; x\right)+(1-\alpha) \mathcal{W}\left(r_{2} ; x\right)$.
7) If $0 \in \mathcal{S}$ then $\operatorname{pcs}(x) \subset \mathcal{S}$.

We illustrate the above definitions with some examples taken from $\mathcal{S}=W_{1} \subset M_{2}$. Let $x=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right) \in S . x$ is extreme but not C^{*}-extreme in S [7]. In fact

$$
\begin{aligned}
x= & \left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -i / 2
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & i / 2
\end{array}\right) \\
& +\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & i / 2
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & -i / 2
\end{array}\right) .
\end{aligned}
$$

Proposition 3.3. $y \in C^{*}-\operatorname{summ}(x)$ iff at least one of $1, i \in W(y)$.
Proof. Suppose $1 \in W(y)$. Then $y \sim\left(\begin{array}{cc}1 & * \\ * & *\end{array}\right)$ so

$$
x=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) y\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) x\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and so $y \in C^{*}-\operatorname{summ}(x)$. Similarly for $i \in W(y)$.
On the other hand, suppose $y \in C^{*}-\operatorname{summ}(x)$, so $x=a^{*} y a+b^{*} z b$, a C^{*}-convex combination with $a \neq 0$. Let $\left\{e_{1}, e_{2}\right\}$ be the usual orthonormal basis for \mathbf{C}^{2}. If $a e_{1} \neq 0$ then

$$
\begin{aligned}
1 & =\left(x e_{1}, e_{1}\right) \\
& =\left(y a e_{1}, a e_{1}\right)+\left(z b e_{1}, b e_{1}\right) \\
& =\left\|a e_{1}\right\|^{2}\left(y\left(\frac{a e_{1}}{\left\|a e_{1}\right\|}\right),\left(\frac{a e_{1}}{\left\|a e_{1}\right\|}\right)\right)+\left\|b e_{1}\right\|^{2}\left(z\left(\frac{b e_{1}}{\left\|b e_{1}\right\|}\right),\left(\frac{b e_{1}}{\left\|b e_{1}\right\|}\right)\right) \\
& =\left\|a e_{1}\right\|^{2} \alpha+\left\|b e_{1}\right\|^{2} \beta .
\end{aligned}
$$

This represents 1 as a convex combination (since $\left\|a e_{1}\right\|^{2}+\left\|b e_{1}\right\|^{2}=1$) of $\alpha \in W(y) \subset$ $\Delta=\{\lambda \in \mathbf{C}:|\lambda| \leq 1\}$, and $\beta \in W(z) \subset \Delta$. But 1 is extreme in Δ so $\alpha=1 \in W(y)$. If $a e_{1}=0$, then $a e_{2} \neq 0$ and a similar argument shows $i \in W(y)$.

The set $\operatorname{pcs}(x)$ is slightly harder to describe, and we will begin by giving some examples. Obviously $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 0 & i\end{array}\right) \in \operatorname{pcs}(x)$. Also, from the C^{*}-convex combination given above,

$$
\left(\begin{array}{cc}
1 / 2 & i / 2 \\
1 / 2 & i / 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -i / 2
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & i / 2
\end{array}\right)
$$

and,

$$
\left(\begin{array}{cc}
1 / 2 & -i / 2 \\
-1 / 2 & i / 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & i / 2
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & -i / 2
\end{array}\right) \in \operatorname{pcs}(x)
$$

The set $\operatorname{pcs}(x)$ can be described completely as follows. For any $k \in \mathbf{N}$ and $j<k$, choose orthogonal unit vectors $\left(\alpha_{1}, \ldots, \alpha_{k}\right),\left(\beta_{1}, \ldots, \beta_{k}\right) \in \mathbf{C}^{k}$. Let $p=\sum_{i=1}^{j} \overline{\alpha_{i}} \alpha_{i}$, $q=\sum_{i=1}^{j} \bar{\beta}_{i} \beta_{i}, \lambda=\sum_{i=1}^{j} \bar{\alpha}_{i} \beta_{i}$. Then $y=\left(\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right)\left(\begin{array}{cc}p & \lambda \\ \bar{\lambda} & q\end{array}\right) \in \operatorname{pcs}(x)$, and every $y \in \operatorname{pcs}(x)$ is of this form. The conditions on p, q, and λ are, of course, equivalent to requiring $\left(\begin{array}{ll}\bar{\lambda} & \lambda \\ \bar{\lambda} & q\end{array}\right) \geq 0$.

For $r=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \mathcal{W}(r ; x)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. For $r=\left(\begin{array}{ll}0 & 0 \\ 0 & i\end{array}\right), \mathcal{W}(r ; x)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. To see an easy example where $\mathcal{W}(r ; x)$ is not a singleton, take $x=\left(\begin{array}{cc}1 / 2 & 1 \\ 0 & 0\end{array}\right) \in \mathcal{S}$, $r=\left(\begin{array}{cc}1 / 4 & 1 / 2 \\ 0 & 0\end{array}\right) \cdot x=(1 / \sqrt{2}) x(1 / \sqrt{2})+(1 / \sqrt{2}) x(1 / \sqrt{2})$ so $r=(1 / 2) x \in \operatorname{pcs}(x)$ and $1 / 2 \in \mathcal{W}(r ; x)$. But we can also write

$$
\begin{aligned}
x=\{ & \left.(1 / 4)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)+(1 / 4)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & 1 / 2
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 1 / 2
\end{array}\right)\right\} \\
& +\left\{\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right)+(1 / 4)\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

This is a C^{*}-convex combination, and the sum of the first three terms is $r=x / 2$ so $\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 3 / 4\end{array}\right) \in \mathcal{W}(r ; x)$. The sum of the last two terms is also r, so $\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 4\end{array}\right) \in$ $\mathcal{W}(r ; x)$. This shows that $\mathcal{W}(r ; x)$ need not be a singleton. It is easy to construct a similar C^{*}-convex combination to show $\left(\begin{array}{cc}3 / 4 & 0 \\ 0 & 1 / 2\end{array}\right) \in \mathcal{W}(r ; x)$, which shows that not all elements of $\mathcal{W}(r ; x)$ need be comparable. If we had examined the analog of these definitions in the linear convexity case, there too it would be true that $\mathcal{W}(r ; x)$ need not be a singleton. However in that case of course, every element of $\mathcal{W}(r ; x)$ would be comparable.

Another useful concept that we can borrow from linear convexity theory is that of a face, generalised below to a C^{*}-face.

Definition 3.4. A C^{*}-face \mathcal{F} of a C^{*}-convex set S is a non-empty subset of \mathcal{S} such that if $x \in \mathcal{F}$ and $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a proper C^{*}-convex combination of elements $x_{i} \in S$ (i.e. $\sum_{i} t_{i}^{*} t_{i}=\mathbf{1}$, and t_{i} invertible $\forall i$), then necessarily $x_{i} \in \mathcal{F} \forall i$.

Remarks 3.5. 1) C^{*}-faces exist; S is a C^{*}-face of S. Also if $S \subset M_{n}$ is compact and C^{*}-convex and $B, M \in M_{n}$ then $\left\{x \in S:\|x \otimes B+\mathbf{1} \otimes M\|=\sup _{s \in S}\{\|s \otimes B+\mathbf{1} \otimes M\|\}\right\}$ is a compact C^{*}-face of \mathcal{S} [9].
2) Unlike faces of ordinary convex sets, C^{*}-faces are not usually C^{*}-convex, or even convex. In view of Remark 8 below, our previous example that $C^{*}-\operatorname{summ}(x)$ need not be convex also serves as an example that C^{*}-faces need not be convex.

The fact that C^{*}-faces are not C^{*}-convex seems unavoidable. The difficulty is that almost all C^{*}-convex subsets of M_{n} have non-empty interior. Specifically, if S is C^{*} convex, let $W(\mathcal{S})=\bigcup\{W(x)$ (the numerical range of x): $x \in \mathcal{S}\}$. \mathcal{S} has non-empty interior iff $W(\mathcal{S})$ does [11]. Furthermore, $W(\mathcal{S})$ has empty interior iff it is the line segment $[\alpha, \beta]$ (in \mathbf{C}), and so $\mathcal{S}=(\beta-\alpha) P+\alpha \mathbf{1}$ (where $P=\left\{x \in M_{n}: 0 \leq x \leq \mathbf{1}\right\}$ is a particularly simple C^{*}-convex set). If we included in the definition of a C^{*}-face the requirement that it be C^{*}-convex (and hence convex, and hence a face in the usual sense), then most C^{*} faces would have non-empty interior, and so would be the trivial face, all of \mathcal{S}. The only other possibilities would be of the form $\mathcal{F}=(\beta-\alpha) \mathcal{P}+\alpha \mathbf{1}$ where $[\alpha, \beta]$ was a face of $W(S)$. This would clearly give too little structural information to be useful. See also Corollary 5.4 which is the C^{*}-version of the usual result that a minimal compact face is an extreme point.
3) If \mathcal{F} is a C^{*}-face and $x \in \mathcal{F}$ then $\mathcal{U}(x) \subset \mathcal{F} . \mathcal{F}=\mathcal{U}(x)$ if and only if $x \in \partial_{e}^{*} \mathcal{S}$.
4) If \mathcal{F} is a C^{*}-face of S and $\mathcal{F}_{1} \subset \mathcal{F}$ is a C^{*}-face of $C^{*}-\operatorname{conv} \mathcal{F}$ then \mathcal{F}_{1} is a C^{*}-face of \mathcal{S}.
5) Let \mathcal{F} be a C^{*}-face of S and let $x \in \mathcal{F}$ be C^{*}-extreme in $C^{*}-\operatorname{conv} \mathcal{F}$. Then $x \in \partial_{e}^{*} \mathcal{S}$.
6) The intersection of C^{*}-faces is a C^{*}-face, provided it is non-empty.
7) Every compact C^{*}-face contains a minimal compact C^{*}-face (by Zorn's lemma). Furthermore, a minimal compact C^{*}-face "is" a C^{*}-extreme point-see Proposition 5.4.
8) $C^{*}-\operatorname{summ}(x)$, as defined previously, is obviously a C^{*}-face, but because the definition of a C^{*}-face requires the coefficients to be invertible, and the definition of $C^{*}-\operatorname{summ}(x)$ does not, $C^{*}-\operatorname{summ}(x)$ need not be the minimal C^{*}-face containing x. We will see (Lemma 4.1) that in $M_{n}, C^{*}-\operatorname{summ}(x)$ is closed.

We will also need the following elementary properties of minimal compact C^{*}-faces.
Proposition 3.6. Let \mathcal{F} be a minimal compact C^{*}-face of \mathcal{S}. Then $\forall x, y \in \mathcal{F}$, $C^{*}-\operatorname{conv}\{x\}=C^{*}-\operatorname{conv}\{y\}$.

Proof. Suppose $y \notin C^{*}-\operatorname{conv}\{x\}$. Then by [4] $\exists B, M \in M_{n}, r>0$, so that $D(B, M ; r)$ separates y from $C^{*}-\operatorname{conv}\{x\}$. Let $r^{\prime}=\sup _{z \in \mathcal{F}}\{\|z \otimes B+\mathbf{1} \otimes M\|\}$. Then $\mathcal{F}^{\prime}=\left\{z \in \mathcal{F}:\|z \otimes B+\mathbf{1} \otimes M\|=r^{\prime}\right\}$ is a compact C^{*}-face of $\mathcal{S}:$ if $z \in \mathcal{F}^{\prime} \subset \mathcal{F}$ and $z=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a proper C^{*}-convex combination, then $x_{i} \in \mathcal{F}$ (because \mathcal{F} is a C^{*}-face) so $\left\|x_{i}\right\| \leq\|z\|=r^{\prime} \forall i$. Using the invertibility of the t_{i} it is clear that $\left\|x_{i}\right\|=\left\|z_{i}\right\|=r^{\prime} \forall i$,
so $x_{i} \in \mathcal{F}^{\prime} \forall$ i. Now $\mathcal{F}^{\prime} \subset \neq \mathcal{F}$ (since $x \in \mathcal{F} \backslash \mathcal{F}^{\prime}$) contradicting minimality of \mathcal{F}. Thus $y \in C^{*}-\operatorname{conv}\{x\}$ and similarly $x \in C^{*}-\operatorname{conv}\{y\}$ so $C^{*}-\operatorname{conv}\{x\}=C^{*}-\operatorname{conv}\{y\}$.

Corollary 3.7. Let \mathcal{F} be a minimal compact C^{*}-face of \mathcal{S}. If $\mathcal{F}=\mathcal{U}(x)$ for some $x \in S$, then $x \in \partial_{e}^{*} \mathcal{S}$. In particular, if any $x \in \mathcal{F}$ is irreducible then $\mathcal{F}=\mathscr{U}(x)$ and $x \in \partial_{e}^{*} S$.

Proof. Suppose $\mathcal{F}=\mathcal{U}(x)$ and $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a proper C^{*}-convex combination of $x_{i} \in S$. Then $x_{i} \in \mathcal{F} \forall i$ (by definition of a C^{*}-face), so $x_{i} \sim x \forall i$ and $x \in \partial_{e}^{*} \mathcal{S}$.

Suppose some $x \in \mathcal{F}$ is irreducible. By Proposition 3.6, $C^{*}-\operatorname{conv}\{x\}=$ $C^{*}-\operatorname{conv}\{y\} \forall y \in \mathcal{F}$. By [6], because x is irreducible, it follows that $x \sim y \forall y \in \mathcal{F}$, so $\mathcal{F}=\mathcal{U}(x)$. Thus by the first paragraph above, $x \in \partial_{e}^{*} \mathcal{S}$.
4. Generalised Krein-Milman theorem. Our first step is to prove that $C^{*}-\operatorname{summ}(x)$ is closed. It would be nice if we could use the following argument. Let $y \in \overline{C^{*}-\operatorname{summ}}(x)$. That is, $\exists y_{i}, z_{i} \in C^{*}-\operatorname{summ}(x)\left(x=a_{i}^{*} y_{i} a_{i}+b_{i}^{*} z_{i} b_{i} C^{*}\right.$-convex combinations) with $y_{i} \rightarrow y$. Passing to subsequences if necessary, we may assume $a_{i} \rightarrow a, b_{i} \rightarrow b, z_{i} \rightarrow z$ and so $x=a^{*} y a+b^{*} z b$, and we could conclude $y \in C^{*}-\operatorname{summ}(x)$, except that a might be 0 . The following result essentially ensures that this can be avoided.

Lemma 4.1. Let S be compact and C^{*}-convex, $x \in S$. Then $\exists \epsilon>0$ such that if $y \in$ $C^{*}-\operatorname{summ}(x)$ and $a^{*} a$ is maximal in $\left\{a^{*} a: x=a^{*} y a+b^{*} z b\left(C^{*}\right.\right.$-convex combination $\left.)\right\}$, then $\left\|a^{*} a\right\| \geq \epsilon$.

Proof. Without loss of generality, we will assume $0 \in \mathcal{S}$. Consider the set $P_{W}=$ $\left\{\left(r, a^{*} a\right): r \in \operatorname{pcs}(x), a^{*} a \in \mathcal{W}(r ; x)\right\} \subset M_{n} \times M_{n}^{+}$. This set is convex by 3,4 , and 5 of Remarks 3.2, and $(0,0) \in P_{W}$ (because $0 \in \mathcal{S}$) so it is contained in a k-dimensional subspace $F_{k} \subset M_{n} \times M_{n}^{+}$. Furthermore P_{W} is symmetric with respect to the point $(x / 2,1 / 2)$. To see this, if $\left(r, a^{*} a\right) \in P_{W}$ then $\exists y, z \in \mathcal{S}, b \in M_{n}$ such that $x=a^{*} y a+b^{*} z b$ a C^{*}-convex combination with $r=a^{*} y a$. Thus ($\left.b^{*} z b, b^{*} b\right) \in P_{W}$ and

$$
(x / 2,1 / 2)=\frac{1}{2}\left(a^{*} y a, a^{*} a\right)+\frac{1}{2}\left(b^{*} z b, b^{*} b\right) .
$$

From this symmetry it follows that $\exists \epsilon>0$ so that $B_{\epsilon}(x / 2,1 / 2) \cap F_{k} \subset P_{W}$. (Define the open ball $B_{\epsilon}(x / 2,1 / 2)=\left\{(r, w) \in M_{n} \times M_{n}^{+}:\|r-x / 2\|+\|w-\mathbf{1} / 2\|<\epsilon\right\}$.)

Now suppose $x \in S$ and $x=a^{*} y a+b^{*} z b$ (a C^{*}-convex combination of $y, z \in S$) with $a^{*} a<\epsilon \mathbb{1}\left(\right.$ i.e. $\left\|a^{*} a\right\|<\epsilon$). Without loss of generality we will assume that $\forall s \in \mathcal{S}$, $\|s\| \leq 1$, and so $\left\|a^{*} y a\right\|<\epsilon \forall y \in \mathcal{S}$. Let

$$
r_{1}=\frac{b^{*} z b}{2}, \quad r_{2}=\frac{b^{*} z b}{2}+a^{*} y a \in \operatorname{pcs}(x)
$$

with

$$
\frac{b^{*} b}{2} \in \mathcal{W}\left(r_{1} ; x\right), \quad \frac{b^{*} b}{2}+a^{*} a \in \mathcal{W}\left(r_{2} ; x\right)
$$

Notice

$$
\left(r_{1}, \frac{b^{*} b}{2}\right), \quad\left(r_{2}, \frac{b^{*} b}{2}+a^{*} a\right) \in B_{\epsilon}(x / 2,1 / 2) \cap F_{k} \subset P_{W}
$$

because

$$
(x / 2,1 / 2)=\left(\frac{a^{*} y a+b^{*} z b}{2}, \frac{a^{*} a+b^{*} b}{2}\right)
$$

and $\left\|a^{*} y a\right\|<\epsilon$. Thus there exists $\delta>0$ such that

$$
(1+\delta)\left(r_{2}, \frac{b^{*} b}{2}+a^{*} a\right), \quad\left(r_{1}-\delta r_{2},(1-\delta) \frac{b^{*} b}{2}-\delta a^{*} a\right) \in B_{\epsilon}(x / 2,1 / 2) \cap F_{k} \subset P_{W}
$$

Thus there exists $z^{\prime} \in \mathcal{S}, b^{\prime} \in M_{n}$ such that $r_{1}-\delta r_{2}=b^{\prime *} z^{\prime} b^{\prime}$ and $b^{\prime *} b^{\prime}=(1-\delta) b^{*} b / 2-$ $\delta a^{*} a$, and so

$$
\begin{aligned}
x & =(1+\delta) r_{2}+\left(r_{1}-\delta r_{2}\right) \\
& =(1+\delta)\left(\frac{b^{*} z b}{2}+a^{*} y a\right)+b^{\prime *} z^{\prime} b^{\prime} \\
& =(1+\delta) a^{*} y a+\left(\frac{1+\delta}{2}\right) b^{*} z b+b^{\prime *} z^{\prime} b^{\prime} \\
& =(1+\delta) a^{*} y a+b^{\prime \prime *} z^{\prime \prime} b^{\prime \prime} \quad \text { (using Proposition 1.2.1) }
\end{aligned}
$$

a C^{*}-convex combination. But $(1+\delta) a^{*} a>a^{*} a$, so (if $\left.\left\|a^{*} a\right\|<\epsilon\right) a^{*} a$ is not maximal. This completes the proof.

Now it is a simple matter to prove the following.
Proposition 4.2. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex. Then $C^{*}-\operatorname{summ}(x)$ is closed.

Proof. Let $y \in \overline{C^{*}-\operatorname{summ}}(x)$. Then $\exists a_{k}, b_{k} \in M_{n}, y_{k}, z_{k} \in S$ such that $x=$ $a_{k}^{*}\left(y_{k}\right) a_{k}+b_{k}^{*} z_{k} b_{k}$ with $a_{k}^{*} a_{k}+b_{k}^{*} b_{k}=1$ and $y_{k} \rightarrow y$. Without loss of generality we can assume the $a_{k}^{*} a_{k}$ are maximal in the same sense as the previous lemma. Passing to subsequences if necessary we may assume $a_{k} \rightarrow a, b_{k} \rightarrow b, z_{k} \rightarrow z$, and $x=a^{*} y a+b^{*} z b$ (C^{*}-convex combination). By maximality of $a_{k}^{*} a$ and the previous lemma, it follows that $\left\|a^{*} a\right\| \geq \epsilon$, (in particular $a \neq 0$), so $y \in C^{*}-\operatorname{summ}(x)$.

The proof of the generalised Krein-Milman theorem involves induction, and the following Lemma is an essential part of the inductive step. In proving the following Lemma we make use of two facts about convex sets in a finite dimensional space. First, if C and C^{\prime} are convex with C^{\prime} a dense subset of C, and if $x \in$ int C, then $x \in C^{\prime}$. (If C is contained in a hyperplane $H, x \in \operatorname{int} C$ is understood to mean $x \in \operatorname{int}(C \cap H))$. Second, let C be a ray $\{k x: k \geq 0\}(x \neq 0)$, and let C^{\prime} be a closed pointed cone with $C \cap C^{\prime}=\{0\}$. Then there is a linear functional ρ separating C^{\prime} from C in the sense that $\rho(C) \geq 0, \rho\left(C^{\prime}\right) \leq 0$, and for $x \in C^{\prime}, \rho(x)=0$ iff $x=0$. The proofs of these two facts are elementary and are omitted. We write $\mathcal{S}_{\text {red }}$ for $\left\{x \in \mathcal{S}: x\right.$ is reducible, i.e., $\left.x \sim\left(\begin{array}{cc}x_{1} & 0 \\ 0 & x_{2}\end{array}\right)\right\}$.

Lemma 4.3. Let $S \subset M_{n}$ be compact and C^{*}-convex. Then $S=C^{*}-$ $\operatorname{conv}\left(\mathcal{S}_{\text {red }} \cup \operatorname{str}(\mathcal{S}, n)\right)$.

Proof. Suppose $x \in \mathcal{S} \backslash C^{*}-\operatorname{conv}\left(\mathcal{S}_{\text {red }} \cup \operatorname{str}(\mathcal{S}, n)\right)$. Clearly x is irreducible. In fact we can restrict ourselves to those x which are maximal in the sense that

$$
C^{*}-\operatorname{conv}\left(\{x\} \cup \mathcal{S}_{\mathrm{red}}\right) \not \subset C^{*}-\operatorname{conv}\left(\{y\} \cup \mathcal{S}_{\mathrm{red}}\right)
$$

for any $y \in \mathcal{S}, y \nsim x$. (If $\exists x \in \mathcal{S} \backslash C^{*}-\operatorname{conv}\left(\mathcal{S}_{\text {red }} \cup \operatorname{str}(\mathcal{S}, n)\right)$ the existence of such maximal x is easily shown using Zorn's Lemma and Lemma 4.4 following.) Such an x cannot have any C^{*}-summands in $S_{\text {red }}$ without violating maximality so $C^{*}-\operatorname{summ}(x)$ consists entirely of irreducibles. This fact ensures that if $x=a^{*} y a+b^{*} z b$ is a C^{*}-convex combination then both a and b must be invertible, and so we can conclude that if $y \in C^{*}-\operatorname{summ}(x)$ then $C^{*}-\operatorname{summ}(y) \subset C^{*}-\operatorname{summ}(x)$. Thus any $y \in C^{*}-\operatorname{summ}(x)$ also has no C^{*} summands in $\mathcal{S}_{\text {red }}$, and furthermore, for any such y, there must be $z \in \operatorname{str}(\mathcal{S}, n)$ with $z \in C^{*}-\operatorname{summ}(y) .\left(C^{*}-\operatorname{summ}(y)\right.$ is a compact C^{*}-face consisting only of irreducibles, thus it contains a minimal compact C^{*}-face containing only irreducibles, that is $\mathcal{U}(z)$ for some $z \in \operatorname{str}(S, n)$.)

Consider the set $P_{W}=\{(r, w): r \in \operatorname{pcs}(x), w \in \mathcal{W}(r ; x)\}$ and its subset $P_{W}^{\prime}=$ $\left\{(r, w):(r, w) \in P_{W}, r=\sum_{i} a_{i}^{*} y_{i} a_{i}, w=\sum_{i} a_{i}^{*} a_{i}\right.$ and $\left.y_{i} \in \operatorname{str}(\mathcal{S}, n) \forall i\right\} .\left(P_{W}^{\prime}\right.$ is those pieces of x, and their weights, which can be generated by structural elements of size n.) P_{W}^{\prime} is clearly convex, and since x must have a C^{*}-summand in $\operatorname{str}(\mathcal{S}, n)$, non-empty. Furthermore, for any $k \geq 0$, if $\left(r^{\prime}, w^{\prime}\right) \in P_{W}^{\prime}$ and $k\left(r^{\prime}, w^{\prime}\right) \in P_{W}$, then $k\left(r^{\prime}, w^{\prime}\right) \in P_{W}^{\prime}$.

Next we show that P_{W}^{\prime} is dense in P_{W}. Suppose not. Then there exists $(r, w) \in P_{W} \backslash \overline{P_{W}^{\prime}}$. Let C be the ray $\{k(r, w): k \geq 0\}$ and let C^{\prime} be the closed, pointed cone generated by $\overline{P_{W}^{\prime}}$. Then by the second fact preceding the lemma, there is a linear functional ρ such that $\rho(r, w) \geq 0$, and $\rho\left(r^{\prime}, w^{\prime}\right)<0 \forall\left(r^{\prime}, w^{\prime}\right) \in P_{W}^{\prime} \backslash\{(0,0)\}$. Choose $\left(r_{1}, w_{1}\right) \in P_{W}$ such that $\rho\left(r_{1}, w_{1}\right)$ is maximal. Now $\left(r_{1}, w_{1}\right)=\left(a^{*} y a, a^{*} a\right)$ for some $y \in C^{*}-\operatorname{summ}(x)$. By the first paragraph above, there exists $z \in \operatorname{str}(\mathcal{S}, n) \cap C^{*}-\operatorname{summ}(y)$ so $y=b^{*} z b+c^{*} z^{\prime} c$ and

$$
\left(r_{1}, w_{1}\right)=\left(a^{*} b^{*} z b a, a^{*} b^{*} b a\right)+\left(a^{*} c^{*} z^{\prime} c a, a^{*} c^{*} c a\right)
$$

with

$$
\left(a^{*} b^{*} z b a, a^{*} b^{*} b a\right) \in P_{W}^{\prime} \backslash\{(0,0)\}
$$

and

$$
\left(a^{*} c^{*} z^{\prime} c a, a^{*} c^{*} c a\right) \in P_{W}
$$

But $\rho\left(a^{*} b^{*} z b a, a^{*} b^{*} b a\right)<0 \Rightarrow \rho\left(a^{*} c^{*} z^{\prime} c a, a^{*} c^{*} c a\right)>\rho\left(r_{1}, w_{1}\right)$ which is a contradiction. Thus P_{W}^{\prime} is dense in P_{W}.

Now by the first fact preceding the Lemma, applied to P_{W}, P_{W}^{\prime} and $(x / 2,1 / 2) \in$ int P_{W}, we conclude that $(x / 2,1 / 2) \in P_{W}^{\prime}$. But then $2(x / 2,1 / 2)=(x, 1) \in P_{W}^{\prime}$, that is $x \in C^{*}-\operatorname{conv}(\operatorname{str}(S, n))$.

Lemma 4.4. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex. Let $\left\{x_{k}: k \in \mathbf{N}\right\}$ be a sequence in M_{n}, converging to x, satisfying $C^{*}-\operatorname{conv}\left(\mathcal{S} \cup\left\{x_{k}\right\}\right) \supset C^{*}-\operatorname{conv}\left(\mathcal{S} \cup\left\{x_{j}\right\}\right) \forall k>j$. Then $C^{*}-\operatorname{conv}(\mathcal{S} \cup\{x\}) \supset C^{*}-\operatorname{conv}\left(\mathcal{S} \cup\left\{x_{k}\right\}\right) \forall k$.

Proof. It suffices to show $x_{k} \in \overline{C^{*}-\operatorname{conv}}(\mathcal{S} \cup\{x\}) \forall k$. Fix k. Given $\epsilon>0$ choose j so that $\left\|x_{j}-x\right\|<\epsilon$. Write x_{k} as a C^{*}-convex combination $x_{k}=\sum_{i} v_{i j}^{*} y_{i j} v_{i j}+\sum_{i} w_{i j}^{*} x_{j} w_{i j}$ of $y_{i j} \in \mathcal{S}$, and x_{j}. Thus

$$
\begin{aligned}
\left\|x_{k}-\sum_{i} v_{i j}^{*} y_{i j} v_{i j}+\sum_{i} w_{i j}^{*} x w_{i j}\right\| & =\left\|\sum_{i} w_{i j}^{*}\left(x_{j}-x\right) w_{i j}\right\| \\
& \leq\left\|x_{j}-x\right\| \\
& <\epsilon
\end{aligned}
$$

and so $x_{k} \in \overline{C^{*}-\operatorname{conv}}(S \cup\{x\})$.
Now we are in a position to state and prove the generalised Krein-Milman theorem and its converse.

THEOREM 4.5. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex. Then $\mathcal{S}=C^{*}-\operatorname{conv}_{n}(\operatorname{str} \mathcal{S})$. Conversely, if $\mathcal{S}=C^{*}-\operatorname{conv}(\mathcal{G})$ then $\forall s \in \operatorname{str}(\mathcal{S}), \exists$ unitary $u \in M_{n}$, and $g \in \mathcal{G}$ such that $g^{\prime}=u^{*} g u=s \oplus s^{\prime}$ for some appropriate s^{\prime}. That is, every structural element of \mathcal{S} must appear as a direct summand (irreducible block) of some g^{\prime} unitarily equivalent to $g \in \mathcal{G}$.

Proof. We begin by proving the first statement using induction on $n . n=1$ is the usual Krein-Milman theorem because C^{*}-convexity and structural elements (C^{*}-extreme points) correspond to ordinary convexity and extreme points.

We begin the inductive step by showing that $C^{*}-\operatorname{conv}_{n}(\operatorname{str} \mathcal{S}) \supset \mathcal{S}_{\text {red }}$. For \mathcal{S} as in the statement of the theorem, let S_{n-1} be its compression to $M_{n-1} . S_{n-1}$ is compact and C^{*}-convex so by induction $S_{n-1}=C^{*}-\operatorname{conv}_{n-1}\left(\operatorname{str}\left(\mathcal{S}_{n-1}\right)\right)$. For any $x \in \mathcal{S}_{\text {red }}, x \sim$ $t_{1} \oplus \cdots \oplus t_{m}$, where $t_{i} \in M_{k_{i}}$ are irreducible. It is easy to see that if we can show each $t_{i}(n) \in C^{*}-\operatorname{conv}_{n}(\operatorname{str} \mathcal{S})$ then $x \in C^{*}-\operatorname{conv}_{n}(\operatorname{str} \mathcal{S})$. Now by Propositions 2.6 and 2.7

$$
\operatorname{str}\left(S_{n-1}\right) \subset \bigcup_{k=1}^{n-1}\left[\operatorname{str}(S, k) \cup\left(\bigcup_{j=k+1}^{n} P_{j k}^{*} \operatorname{str}(S, j) P_{j k}\right)\right]
$$

and notice that if $t \in P_{j k}^{*} \operatorname{str}(S, j) P_{j k}$ then $t(j) \in C^{*}-\operatorname{conv}_{j}(\operatorname{str}(S, j))$; in fact $t(n) \in$ $C^{*}-\operatorname{conv}_{n}(\operatorname{str}(\mathcal{S}, j))$. Now for any $x \sim t_{1} \oplus \cdots \oplus t_{m} \in \mathcal{S}_{\text {red }}$, it is clear that $t_{i}(n-1) \in \mathcal{S}_{n-1}$ and so

$$
\begin{aligned}
t_{i}(n) \in C^{*}-\operatorname{conv}_{n}\left(\operatorname{str}\left(S_{n-1}\right)\right) & =C^{*}-\operatorname{conv}_{n}\left\{\bigcup_{k=1}^{n-1}\left[\operatorname{str}(S, k) \cup\left(\bigcup_{j=k+1}^{n} P_{j k}^{*} \operatorname{str}(S, j) P_{j k}\right)\right]\right\} \\
& \subset C^{*}-\operatorname{conv}_{n}\left\{\bigcup_{k=1}^{n} \operatorname{str}(\mathcal{S}, k)\right\} \\
& =C^{*}-\operatorname{conv}_{n}(\operatorname{str}(\mathcal{S}))
\end{aligned}
$$

Thus $C^{*}-\operatorname{conv}_{n}(\operatorname{str} \mathcal{S}) \supset \mathcal{S}_{\text {red }}$, and by the previous lemma, $\mathcal{S}=C^{*}-\operatorname{conv}_{n}(\operatorname{str} \mathcal{S})$.
To prove the converse, we begin by assuming \mathcal{G} is closed under unitary equivalence, thus making the unitary u in the statement of the theorem redundant. Let $\mathcal{S}_{k}, \mathcal{G}_{k}$ be the compressions of \mathcal{S}, \mathcal{G} to M_{k}, and recall that $\mathcal{S}_{k}=C^{*}-\operatorname{conv}\left(\mathcal{G}_{k}\right)$ (see Proposition 1.4). For $t \in \operatorname{str}(\mathcal{S}), t$ is irreducible and C^{*}-extreme in \mathcal{S}_{k} for some k, so $t=P_{n k}^{*} g P_{n k}$ for some $g \in \mathcal{G}$. We wish to show that in fact $g=t \oplus t^{\prime}$ (some $t^{\prime} \in M_{n-k}$). The proof is completed by the following Lemma 4.6 .

Lemma 4.6. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex, and let $t \in \operatorname{str}(\mathcal{S}, k)$. If $t=$ $P_{n k}^{*} g P_{n k}$ for some $g \in S$ then, in fact, $g=t \oplus t^{\prime}$ for some $t^{\prime} \in M_{n-k}$.

Proof. It follows from the first half of Theorem 4.5 that $g \in C^{*}-\operatorname{conv}_{n}(\operatorname{str}(\mathcal{S}))$, so $g=\sum_{i} a_{i}^{*} s_{i}(n) a_{i}$ where $s_{i} \in \operatorname{str}(\mathcal{S})$. Now there exist unitaries u_{i} such that

$$
u_{i} a_{i} P_{n k}=\binom{a_{i}^{\prime}}{0}
$$

with $a_{i}^{\prime} \in M_{k}$ so

$$
\begin{aligned}
t & =P_{n k}^{*} g P_{n k} \\
& =\sum_{i} P_{n k}^{*} a_{i}^{*} s_{i}(n) a_{i} P_{n k} \\
& =\sum_{i}\left(\begin{array}{ll}
a_{i}^{\prime *} & 0
\end{array}\right) u_{i} s_{i}(n) u_{i}^{*}\binom{a_{i}^{\prime}}{0} \\
& =\sum_{i} a_{i}^{\prime *}\left(P_{n k}^{*} u_{i} s_{i}(n) u_{i}^{*} P_{n k}\right) a_{i}^{\prime}
\end{aligned}
$$

a C^{*}-convex combination in M_{k}. Now t is C^{*}-extreme in S_{k} so $\forall i, P_{n k}^{*} u_{i} s_{i}(n) u_{i}^{*} P_{n k}=$ $v_{i}^{*} t v_{i} \sim t$ and $a_{i}^{\prime}=\lambda_{i} v_{i}^{*}$ for some $\lambda \in[0,1]$ and $v_{i} \in M_{k}$ unitary. Without loss of generality we may absorb the v_{i} and write $P_{n k}^{*} u_{i} s_{i}(n) u_{i}^{*} P_{n k}=t, a_{i}^{\prime}=\lambda_{i}$. It follows that $t(n) \in C^{*}-\operatorname{conv}\left(s_{i}(n)\right)$. But $t \in \operatorname{str}(S)$ implies $t \in \operatorname{str}\left\{C^{*}-\operatorname{conv}\left(s_{i}(n)\right)\right\}=\mathcal{U}\left(s_{i}\right)$, so $t \sim s_{i}$, and $t(n) \sim s_{i}(n)$. Without loss of generality, $g=\sum_{i} b_{i}^{*} t(n) b_{i}$, a C^{*}-convex combination where

$$
t(n)=\left(\begin{array}{ll}
t & \\
& \mu \mathbf{1}
\end{array}\right)
$$

and

$$
b_{i}=\left(\begin{array}{cc}
\lambda_{i} \mathbf{1} & c_{i} \\
0 & d_{i}
\end{array}\right),
$$

with $\lambda_{i} \in[0,1], c_{i} \in M_{k, n-k}$, and $d_{i} \in M_{n-k}$.

$$
\begin{aligned}
\mathbf{1} & =\sum_{i} b_{i}^{*} b_{i} \\
& =\left(\begin{array}{cc}
\sum_{i}\left|\lambda_{i}\right|^{2} & \sum_{i} \lambda_{i}^{*} c_{i} \\
\sum_{i} c_{i}^{*} \lambda_{i} & \sum_{i}\left(c_{i}^{*} c_{i}+d_{i}^{*} d_{i}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & \mathbf{1}
\end{array}\right) .
\end{aligned}
$$

Equating entries in the above matrices and applying the results to the following we see that,

$$
\begin{aligned}
g & =\sum_{i} b_{i}^{*} t(n) b_{i} \\
& =\sum_{i}\left(\begin{array}{ll}
\left|\lambda_{i}\right|^{2} t & \lambda_{i}^{*} t c_{i} \\
c_{i}^{*} t \lambda_{i} & c_{i}^{*} t c_{i}+d_{i}^{*} \mu d_{i}
\end{array}\right) \\
& =\left(\begin{array}{cc}
t & 0 \\
0 & t^{\prime}
\end{array}\right) .
\end{aligned}
$$

Thus t is in fact a direct summand of g and we're done.
5. Loose ends. With the proof of the generalised Krein-Milman theorem in hand we can easily show the relationship between structural elements and C^{*}-extreme points as defined in [8].

Using Lemma 4.6 we can prove the following.

Proposition 5.1. Let $S \subset M_{n}$ be compact and C^{*}-convex. Let $m+k=n$ and let S_{k} be the compression of S to M_{k}. If $x=s \oplus z$ with $s \in \operatorname{str}(\mathcal{S}, m)$ and $z \in \partial_{e}^{*}\left(\mathcal{S}_{k}\right)$ then $x \in \partial_{e}^{*} \mathcal{S}$.

Proof. Let $x=\sum_{i} t_{i}^{*} y_{i} t_{i}$ be a proper C^{*}-convex combination (i.e. t_{i} invertible, $\sum_{i} t_{i}^{*} t_{i}=1$) of $y_{i} \in S$. Since $x=s \oplus z$, it follows that $s=P_{n m}^{*} x P_{n m}=\sum_{i} P_{n m}^{*} t_{i}^{*} y_{i} t_{i} P_{n m}$. As usual, there exist unitaries $u_{i} \in M_{n}$ so that $u_{i} t_{i} P_{n m}=\binom{t_{i}^{\prime}}{0}$ and $t_{i}^{\prime} \neq 0$ because t_{i} is invertible. Letting $\tilde{y}_{i}=u_{i} y_{i} u_{i}^{*}$ we can write $s=\sum_{i} t_{i}^{\prime} P_{n m}^{*} \tilde{y}_{i} P_{n m} t_{i}^{\prime}$.

Since $s \in \operatorname{str}(\mathcal{S}, m)$ it follows that there exist unitaries $v_{i} \in M_{m}$ and scalars $\lambda_{i} \in[0,1]$ with $\sum_{i} \lambda_{i}^{2}=1$, such that $P_{n m}^{*} \tilde{y}_{i} P_{n m}=v_{i} s v_{i}^{*} \sim s$ and $t_{i}^{\prime}=\lambda_{i} v_{i} \forall i$. (No $\lambda_{i}=0$ since $t_{i}^{\prime} \neq 0$). By Lemma 4.6 it follows that $\tilde{y}_{i}=\left(v_{i} s v_{i}^{*}\right) \oplus z_{i}$ for some $z_{i} \in M_{k}$. Let $v_{i}^{\prime}=v_{i} \oplus \mathbf{1}_{k}$, which is unitary in M_{n}, to get $\tilde{y}_{i}=v_{i}^{\prime}\left(s \oplus z_{i}\right) v_{i}^{* *}$. Let $w_{i}=v_{i}^{* *} u_{i}$ to get $y_{i}=w_{i}^{*}\left(s \oplus z_{i}\right) w_{i}$. Thus we can write

$$
x=\sum_{i} t_{i}^{*} y_{i} t_{i}=\sum_{i}\left(t_{i}^{*} w_{i}^{*}\right)\left(s \oplus z_{i}\right)\left(w_{i} t_{i}\right)
$$

At the same time, notice

$$
\begin{aligned}
w_{i} t_{i}=v_{i}^{* *} u_{i} t_{i} & =\left(\begin{array}{ll}
v_{i}^{*} & \\
& \mathbf{1}_{k}
\end{array}\right)\left(\begin{array}{ll}
t_{i}^{\prime} & * \\
0 & *
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{i} \mathbf{1}_{m} & \rho_{i} \\
0 & \eta_{i}
\end{array}\right)
\end{aligned}
$$

for some $\rho_{i} \in M_{m, k}, \eta_{i} \in M_{k, k}$, and η_{i} must be invertible (because t_{i} was). Thus

$$
\begin{aligned}
x & =\sum_{i}\left(\begin{array}{cc}
\lambda_{i} \mathbf{1}_{m} & 0 \\
\rho_{i}^{*} & \eta_{i}^{*}
\end{array}\right)\left(\begin{array}{cc}
s & \\
z_{i}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{i} \mathbf{1}_{m} & \rho_{i} \\
0 & \eta_{i}
\end{array}\right) \\
& =\sum_{i}\left(\begin{array}{cc}
\lambda_{i} s \lambda_{i} & \lambda_{i} s \rho_{i} \\
\rho_{i}^{*} s \lambda_{i} & \rho_{i}^{*} s \rho_{i}+\eta_{i}^{*} z_{i} \eta_{i}
\end{array}\right) \\
& =\left(\begin{array}{ll}
s & 0 \\
0 & z
\end{array}\right) .
\end{aligned}
$$

Equating lower right hand corners we find $z=\sum_{i}\left(\rho_{i}^{*} s \rho_{i}+\eta_{i}^{*} z_{i} \eta_{i}\right)$. We can consider this to be a C^{*}-convex combination of elements of S_{k} by suitable modifications of the s and the ρ_{i}, as the following paragraph shows.

If $m>k$, then ρ_{i} has rank at most k, so choose unitaries r_{i} so that $r_{i} \rho_{i}=\binom{\rho_{i}^{\prime}}{0}$, $\rho_{i}^{\prime} \in M_{k}$. Let $s_{i}^{\prime}=P_{n k} r_{i} s r_{i}^{*} P_{n k} \in \mathcal{S}_{k}$, and we see that $\sum_{i} \rho_{i}^{*} s \rho_{i}=\sum_{i} \rho_{i}^{\prime *} s_{i}^{\prime} \rho_{i}^{\prime}$. Also $\sum_{i} \rho_{i}^{\prime *} \rho_{i}^{\prime}+$ $\eta_{i}^{*} \eta_{i}=\sum_{i} \rho_{i}^{*} \rho_{i}+\eta_{i}^{*} \eta_{i}=\mathbf{1}_{k}$. Thus $z=\sum_{i}\left(\rho_{i}^{\prime *} s_{i}^{\prime} \rho_{i}^{\prime}+\eta_{i}^{*} z_{i} \eta_{i}\right)$ is a C^{*}-convex combination of the s_{i}^{\prime} and $z_{i} \in S_{k}$. The case $m \leq k$ requires only replacing s by $s^{\prime}=\left(\begin{array}{ll}s & 0 \\ 0 & 0\end{array}\right) \in M_{k}$, and ρ_{i} by $\rho_{i}^{\prime}=\binom{\rho_{i}}{0} \in M_{k}$.

Now the η_{i} are invertible (even though the ρ_{i}^{\prime} may not be), and it is an easy application of Proposition 1.3 and the definition of a C^{*}-extreme point (in \mathcal{S}_{k}) to show that $z \sim z_{i} \forall i$.

Thus if $x=\sum_{i} t_{i}^{*} y_{i} t_{i}$ is a proper C^{*}-convex combination, then $y_{i} \sim\left(\begin{array}{ll}s & \\ & z_{i}\end{array}\right) \sim$ $\left(\begin{array}{ll}s & \\ & z\end{array}\right)=x \forall i$, and so $x \in \partial_{e}^{*} \mathcal{S}$.

Corollary 5.2. Let $S \subset M_{n}$ be compact and C^{*}-convex, $x=x_{1} \oplus \cdots \oplus x_{m} \in S$ with $x_{i} \in \operatorname{str}\left(S, k_{i}\right) \subset M_{k_{i}}$. Then $x \in \partial_{e}^{*} S$.

Proof. The proof is by induction on m (the number of summands). The case $m=1$ is Proposition 2.2. The induction step is Proposition 5.1.

The converse to the above corollary is false: it is not true that if $x=x_{1} \oplus \cdots \oplus x_{m} \in \partial_{e}^{*} \mathcal{S}$ then each $x_{i} \in \operatorname{str}\left(S, k_{i}\right)$, as can easily be shown by example [9].

Another relationship between structural elements and C^{*}-extreme points is the following, which says essentially that any structural element can be extended to a C^{*}-extreme point, and so we can substitute C^{*}-extreme points for structural elements in the forward direction of the generalised Krein-Milman theorem (Theorem 4.5).

Corollary 5.3. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex, $x \in \operatorname{str}(\mathcal{S}, k), \lambda \in \partial_{e}^{*} W(\mathcal{S})$. Then $x \oplus\left(\lambda \mathbf{1}_{n-k}\right) \in \partial_{e}^{*} \mathcal{S}$, and $S=C^{*}-\operatorname{conv} \partial_{e}^{*} S$.

Proof. Notice that $\lambda \mathbf{1}_{n-k} \in \partial_{e}^{*}\left(S_{n-k}\right)$ by [3]. Thus $x \oplus\left(\lambda \mathbf{1}_{n-k}\right) \in \partial_{e}^{*} S$ by Proposition 5.1. Since $\mathcal{S}=C^{*}-\operatorname{conv}(\operatorname{str}(\mathcal{S}))$ (by Theorem 4.5), and every element of $\operatorname{str}(\mathcal{S})$ can be extended to a C^{*}-extreme point of \mathcal{S} as above, $\mathcal{S}=C^{*}-\operatorname{conv}\left(\partial_{e}^{*} \mathcal{S}\right)$.

This settles in the affirmative a conjecture of [8]. At this point, we can also prove the following C^{*}-analog to the theorem that a minimal compact face is an extreme point.

Proposition 5.4. Let $S \subset M_{n}$ be compact and C^{*}-convex. Let $\mathcal{F} \subset S$ be a minimal compact C^{*}-face. Then $\exists x \in \partial_{e}^{*} \mathcal{S}$ such that $\mathcal{F}=\mathcal{U}(x)$, i.e., a minimal compact C^{*}-face "is" a C*-extreme point.

Proof. The proof is by induction on n, with the case $n=1$ being trivial. Let $x \in$ $\mathcal{F} \subset M_{n}$. We know (Proposition 3.6) that for any $y \in \mathcal{F}, C^{*}-\operatorname{conv}\{x\}=C^{*}-\operatorname{conv}\{y\}$. If x is irreducible, or if $x \sim y \forall y \in \mathcal{F}$, we're done by Corollary 3.7.

Suppose now that x is reducible. Write $x \sim x_{1} \oplus \cdots \oplus x_{m}$ where each $x_{i} \in M_{k_{i}}$ is irreducible. The (converse to the) generalised Krein-Milman theorem tells us that the structural elements of $C^{*}-\operatorname{conv}\{x\}$ are some subset of the x_{i}. So without loss of generality we can assume that $x \sim\left(\begin{array}{ll}s & \\ & r\end{array}\right)$ with $s \in \operatorname{str}\left(C^{*}-\operatorname{conv}\{x\}\right), r \in M_{k}$. Similarly, for any $y \in \mathcal{F}$ we may assume $y \sim\left(\begin{array}{cc}s & \\ & \\ & t\end{array}\right)$. (Since $C^{*}-\operatorname{conv}\{x\}=C^{*}-\operatorname{conv}\{y\}$, they have the same structural elements.) Define $\mathcal{F}^{\prime}=\left\{t: y \sim\left(\begin{array}{ll}s & \\ & t\end{array}\right)\right.$ for some $\left.y \in \mathcal{F}\right\} . \mathcal{F}^{\prime}$ is a compact C^{*}-face of \mathcal{S}_{k}. In fact \mathcal{F}^{\prime} is a minimal compact C^{*}-face (else \mathcal{F} is not minimal). By induction, \mathcal{F}^{\prime} is a C^{*}-extreme point, i.e., $\mathcal{F}^{\prime}=\mathcal{U}(r)$. Thus $\mathcal{F}=\mathcal{U l}\left(\begin{array}{ll}s & \\ & r\end{array}\right)=\mathcal{U}(x)$ and $x \sim\left(\begin{array}{ll}s & \\ & r\end{array}\right) \in \partial_{e}^{*} S$ by Proposition 5.1 or Corollary 3.7.

An obvious question to ask at this point is whether there is a C^{*}-analog to the Caratheodory theorem for convex sets in finite dimensions. That theorem says that every point in a convex set \mathcal{S} contained in an n-dimensional (real) linear space is a convex combination of at most $n+1$ extreme points of S. Farenick [3] showed that for a C^{*}-convex
set $\mathcal{S} \subset M_{n}$, with $\mathcal{S}=C^{*}-\operatorname{conv} \mathcal{G}$, then any $x \in \mathcal{S}$ can be written as a C^{*}-convex combination of at most $n^{3}\left(n^{2}+1\right)$ elements of \mathcal{G}. The following result improves this upper bound to $3 n^{2}$, but it is still unclear whether or not this bound is the best possible. In particular, if $n=1$, it is (Notice $n=1$ corresponds to \mathbf{C} which is 2 dimensional as a real linear space.).

Proposition 5.5. Let $\mathcal{S} \subset M_{n}$ be compact and C^{*}-convex, and let $x \in S$. Then x is a C^{*}-convex combination of at most $3 n^{2}$ elements of $\operatorname{str}(\mathcal{S})$.

Proof. Without loss of generality assume $0 \in S$. Let $C=\left\{\left(a^{*} s(n) a, a^{*} a\right): s \in\right.$ $\left.\operatorname{str} \mathcal{S}, a^{*} a \leq \mathbf{1}\right\} \subset M_{n} \times M_{n}^{+}$. Let C^{\prime} be the convex cone $C^{\prime}=\left\{\sum_{i=1} k \alpha_{i} c_{i}: k \in\right.$ $\left.\mathbf{N}, \alpha_{i}>0, c_{i} \in C\right\} .0 \in C^{\prime}$ since $0 \in S$, and C^{\prime} is a proper cone because S is compact. C^{\prime} is clearly a pointed cone. To see that C^{\prime} is closed, consider the following similar construction. Let $B=\left\{\left(a^{*} x a, a^{*} a\right): x \in S, a^{*} a \leq \mathbf{1}\right\}$, and $B^{\prime}=\left\{\sum_{i=1} k \beta_{i} b_{i}\right.$: $\left.k \in \mathbf{N}, \beta_{i}>0, b_{i} \in B\right\} . B$ is closed because S is compact, hence B^{\prime} is closed. But $B^{\prime}=C^{\prime}$ because $\mathcal{S}=C^{*}-\operatorname{conv}(\operatorname{str} \mathcal{S})$: if $b=\left(a^{*} x a, a^{*} a\right) \in B$ and $x=\sum_{i} t_{i}^{*} s_{i}(n) t_{i}$ then $b=\sum_{i}\left(a^{*} t_{i}^{*} s_{i}(n) t_{i} a, a^{*} t_{i}^{*} t_{i} a\right) \in C^{\prime}$.

The space $M_{n} \times M_{n}^{+}$has dimension $2 n^{2}+n^{2}=3 n^{2}$ as a real linear space, and any $c^{\prime} \in C^{\prime}$ can be expressed as a convex combination of the extreme rays of C^{\prime}. Also, any extreme ray of C^{\prime} must contain some $c=\left(a^{*} s(n) a, a^{*} a\right) \in c$.

Finally, if $x \in \mathcal{S}$ then $(x, \mathbf{1}) \in C^{\prime}$ so $(x, \mathbf{1})=\sum_{i} \lambda_{i}\left(a_{i}^{*} s_{i}(n) a_{i}, a_{i}^{*} a_{i}\right)$ a convex combination of at most $3 n^{2}$ terms (by the usual Caratheodory theorem applied to a pointed cone). Thus $x=\sum_{i} \sqrt{\lambda_{i}} a_{i}^{*} s_{i}(n) a_{i} \sqrt{\lambda_{i}}$ is a C^{*}-convex combination of at most $3 n^{2}$ terms (since $\sum_{i} \sqrt{\lambda_{i}} a_{i}^{*} a_{i} \sqrt{\lambda_{i}}=1$).

Acknowledgements. The author would like to thank Professor M.-D. Choi, of the University of Toronto, for his patient supervision of the author's doctoral thesis, the source of this paper. Also, thanks to the referee for his useful comments.

References

1. W. B. Arveson, Subalgebras of C^{*}-algebras II, Acta Math. 128(1972), 271-308.
2. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10(1975), 285290.
3. D. R. Farenick, Krein-Milman type problems for compact matricially convex sets, Linear Algebra Appl. 162-164(1992), 325-334.
4. __, C^{*}-convexity and matricial ranges, Canad. J. Math. 44(1992), 280-297.
5. _ Matricial extensions of the numerical range: a brief survey, Linear and Multilinear Algebra, 34(1993), 197-211
6. D. R. Farenick and P. B. Morenz, C^{*}-extreme points of some compact C^{*}-convex sets, Proc. Amer. Math. Soc. 118(1993), 765-776.
7. A. Hoppenwasser, R. L. Moore and V. I. Paulsen, C^{*}-extreme points, Trans. Amer. Math. Soc. 266(1981), 291-307.
8. R. I. Loebl and V. I. Paulsen, Some remarks on C^{*}-convexity, Linear Algebra Appl. 35(1981), 63-78.
9. P. B. Morenz, The structure of C^{*}-convex sets, Dissertation, University of Toronto, 1992.
10. N. Salinas, Extensions of C^{*}-algebras and n-normal operators, Bull. Amer. Math. Soc. 82(1976), 143-146.
11. R. R. Smith and J. D. Ward, Matrix ranges for Hilbert space operators, Amer. J. Math. 102(1980), 10311081.

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
N2L 3GI

[^0]: Received by the editors February 23, 1993; revised September 17, 1993.
 AMS subject classification: Primary: 47A12; secondary: 15A30, 52A01.
 (c) Canadian Mathematical Society 1994.

