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A linear stability of a shear-imposed viscous liquid flowing down a vibrating inclined
plane is deciphered for disturbances of arbitrary wavenumbers. The main purpose of
this study is to expand the model of Woods & Lin (J. Fluid Mech., vol. 294, 1995,
pp. 391–407) for a shear-imposed flow (Smith, J. Fluid Mech., vol. 217, 1990, pp. 469–485)
when the inclined plane oscillates in streamwise and cross-stream directions, respectively.
The time-dependent Orr–Sommerfeld-type boundary value problem is derived and solved
numerically based on the Chebyshev spectral collocation method along with Floquet
theory. Numerical results corresponding to the cross-stream oscillation disclose that there
exist three different types of instabilities, the so-called gravitational, subharmonic and
harmonic instabilities, which can be resonated in separate unstable ranges of wavenumber
by varying the amplitude of cross-stream oscillation. In fact, the subharmonic and
harmonic resonances occur once the forcing amplitude exceeds the respective critical
amplitudes for the subharmonic and harmonic instabilities. At low Reynolds number,
the subharmonic resonance excited at low forcing amplitude intensifies but attenuates in
the presence of imposed shear stress when the forcing amplitude is high. However, the
harmonic resonance excited solely at high forcing amplitude intensifies in the presence
of imposed shear stress. In contrast, at moderate Reynolds number, the subharmonic
resonance excited at low forcing amplitude can be weakened by incorporating an imposed
shear stress at the liquid surface. Furthermore, at high Reynolds number, a new instability,
the so-called shear instability, arises along with the aforementioned three instabilities and
becomes stronger in the presence of imposed shear stress. However, the gravitational
and shear instabilities become weaker as soon as the forcing amplitude of cross-stream
oscillation increases. On the other hand, numerical results for a streamwise oscillatory flow
reveal that there exist three distinct unstable zones separated by stable ranges of Reynolds
number. The resonated unstable zone induced by the streamwise oscillation attenuates, but
the unstable zone responsible for the gravitational instability enhances in the presence of
imposed shear stress. As soon as the Reynolds number is large and the inclination angle
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is sufficiently small, a new instability, the so-called shear instability, occurs in the finite
wavenumber regime along with the resonated and gravitational instabilities. Further, the
shear instability also intensifies in the presence of imposed shear stress for a streamwise
oscillatory flow.

Key words: parametric instability, thin films, Faraday waves

1. Introduction

Studies of surface wave dynamics for a falling film are one of the fascinating topics in fluid
mechanics because of their wide engineering applications. For instance, the generation of
waves through the surface instability during spin or curtain coatings drastically depreciate
the quality of the final coated surface, and thereby, its controlling process is of great
practical interest in coating technology (Weinstein & Ruschak 2004). Further, the surface
wave plays a major role in process equipment by enhancing heat and mass transfer
rates (Ruckenstein & Berbente 1965; Brauner & Maron 1982). Moreover, studies of
shear-imposed falling film are encountered in many industrial and natural set-ups (Smith
1990; Wei 2005a). For example, in an aero-engine bearing chamber, the use of oil film
on the internal surface plays an essential role in removing heat from the chamber, where
the surface of oil film is strongly affected by the shearing airflow associated with the
high-speed rotating parts within the chamber (Sivapuratharasu et al. 2016). Furthermore,
the dynamics of an interfacial wave for a liquid lining flow in an airway occlusion process
is significantly altered by the airflow, which moves back and forth during breathing and
exerts a shear stress on the air–liquid interface (Wei 2005a). On the other hand, studies
of unsteady oscillatory flow are very relevant in the biomedical field because such flows
are pulsatile flows, and therefore, their detailed inspection would be useful in aiding the
treatment of vascular diseases in the cardiovascular system (Mostbeck, Caputo & Higgins
1992; Ku 1997). In addition, studies of free surface flow over an oscillating plane could
be fruitful in the development of atomisation technology including fuel spray formation,
high-tech surface cleaning, and advanced material processing (Woods & Lin 1995). In
this context, a few studies have been carried out on account of the unsteady base flow that
makes the oscillatory flow problem complex to work out even numerically. The above facts
motivate us to decipher the linear stability of a shear-imposed viscous liquid flowing down
a vibrating inclined plane.

Besides the large number of engineering applications, the fundamental characteristic of
a falling film is to exhibit a rich complex wave dynamics including primary and secondary
waves, and their nonlinear interactions in downstream when the Reynolds number exceeds
the critical value (Liu, Paul & Gollub 1993; Liu & Gollub 1994; Ruyer-Quil & Manneville
2000; Kalliadasis et al. 2012). The linear stability of a gravity-driven liquid flowing
down an inclined plane was initiated by Benjamin (1957) and Yih (1963) based on the
long-wave asymptotic expansion. As discussed by them, an infinitesimal disturbance will
be susceptible to surface instability/gravitational instability once the Reynolds number
Re is greater than the critical value (5/4) cot θ , where θ is the angle of inclination
with the horizontal. This result indicates that the vertical gravity-driven falling film is
always unstable to infinitesimal disturbance because the critical Reynolds number for
the surface instability/gravitational instability approaches zero. The physical mechanism
of gravitational instability was rendered by Kelly et al. (1989) under the framework of
the method of energy budget. According to Kelly et al. (1989), the long-wave instability
originates through the increase of kinetic energy of infinitesimal disturbance. In fact, the
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Shear-imposed flow instability on vibrating inclined plane

gravitational instability dominates the primary wave in low to moderate values of the
Reynolds number. As soon as the Reynolds number is high, and the inclination angle
is sufficiently small, another instability, the so-called shear instability, rises along with
the gravitational instability to trigger the primary wave (Lin 1967; Bruin 1974; Chin,
Abernathy & Bertschy 1986; Floryan, Davis & Kelly 1987; Samanta 2013). It is reported
that the critical Reynolds number for the gravitational instability is greater than that for
the shear instability if the inclination angle is less than 0.5′, and consequently, the shear
instability dominates the primary wave in the high-Reynolds-number regime. The linear
stability of a two-dimensional shear-imposed liquid flowing down an inclined plane was
instigated by Smith (1982, 1990) in order to retrieve an alternative mechanism for the
primary instability. The model proposed by Smith (1990) was further extended in the
nonlinear regime by Samanta (2014) for low to moderate values of the Reynolds number.
The nonlinear travelling wave solution was found under the reference frame moving with
the speed of the travelling wave. Recently, the non-modal analysis for a shear-imposed
liquid flowing down an inclined plane was performed by Samanta (2020c). It is reported
that the transient growth exists and intensifies in the presence of external imposed shear
stress.

On the other hand, the study of viscous liquid flow on a horizontal oscillatory flat plane
was pioneered by Yih (1968) in the long-wave regime based on the regular perturbation
method along with Floquet theory. In this case, the horizontal plane oscillates only in the
streamwise direction. As discussed by Yih (1968), the long-wave oscillatory mode can be
made unstable for a sufficiently large amplitude of horizontal oscillation. The instability
of an oscillatory wall-bounded Poiseuille flow was investigated by Kerczek (1982), where
the pressure gradient was time-periodically modulated rather than the bounding walls. It
was reported that the unsteady flow is more unstable than the steady flow at high and low
values of forcing frequency. Later, the model proposed by Yih (1968) was extended by Or
(1997) to explore the oscillatory mode in the finite wavelength regime. It was shown that
the long-wave oscillatory modes are merely unstable in separate bandwidths of forcing
frequency. However, the finite wavelength oscillatory modes emerge through the branch
points detected on the long-wave neutral curve as soon as the wavenumber increases.
Moreover, it was reported that the finite wavelength oscillatory mode is more dangerous
than the long-wave oscillatory mode in some unstable ranges of forcing frequency. The
above model was further revisited by Gao & Lu (2006, 2008) and Samanta (2009, 2019)
to investigate either the effect of insoluble surfactant or the effect of uniform electric
field on the long-wave and finite wavelength oscillatory modes when the free surface of
the liquid is covered by an insoluble surfactant. As discussed by them, the long-wave
oscillatory mode can be stabilised by incorporating an insoluble surfactant at the liquid
surface but can be destabilised by including a uniform normal electric field at infinity.
In this case, the existence of a harmonic solution was reported. Unlike the horizontal
oscillatory flow discussed above, the instability of a viscous liquid flow on a vertical
oscillatory horizontal plane was investigated by Kumar & Tuckerman (1994) and Kumar
(1996). As a consequence, the Faraday instability develops on the liquid surface owing to
the temporal modulation of gravity. As discussed by them, the onset of Faraday instability
occurs at a finite amplitude rather than the vanishing amplitude noticed for an inviscid
liquid. In this case, both subharmonic and harmonic solutions arise alternately in separate
unstable ranges of wavenumber. The similar problem was further concerned by Woods
& Lin (1995) and Lin, Chen & Woods (1996) when the viscous liquid flow occurs on a
vibrating inclined plane. Three different types of instabilities, the so-called gravitational,
subharmonic and harmonic instabilities, were recognised. In fact, these instabilities occur
in separate unstable ranges of wavenumber. Furthermore, the effects of horizontal and
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vertical oscillations on the nonlinear dynamics of surface waves for a viscous liquid
flowing down an oscillatory plane were deciphered by Oron & Gottlieb (2002), Bestehorn,
Han & Oron (2013) and Sterman-Cohen, Bestehorn & Oron (2017).

In the present study, our aim is to investigate the effect of imposed shear stress on the
Faraday instability evolved on the surface of a viscous liquid flowing down a vibrating
inclined plane, where the inclined plane oscillates in both streamwise and cross-stream
directions, respectively. It is found that there exist three different types of instabilities,
the so-called gravitational, subharmonic and harmonic instabilities, when the bounding
plane oscillates in the cross-stream direction. The gravitational instability becomes weaker
with the increasing value of forcing amplitude for the cross-stream oscillation. The
subharmonic resonance which appeared at low forcing amplitude becomes stronger in
the presence of imposed shear stress when the Reynolds number is low. However, the
subharmonic resonance which appeared at low forcing amplitude becomes weaker in the
presence of imposed shear stress when the Reynolds number is moderate. Furthermore,
the shear instability emerges at high Reynolds number and becomes stronger in the
presence of imposed shear stress, but becomes weaker as soon as the forcing amplitude
of cross-stream oscillation increases. Similarly, the resonated instability and gravitational
instability occur in separate bandwidths of imposed frequency when the bounding plane
oscillates in the streamwise direction. It is observed that the resonated instability merges
with the gravitational instability with the increasing value of imposed shear stress.

2. Mathematical formulation

Consider a two-dimensional gravity-driven incompressible viscous liquid flowing down
an inclined plane having an angle θ with the horizontal in the presence of imposed shear
stress τs in the streamwise direction. Suppose that the bounding plane is forced to oscillate
sinusoidally with a constant frequency ω in the streamwise and cross-stream directions,
respectively. It is assumed that the density ρ and the dynamic viscosity μ are constants
for a given viscous liquid. Figure 1 shows the schematic diagram of a shear-imposed
viscous liquid flowing down a vibrating inclined plane, where the origin of the Cartesian
coordinate system is placed at the mid-depth of the unperturbed liquid layer of thickness
2d, and the axes x and y are chosen along and perpendicular to the plane, respectively. Here
h(x, t) represents the deformed liquid surface, and the dashed line in figure 1 represents
the undeformed liquid surface. The flow of viscous liquid is described by the usual mass
conservation and momentum equations in a reference frame moving with the oscillating
inclined plane (Woods & Lin 1995),

∂xu + ∂yv = 0, (2.1)

ρ(∂tu + u∂xu + v∂yu) = ∂xσxx + ∂yσxy + ρg sin θ − ρAxω
2 sinωt, (2.2)

ρ(∂tv + u∂xv + v∂yv) = ∂xσyx + ∂yσyy − ρg cos θ − ρAyω
2 sinωt, (2.3)

where Ax and Ay are, respectively, the forcing amplitudes of streamwise and cross-stream
oscillations, u and v are, respectively, the streamwise and cross-stream velocity
components of the liquid, and g is the acceleration due to gravity. Here σij is the stress
tensor defined by

σij = −pδij + 2μeij, i, j = 1, 2, (2.4)

where δij is the Kronecker delta, p is the pressure and eij = 1/2(∂iuj + ∂jui) is the rate
of strain tensor. It should be useful to mention here that additional acceleration terms
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Shear-imposed flow instability on vibrating inclined plane

Viscous liquid
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h(x, t)

τs

Figure 1. Schematic diagram of a shear-imposed viscous liquid flowing down a vibrating inclined plane.

Axω
2 sinωt and Ayω

2 sinωt associated with the d’Alembert body force are taken into
account in the momentum equations (2.2) and (2.3) due to streamwise and cross-stream
oscillations of the inclined plane (Woods & Lin 1995). The above flow configuration is
subjected to the following boundary conditions. (i) The velocity components must satisfy
no-slip and no-penetration conditions at the inclined plane, y = −d,

u = 0, v = 0. (2.5a,b)

(ii) The balances of tangential and normal stresses at the deformed liquid surface, y =
h(x, t), yield the following dynamic boundary conditions (Smith 1982, 1990; Wei 2005a,b;
Samanta 2014):

σxy[1 − (∂xh)2] − (σxx − σyy)∂xh = τs[1 + (∂xh)2]1/2, (2.6)

pa + [σxx(∂xh)2 − 2σxy∂xh + σyy][1 + (∂xh)2]−1 = γ ∂xxh[1 + (∂xh)2]−3/2, (2.7)

where τs is the magnitude of imposed shear stress, pa is the ambient pressure and γ is
the surface tension. (iii) Finally, the evolution of deformed liquid surface, y = h(x, t), is
described by the kinematic boundary condition:

∂th + u∂xh = v. (2.8)

In accordance with the study of Woods & Lin (1995), the above governing equations are
normalised by d as the length scale, ωd as the velocity scale, 1/ω as the time scale and
ρ(ωd)2 as the pressure scale. Consequently, we can obtain the following non-dimensional
numbers: Re = (ωd)d/ν, the Reynolds number shows the effect of forcing frequency;
Fr = ωd/

√
gd, the Froude number shows the effect of gravity; We = γ /[ρ(ωd)2d], the

Weber number shows the effect of surface tension; and τ = τs/(μω), the non-dimensional
magnitude of imposed shear stress. Note that the Reynolds number Re compares the
square of half-unperturbed liquid layer thickness d2 with the square of Stokes layer
thickness ν/ω. In fact, the current Reynolds number ωd2/ν is equivalent to the square
of the Womersley number Wo, which is generally relevant for the study of pulsatile flow
(Womersley 1955). In particular, the square of the Womersley number Wo compares the
viscous time scale d2/ν with the frequency time scale 1/ω for a pulsatile flow. It should
be useful to mention here that the numerical results will be produced for a wide variety of
liquids ranging from water to silicon oil with density ρ = 0.97 × 103 Kg m−3, kinematic
viscosity ν = 10 × 10−4 m2 s−1 and surface tension γ = 21.2 × 10−3 N m−1 (Lin et al.
1996). Consider a unidirectional parallel flow, the so-called base flow, with an unperturbed
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viscous liquid layer thickness y = 2d, which simplifies the governing equations (2.1)–(2.8)
into the following non-dimensional forms in a reference frame moving with the oscillating
inclined plane:

∂tU = −∂xP + ∂yyU/Re + sin θ/Fr2 − ax sin t, (2.9)

∂yP + cos θ/Fr2 + ay sin t = 0, (2.10)

U = 0, at y = −1, (2.11)

∂yU = τ, P = Pa, at y = 1, (2.12)

where Pa = pa/[ρ(ωd)2] is the non-dimensional ambient pressure, and ax = Ax/d and
ay = Ay/d are, respectively, the non-dimensional forcing amplitudes of streamwise and
cross-stream oscillations. The above unsteady base flow equations (2.10)–(2.12) for an
unperturbed parallel flow are solved analytically and its exact solution can be expressed as

U( y, t) = Re sin θ
2Fr2 (3 + 2y − y2)+ τ(1 + y)︸ ︷︷ ︸

Steady part

+ ax cos t − axR

[
cosh{β(1 + i)( y − 1)} eit

cosh{2β(1 + i)}
]

︸ ︷︷ ︸
Unsteady part

, (2.13)

P( y, t) = Pa +
[

cos θ
Fr2 + ay sin t

]
(1 − y), V( y, t) = 0, (2.14a,b)

where β = √
Re/2 and R[· · · ] represents the real part of that complex function.

Obviously, the exact solution of the unperturbed parallel flow depends linearly with the
imposed shear stress τ , where both base velocity and base pressure are time-dependent. In
particular, the steady part of the base velocity U( y, t) enhances with the increasing value
of imposed shear stress τ , but its maximum value no longer exists at the liquid surface
on account of the presence of imposed shear stress. Further, it recovers the base flow
solution derived by Woods & Lin (1995) and Lin et al. (1996) very well when the imposed
shear stress τ vanishes. Differences in coefficients are the consequence of the definition of
Froude number.

3. Time-dependent Orr–Sommerfeld-type boundary value problem

In order to develop a time-dependent Orr–Sommerfeld-type boundary value problem (OS
BVP), we consider an infinitesimal perturbation to the base flow. Accordingly, each flow
variable of the disturbed flow can be decomposed as

q(x, y, t) = Q( y, t)+ q′(x, y, t), (3.1)

where Q( y, t) represents the base flow variables and q′(x, y, t) represents the perturbation
flow variables. Inserting (3.1) in the governing equations (2.1)–(2.8) and linearising
with respect to the base flow solution, one can obtain the following non-dimensional
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perturbation equations:

∂xu′ + ∂yv
′ = 0, (3.2)

∂tu′ + U∂xu′ + v′∂yU = −∂xp′ + (∂xxu′ + ∂yyu′)/Re, (3.3)

∂tv
′ + U∂xv

′ = −∂yp′ + (∂xxv
′ + ∂yyv

′)/Re, (3.4)

u′ = 0, v′ = 0, at y = −1, (3.5)

(∂yu′ + ∂xv
′ + h′∂yyU) = 0, at y = 1, (3.6)

−p′ + (cos θ/Fr2 + ay sin t)h′ + 2∂yv
′/Re − 2∂yU∂xh′/Re = We∂xxh′, at y = 1,

(3.7)

∂th′ + U∂xh′ = v′, at y = 1. (3.8)

Now the stream function ψ ′ is introduced from the perturbation mass conservation
equation (3.2) by using the relations u′ = ∂yψ

′ and v′ = −∂xψ
′. Substituting the

expressions of u′ and v′ in the perturbation equations (3.2)–(3.8) and eliminating the
pressure term from the momentum equations, we seek the solution in the form of a normal
mode,

ψ ′(x, y, t) = φ( y, t) exp(ikx), h′(x, t) = η(t) exp(ikx), (3.9a,b)

where k is the wavenumber of infinitesimal disturbance, and φ and η are, respectively, the
amplitudes of perturbation stream function and surface deformation. Using the normal
mode solution (3.9a,b) in the perturbation equations, one can obtain the following
time-dependent OS BVP:

L ∂tφ = L 2φ/Re − ik(UL − D2U)φ, (3.10)

φ = 0, Dφ = 0, at y = −1, (3.11)

(D2 + k2)φ + D2Uη = 0, at y = 1, (3.12)

D∂tφ = (L − 2k2)Dφ/Re − (cos θ/Fr2 + ay sin t + k2We − 2ikDU/Re)ikη

−ik(UDφ − DUφ), at y = 1, (3.13)

∂tη = −ikφ − ikUη, at y = 1, (3.14)

where L = (D2 − k2) and D = d/dy are differential operators. It should be noted that
two new terms arise in the normal stress boundary condition (3.13) owing to the presence
of imposed shear stress at the liquid surface. Further, the above time-dependent boundary
value problem (3.10)–(3.14) exactly coincides with that derived by Woods & Lin (1995)
when the magnitude of imposed shear stress vanishes, and if the effect of streamwise
oscillation of the bounding plane is ignored from the present flow configuration (ax = 0).

4. Numerical method

In this section, we shall briefly discuss the numerical method implemented to solve
the time-dependent OS BVP (3.10)–(3.14) for disturbances of arbitrary wavenumbers.
Actually, a different numerical method from Woods & Lin (1995) is used to tackle the
time-dependent OS BVP. Using the Chebyshev spectral collocation method (Schmid &
Henningson 2001), the time-dependent OS BVP is first recast into a matrix differential
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equation with time-periodic coefficients (Or 1997; Or & Kelly 1998; Samanta 2017, 2019),

B∂tΦ = AΦ + (Fc cos t + Fs sin t)Φ, (4.1)

where Φ = [φ0, φ1, . . . , φm, η]T is a column matrix, and A, B, Fc and Fs are (m + 2)×
(m + 2) square matrices, m being the number of Chebyshev modes. Next, the matrix
equation (4.1) is solved based on Floquet theory (Or 1997; Samanta 2017, 2020a). Thereby,
the time-dependent function Φ(t) is expanded in a truncated complex Fourier series from
−Kt to Kt as follows:

Φ(t) =
n=Kt∑

n=−Kt

Φn exp[(in + δ)t], (4.2)

where Φn are constant-coefficient column vectors, δ = δr + iδi is the complex Floquet
exponent, and n and Kt are integers. In fact, δr indicates the temporal growth rate of
infinitesimal disturbance. If δr > 0, the amplitude of infinitesimal disturbance will grow
exponentially with time and the corresponding flow will be unstable. Otherwise, the
infinitesimal disturbance will decay exponentially with time and the corresponding flow
will be stable if δr < 0. Here we shall focus on both subharmonic (δi = 1/2) and harmonic
(δi = 0) solutions rather than the harmonic solution merely observed for a liquid flow over
a horizontal oscillatory plane (Or 1997; Samanta 2017, 2019). Substituting (4.2) in the
matrix differential equation (4.1) and collecting the coefficient of exp[(in + δ)t], one can
obtain a recurrence relation,

[A − (δ + in)B]Φn + FΦn+1 + F
∗Φn−1 = 0, (4.3)

where F = (Fc + iFs)/2 and where F∗ is the complex conjugate of F. Indeed, the above
recurrence relation (4.3) is a linear system in terms of variablesΦn+1,Φn andΦn−1, whose
coefficients are simply the square matrices. The linear system (4.3) can be turned into a
matrix eigenvalue problem (Garih et al. 2013, 2017),

MX = δNX, (4.4)

where the Floquet exponent δ is the eigenvalue, X = [Φ−Kt , Φ−(Kt−1), . . . , Φ(Kt−1), ΦKt ]
T

is a column matrix, and M and N are, respectively, the block tridiagonal and block diagonal
square matrices of the forms

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

...

· · · (A + 2iB) F 0 0 0 · · ·
· · · F∗ (A + iB) F 0 0 · · ·
· · · 0 F∗ A F 0 · · ·
· · · 0 0 F∗ (A − iB) F · · ·
· · · 0 0 0 F∗ (A − 2iB) · · ·
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)
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and

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

...

· · · B 0 0 0 0 · · ·
· · · 0 B 0 0 0 · · ·
· · · 0 0 B 0 0 · · ·
· · · 0 0 0 B 0 · · ·
· · · 0 0 0 0 B · · ·
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

In the numerical simulation, we shall mainly search for the eigenvalues whose real parts
are positive (δr > 0), because eigenvalues with negative real parts (δr < 0) will provide
stable modes and are not relevant for the instability analysis. Further, the neutral stability
curve will be determined numerically by vanishing the real part of the Floquet exponent
(δr = 0) for a given set of flow parameters.

4.1. Spectrum convergence test
A convergence test of the spectrum obtained numerically from the eigenvalue problem
(4.4) is accomplished by computing the relative error for twenty least stable eigenvalues
with maximum real parts when the number of Chebyshev polynomials varies. Accordingly,
the relative error is defined as (Tilton & Cortelezzi 2008; Garih et al. 2013; Samanta
2020b)

relative error = ‖R(δm+1)− R(δm)‖2

‖R(δm)‖2
, (4.7)

where R(δm) represents the real parts of eigenvalues, ‖.‖2 represents the L2 norm and m
is the number of Chebyshev polynomials. Figure 2(a) illustrates the variation of relative
error with the number of Chebyshev polynomials when the number of Fourier modes
is fixed (Kt = 15). The results are produced for several values of the Reynolds number
when τ = 0.5 and ax = 0 are fixed. Apparently, it seems that at least twenty Chebyshev
modes (m ≥ 20) and fifteen Fourier modes (Kt = 15) are sufficient to have accurate
numerical results for the Reynolds number Re = 5, because the associated relative error
saturates approximately to order O(10−9). However, we need at least forty Chebyshev
modes (m ≥ 40) and fifteen Fourier modes (Kt = 15) to achieve accurate numerical
results when Reynolds number Re = 100, because the associated relative error saturates
approximately to order O(10−10). Obviously, the above results suggest that we require
more Chebyshev polynomials for accurate numerical results at higher Reynolds number.
On the other hand, figure 2(b) illustrates the spectrum obtained numerically from the
eigenvalue problem (4.4) when the imposed shear stress alters from τ = 0 to τ = 0.6
but ax = 0 is fixed. The eigenvalues show almost a vertical straight line pattern at τ = 0,
specified by circular points. As soon as τ increases, the real parts of eigenvalues move
slightly right while the imaginary parts move slightly down, specified by dot points (see the
inset of figure 2b). Therefore, one can envisage that the external imposed shear stress has a
destabilising effect on the parametric instability or Faraday instability for a vertical falling
film where the bounding plane oscillates only in the cross-stream direction. It should be
fruitful to mention here that spurious eigenvalues may appear in the numerical solution
because of the homogeneous boundary conditions (3.11) used in the rows of matrix A.
However, these spurious eigenvalues are mapped to the arbitrary irrelevant stable modes by
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Figure 2. (a) Convergence of the spectrum with the number of Chebyshev polynomials when τ = 0.5. Star,
dot and circle points are results for Re = 100, Re = 30 and Re = 5, respectively. (b) Variation of the eigenvalue
spectrum obtained from (4.4) when τ ∈ [0, 0.6]. The other flow parameters are ax = 0, ay = 1, k = 1, We =
0.016, Fr2 = 100, Re = 5 and θ = 90◦. Inset figure shows the variation of eigenvalues with positive real parts.

carefully selecting the complex multiple for the corresponding rows of matrix B (Schmid
& Henningson 2001). In this way, one can avoid spurious eigenvalues from the matrix
eigenvalue problem (4.4).

4.2. Validation of the numerical method
Before producing the current results, the above numerical code is validated with the
available results for a viscous liquid flowing down a vibrating inclined plane without
imposed shear stress (Woods & Lin 1995). Consequently, the effect of imposed shear stress
is removed from the current flow configuration by setting τ = 0. Further, it is assumed
that the plane oscillates solely in the cross-stream direction, i.e. ax = 0. Following
Woods & Lin (1995), we select We = 0.016, Fr2 = 100, Re = 5 and θ = 90◦ in the
numerical experiment. Figure 3(a) displays the neutral curve in the (wavenumber, forcing
amplitude)-plane for the given set of parameter values. The neutral curve exhibits three
distinct regimes pertaining to the gravitational, subharmonic and harmonic instabilities
as demonstrated by Woods & Lin (1995), where the gravitational instability occurs
in the long-wave regime, but the subharmonic and harmonic instabilities occur in
the finite wavelength regime. Further, it should be noted that the subharmonic and
harmonic instability zones have tongue-like shapes (Kumar & Tuckerman 1994; Kumar
1996) with wide unstable ranges of wavenumber, where the first subharmonic tongue
is lower than the first harmonic tongue. This phenomenon implies that the resonated
wave will evolve initially in the finite wavelength regime through the subharmonic
instability. In particular, the appearance of gravitational instability is responsible for the
streamwise component of gravitational force while the appearances of subharmonic and
harmonic instabilities are responsible for the cross-stream oscillation of the bounding
plane. Therefore, one can excite subharmonic and harmonic resonances by applying a
cross-stream oscillation to the bounding plane with a given forcing amplitude. On the
other hand, figure 3(b) displays the variation of temporal growth rate for the gravitational
instability when the forcing amplitude ay of cross-stream oscillation varies. It is evident
that the gravitational instability raises irrespective of the zero value of forcing amplitude
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Figure 3. (a) Variation of neutral curve in the (wavenumber, forcing amplitude)-plane. (b) Variation of
temporal growth rate δr for the gravitational instability when the forcing amplitude of cross-stream oscillation
ay varies. Solid, dashed, dotted and dash-dotted lines stand for ay = 0, ay = 0.1, ay = 0.2 and ay = 2,
respectively. The other flow parameters are ax = 0, τ = 0, We = 0.016, Fr2 = 100, Re = 5 and θ = 90◦.
Circular points are results of Woods & Lin (1995). Here ‘SH’ and ‘H’ represent the subharmonic and harmonic
instability zones, respectively.

of the cross-stream oscillation. Hence, the external oscillatory d’Alembert body force
attributed normal to the bounding plane is not required to generate the gravitational
instability. The streamwise gravitational force is sufficient to have gravitational instability.
On the contrary, an external oscillatory forcing is essential for the subharmonic and
harmonic instabilities (see figure 3a). As discussed by Woods & Lin (1995), the temporal
growth rate for the gravitational instability attenuates gradually with the increasing value
of forcing amplitude. However, it cannot be fully eliminated from the temporal growth
profile by setting a larger value to the forcing amplitude ay. Further, the reduction of
maximum temporal growth rate with the increasing value of forcing amplitude ay can be
found in table 1, which agrees very well with the available results of Garih et al. (2013) and
Jaouahiry & Aniss (2020) when the imposed shear stress is neglected (τ = 0), and there
is no streamwise oscillation of the bounding plane (ax = 0). Therefore, one can cause
the gravitational instability to deteriorate, or one can delay the transition of gravitational
instability to turbulence, by applying a perpendicular oscillation to the bounding plane. In
addition, the temporal growth profile and the neutral curve capture the results of Woods
& Lin (1995) very well in the absence of imposed shear stress, and if the streamwise
oscillation of the bounding plane is ignored (ax = 0).

In order to verify with the result of streamwise oscillatory liquid flow falling down a
vertical plane without an imposed shear stress (Lin et al. 1996), we set τ = 0, We = 0.016,
Fr2 = 10 000 and θ = 90◦ in the numerical experiment. In this case, it is assumed that
the plane oscillates solely in the streamwise direction, i.e. ay = 0. The ensuing result
is displayed in figure 4 for several values of forcing amplitude ax of the streamwise
oscillation. It is found that there exists only one unstable zone associated with the
gravitational instability in the (Reynolds number, wavenumber)-plane when ax = 0. The
result is specified by a dash-dotted line in figure 4. As soon as the streamwise oscillatory
forcing is introduced, i.e. if the forcing amplitude of streamwise oscillation is non-zero, one
unstable zone is divided into three separate unstable zones. In fact, the first two unstable
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max(δr) max(δr) max(δr)

ay (Garih et al. 2013) (Jaouahiry & Aniss 2020) (Current result)

0 1.6783 1.6792 1.6798
0.1 1.5405 1.5410 1.5408
0.7 0.3708 0.3711 0.3739
0.8 0.3038 0.3055 0.3055
1 0.2094 0.2108 0.2125

Table 1. Comparison of maximum temporal growth rate for the gravitational instability when the forcing
amplitude of cross-stream oscillation ay alters. The other flow parameters are ax = 0, We = 0.016, Fr2 = 100,
Re = 5, θ = 90◦ and τ = 0.
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Figure 4. Neutral curve in the (Reynolds number, wavenumber)-plane for different values of forcing amplitude
ax of the streamwise oscillation. Solid, dashed, dotted and dash-dotted lines stand for ax = 6, ax = 5, ax = 4
and ax = 0, respectively. The other flow parameters are ay = 0, τ = 0, We = 0.016, Fr2 = 10 000 and θ = 90◦.
Here ‘S’ and ‘U’ represent the stable and unstable zones, respectively. Inset figure shows the neutral curve for
the gravitational instability. Solid points are results of Lin et al. (1996).

zones, I and II, are created due to the streamwise oscillation of the bounding plane. Further,
the first two unstable zones, I and II, enhance, while the third unstable zone, III, reduces
with the increasing value of forcing amplitude ax of the streamwise oscillation. The
interesting result is that the primary instability is driven by the gravitational instability at
the outset when there is no external forcing. As soon as the external streamwise oscillatory
forcing is applied to the bounding plane, the primary instability is no longer driven
by the gravitational instability at the outset. Instead, the resonated instability dominates
the primary instability when the Reynolds number is small. Further, there exist some
stable ranges of Reynolds number, or equivalently, some stable bandwidths of forcing
frequency where the unstable vertical falling liquid film becomes stable due to streamwise
oscillation of the bounding plane. Indeed, the stable frequency bandwidths condense,
and the primary instability is gradually triggered by the gravitational instability with the
decreasing value of forcing amplitude as expected. Therefore, one can obtain some stable
ranges of Reynolds number despite the vertical falling liquid film if the plane is forced to
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Shear-imposed flow instability on vibrating inclined plane
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Figure 5. Neutral curve in the (wavenumber, forcing amplitude)-plane for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.6 and τ = 0.9, respectively. The other flow parameters are ax = 0,
We = 0.016, Fr2 = 100, Re = 5 and θ = 90◦. Here ‘SH’ and ‘H’ represent the subharmonic and harmonic
instability zones, respectively. Star points represent the critical amplitudes for the first subharmonic and first
harmonic instabilities at τ = 0.

oscillate in the streamwise direction. Moreover, the present result captures the result of Lin
et al. (1996) very well in an appropriate limit. The above facts fully confirm the accuracy
of the current numerical code.

5. Effect of imposed shear stress for a cross-stream oscillatory flow

This section deals with the oscillation normal to the plane only, i.e. there is no streamwise
oscillation of the bounding plane (ax = 0). In order to investigate the effect of imposed
shear stress τ on the parametric instability or Faraday instability for an oscillatory
liquid flowing down a vertical plane, we set We = 0.016, Fr2 = 100, Re = 5 and θ =
90◦ in the numerical experiment. Basically, the numerical experiment is carried out
for a comparatively thicker layer of liquid flow with small surface tension when the
forcing frequency of cross-stream oscillation is low. Figure 5 depicts the neutral curve
in the (wavenumber, forcing amplitude)-plane when the imposed shear stress alters.
The neutral curve shows the existence of gravitational, subharmonic and harmonic
instabilities for the given set of parameter values. Hence, one can resonate subharmonic
and harmonic instabilities in different unstable ranges of wavenumber by varying the
forcing amplitude of cross-stream oscillation at τ = 0. In particular, the subharmonic
and harmonic instability zones exhibit tongue-like shapes with wide unstable ranges of
wavenumber. Further, subharmonic and harmonic instabilities will be excited once the
forcing amplitude of cross-stream oscillation ay exceeds the respective critical amplitudes
for the subharmonic and harmonic instabilities, which are indicated by star points in
figure 5. For instance, the critical amplitude for the first subharmonic instability appears
at ay = 0.79 when the wavenumber k = 1.18. On the other hand, the critical amplitude for
the first harmonic instability appears at ay = 3.44 when the wavenumber k = 1.87. More
specifically, the subharmonic instability will occur first because the critical amplitude
for the appearance of first subharmonic wave is less than that for the appearance of the
first harmonic wave. Apparently, it seems that there exist stable ranges of wavenumber
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between gravitational and subharmonic instabilities as well as between subharmonic and
harmonic instabilities, where the flow system cannot be susceptible to instability by
the oscillating plane in the normal direction with a given forcing amplitude. In other
words, the gravitational instability switches to subharmonic instability as well as the
subharmonic instability switching to harmonic instability in a discontinuous manner for a
given forcing amplitude when the wavenumber increases. As soon as the imposed shear
stress is incorporated in the numerical experiment, the stable range which emerged in the
long-wave regime between gravitational and subharmonic instabilities becomes narrower,
and the stable range which emerged in the finite wavenumber regime between subharmonic
and harmonic instabilities completely disappears at τ = 0.6. If the imposed shear stress is
further increased to τ = 0.9, the long-wave unstable range of wavenumber responsible for
the gravitational instability attenuates, but does not fully disappear from the (wavenumber,
forcing amplitude)-plane because flow occurs on a vertical oscillating plane (θ = 90◦). It
seems that the transition from gravitational instability to subharmonic instability occurs
rapidly in a discontinuous manner, while the transition from subharmonic instability
to harmonic instability occurs in a continuous manner with the increasing value of
wavenumber for an oscillatory shear-imposed flow with a given forcing amplitude. In
addition, the critical amplitudes for the subharmonic and harmonic instabilities decrease
with the increasing value of τ . Therefore, one can generate subharmonic and harmonic
instabilities, comparatively, at lower forcing amplitudes for a cross-stream oscillatory
shear-imposed flow. In order to figure out the temporal growth rates for the parametric
resonances, the numerical test is repeated again for different values of the forcing
amplitude ay. The results can be found in figure 6. If the plane is forced to oscillate
normally with amplitude ay = 1, the temporal growth profile reveals two humps, where
the first hump associated with the gravitational instability appears in the long-wave
regime, while the second hump associated with the subharmonic instability appears
in the finite wavelength regime. However, the maximum temporal growth rate for the
subharmonic instability is always much larger than that for the gravitational instability.
It should be noted that the temporal growth rates for both gravitational and subharmonic
instabilities enhance with the increasing value of imposed shear stress when ay = 1.
Therefore, the gravitational and subharmonic instabilities intensify in the presence of
imposed shear stress at low forcing amplitude for a low-Reynolds-number flow. In this
case, the harmonic instability cannot be excited because the forcing amplitude ay is not
sufficient to resonate harmonic wave (see figure 6a). Obviously, there exists a stable
range of wavenumber between gravitational and subharmonic instabilities, where the
temporal growth rate is completely negative and this stable range gradually becomes
narrower with the increasing value of τ . This fact is fully consistent with the result
reported in figure 5. As soon as the forcing amplitude of cross-stream oscillation is
increased to ay = 4, the temporal growth profile reveals three humps rather than two. A
new hump associated with the harmonic instability appears along with the gravitational
and subharmonic instabilities, where the gravitational instability prevails in the long-wave
regime followed by subharmonic and harmonic instabilities in the finite wavelength regime
(see figure 6b). The maximum temporal growth rate for the subharmonic instability is
larger than those for the gravitational and harmonic instabilities. The interesting fact is
that the temporal growth rates for the gravitational and harmonic instabilities amplify, but
the temporal growth rate for the subharmonic instability depletes with the increasing value
of imposed shear stress as opposed to the result when ay = 1 (see figure 6a). Therefore, the
gravitational and harmonic instabilities become stronger, but the subharmonic instability
becomes weaker in the presence of imposed shear stress at high forcing amplitude
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Figure 6. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed,
dotted and dash-dotted lines stand for τ = 0, τ = 0.3, τ = 0.6 and τ = 0.8, respectively. Flow parameters are
(a) ay = 1 and (b) ay = 4. The other flow parameters are ax = 0, We = 0.016, Fr2 = 100, Re = 5 and θ = 90◦.
Inset figures show the temporal growth rate for the gravitational instability.

for a low-Reynolds-number flow. In this case, the maximum temporal growth rate for
the subharmonic instability is no longer larger than that for the harmonic instability.
Instead, an opposite phenomenon happens, i.e. the maximum temporal growth rate for
the harmonic instability is larger than that for the subharmonic instability at τ = 0.8.
Further, there exist stable ranges of wavenumber between gravitational and subharmonic
instabilities as well as between subharmonic and harmonic instabilities when ay = 4 and
τ = 0. However, the stable range emerged in the long-wave regime between gravitational
and subharmonic instabilities becomes narrower as long as τ increases. On the other
hand, the stable range emerged in the finite wavenumber regime between subharmonic
and harmonic instabilities no longer exists with the increasing value of τ . Hence, one
can conclude that there eventuates a continuous switching from subharmonic instability to
harmonic instability in the finite wavenumber regime for a shear-imposed low Reynolds
number flow if a normal oscillation is attributed to the bounding plane with higher forcing
amplitude. In this case, the subharmonic resonance can be made weaker by applying a
constant shear stress at the liquid surface in the streamwise direction.

Next, we perform the numerical experiment for Re = 30 when other flow parameters
remain the same as supplied in figure 5. In this case, we are actually increasing
the forcing frequency of cross-stream oscillation. The associated result is illustrated
in figure 7. The neutral curve pertaining to the resonated waves exhibits tongue-like
shapes as depicted in figure 5. The unstable range of wavenumber for the gravitational
instability enhances with the increasing value of Reynolds number when τ = 0. Further,
the critical amplitudes for the first subharmonic and first harmonic instabilities reduce
significantly in comparison with the result when Re = 5 and τ = 0. In fact, one can create
resonated waves, comparatively, at lower forcing amplitudes for a moderate Reynolds
number cross-stream oscillatory flow. If the effect of imposed shear stress is incorporated
in the numerical experiment, the stable range between gravitational and subharmonic
instabilities reduces. Therefore, the presence of imposed shear stress makes the transition
faster from gravitational instability to subharmonic instability. Furthermore, with the
increasing value of forcing frequency of cross-stream oscillation, or equivalently, with
the increasing value of Reynolds number, the temporal growth rate shows an opposite
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Figure 7. Neutral curve in the (wavenumber, forcing amplitude)-plane for different values of τ . Solid and
dashed lines stand for τ = 0 and τ = 0.3, respectively. The other flow parameters are ax = 0, We = 0.016,
Fr2 = 100, Re = 30 and θ = 90◦. Here ‘SH’ and ‘H’ represent the subharmonic and harmonic instability
zones, respectively. Star points represent the critical amplitudes for the first subharmonic and first harmonic
instabilities at τ = 0.

scenario of figure 6(a) with varying τ . The results are demonstrated in figure 8. Obviously,
there exist three humps instead of two in the temporal growth profile for a non-zero value
of imposed shear stress (see figure 8a). The temporal growth rates for the gravitational
and subharmonic instabilities attenuate rather than enhance with the increasing value
of imposed shear stress at low forcing amplitude (ay = 1). Therefore, one can make
weaker the maximum values of temporal growth rates for the subharmonic resonance and
gravitational instability by incorporating external shear stress at the liquid surface for a
shear-imposed flow with moderate Reynolds number. Further, the harmonic resonance also
emerges at low forcing amplitude in a separate unstable range of wavenumber along with
the subharmonic resonance for a non-zero value of imposed shear stress τ and intensifies
with the increasing value of imposed shear stress. As soon as the forcing amplitude of
cross-stream oscillation is shifted to a comparatively higher value (ay = 3), a new hump
associated with the subharmonic instability is introduced in the temporal growth profile
together with the remaining three humps (see figure 8b). However, the first three humps
become weaker while the fourth hump becomes stronger with the increasing value of
imposed shear stress.

If the numerical experiment is performed for a comparatively thinner layer of oscillatory
liquid flow, or equivalently, if the Froude number is decreased and set to Fr2 = 10,
only gravitational and subharmonic instabilities excite in distinct unstable ranges of
wavenumber at low forcing amplitude (ay = 1). The result is displayed in figure 9(a).
It is observed that both gravitational and subharmonic instabilities weaken with the
increasing value of imposed shear stress. However, if the forcing amplitude is increased to
a comparatively higher value as before (ay = 3), the harmonic resonance again rises along
with the subharmonic resonance in the finite wavenumber regime (see figure 9b). The
harmonic resonance amplifies but the subharmonic resonance attenuates in the presence of
imposed shear stress. In this case, the impacts of imposed shear stress on the subharmonic
and harmonic resonances are more discernible than the previous cases. Therefore, one can
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Figure 8. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed,
dotted and dash-dotted lines stand for τ = 0, τ = 0.3, τ = 0.6 and τ = 0.8, respectively. Flow parameters
are (a) ay = 1 and (b) ay = 3. The other flow parameters are ax = 0, We = 0.016, Fr2 = 100, Re = 30 and
θ = 90◦. Inset figures show the temporal growth rate for the gravitational instability.
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Figure 9. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed and
dotted lines stand for τ = 0, τ = 0.3 and τ = 0.6, respectively. Flow parameters are (a) ay = 1 and (b) ay = 3.
The other flow parameters are ax = 0, We = 0.016, Fr2 = 10, Re = 10 and θ = 90◦. Inset figure shows the
temporal growth rate for the gravitational instability.

predict that the subharmonic resonance can also be made weaker for a thinner layer of
shear-imposed cross-stream oscillatory flow.

In order to explore the Faraday instability for a comparatively thicker layer of liquid
flow with high surface tension down a slightly inclined plane, we set We = 0.16, Fr2 =
100, Re = 10 and θ = 1◦ in the numerical experiment. Figure 10 illustrates the neutral
curve in the (wavenumber, forcing amplitude)-plane when the imposed shear stress
alters. It should be noted that the neutral curve exhibits tongue-like shapes followed
by subharmonic and harmonic tongues. In particular, the subharmonic and harmonic
instabilities occur alternately in these tongue-like unstable zones. However, the unstable
ranges of wavenumber for the subharmonic and harmonic tongues squeeze significantly
in comparison with the result reported in figure 5 where the Weber number is small
(We = 0.016) and the plane is vertical (θ = 90◦). The interesting result is that the regime
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Figure 10. Neutral curve in the (wavenumber, forcing amplitude)-plane for different values of τ . Solid and
dashed lines stand for τ = 0 and τ = 0.6, respectively. The other flow parameters are ax = 0, We = 0.16,
Fr2 = 100, Re = 10 and θ = 1◦. Here ‘SH’ and ‘H’ represent the subharmonic and harmonic instability zones.
Star points represent the critical amplitudes for the first subharmonic and first harmonic instabilities at τ = 0.
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Figure 11. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed and
dotted lines stand for τ = 0, τ = 0.3 and τ = 0.6, respectively. Flow parameters are (a) ay = 1 and (b) ay = 3.
The other flow parameters are ax = 0, We = 0.16, Fr2 = 100, Re = 10 and θ = 1◦.

of gravitational instability is no longer manifested in the neutral diagram because the
associated Reynolds number lies in the stable zone. As soon as the imposed shear stress
is incorporated in the numerical experiment, the stable ranges which emerged in the finite
wavenumber regime between subharmonic and harmonic tongues completely disappear
at τ = 0.6. Further, the critical amplitudes for the subharmonic and harmonic tongues
decrease with the increasing value of imposed shear stress. But the critical amplitude
for the first subharmonic tongue always remains lower than that for the first harmonic
tongue. Hence, one can excite subharmonic and harmonic resonances at lower forcing
amplitudes for a shear-imposed thinner layer of liquid with high surface tension flowing
down a slightly inclined plane. Figure 11 displays the associated temporal growth rates
for the Faraday waves when the imposed shear stress changes. It should be noted that
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Figure 12. Neutral curve in the (wavenumber, forcing amplitude)-plane for different values of τ . Solid and
dashed lines stand for τ = 0 and τ = 0.6, respectively. The other flow parameters are ax = 0, We = 0.16,
Fr2 = 100, Re = 80 and θ = 1◦. Here ‘SH’ and ‘H’ represent the subharmonic and harmonic instability zones.
Star points represent the critical amplitudes for the first subharmonic and first harmonic instabilities at τ = 0.

there exists a single hump associated with the subharmonic instability at low forcing
amplitude (ay = 1), which attenuates with the increasing value of τ (see figure 11a). As
soon as the forcing amplitude of cross-stream oscillation is shifted to a comparatively
higher value (ay = 3), a new hump pertaining to the harmonic instability is introduced in
the temporal growth profile along with the remaining hump (see figure 11b). Obviously,
the new hump intensifies with the increasing value of τ . Hence, the harmonic resonance
can be made stronger by including an imposed shear stress at the liquid surface in the
streamwise direction (see figure 11b). Further, there does not exist an additional unstable
hump related to the gravitational instability in the temporal growth profile. This fact is fully
in favour of the result reported in figure 10. If the forcing frequency, or equivalently, if the
Reynolds number is further increased and fixed at Re = 80 in the numerical experiment,
the subharmonic and harmonic tongues compress significantly in comparison with the
result shown in figure 10, and consequently, more subharmonic and harmonic tongues
appear alternately in distinct unstable ranges of wavenumber (see figure 12). Furthermore,
the critical amplitudes for the generation of subharmonic and harmonic resonances
significantly decrease with the increasing value of Reynolds number. The gravitational
instability disappears from the neutral diagram because the Reynolds number still does
not exceed the critical value for the existence of gravitational instability. As soon as the
imposed shear stress is included in the numerical experiment, the gravitational instability
emerges along with the subharmonic and harmonic resonances in the neutral diagram
at τ = 0.6 (see figure 12). Basically, the critical Reynolds number for the gravitational
instability reduces with the increasing value of imposed shear stress (Smith 1990; Samanta
2014) and makes it lower than the given Reynolds number Re = 80. This fact yields
an unstable region for the gravitational instability in the neutral diagram at τ = 0.6.
Figure 13(a) exhibits the associated temporal growth rate for the resonated wave. It is
observed that there exists only one hump in the finite wavenumber regime pertaining to
the subharmonic instability at ay = 0.3 when τ = 0, which attenuates in the presence of
imposed shear stress. There do not exist additional humps pertaining to the gravitational
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Figure 13. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.3 and τ = 0.6, respectively. Flow parameters are (a) ay = 0.3 and
(b) ay = 1. The other flow parameters are ax = 0, We = 0.16, Fr2 = 100, Re = 80 and θ = 1◦.

and harmonic instabilities at τ = 0. However, the gravitational instability arises in the
presence of imposed shear stress, which intensifies as long as the imposed shear stress
increases. If the forcing amplitude of cross-stream oscillation is shifted to a slightly higher
value (ay = 1), an additional hump associated with the harmonic instability emerges in the
finite wavenumber regime along with the subharmonic instability (see figure 13b). In this
case, the harmonic resonance occurs at low forcing amplitude (ay = 1) rather than at high
forcing amplitude (ay = 3), shown in figure 11(b). This result is fully consistent with the
result reported in figure 12. Further, both subharmonic and harmonic resonances become
weaker in the presence of imposed shear stress. Hence, one can resonate subharmonic and
harmonic waves, comparatively, at lower forcing amplitudes for an oscillatory flow with
moderate Reynolds number, and the resonated waves can be made weaker by imposing an
external shear stress at the liquid surface in the streamwise direction.

In order to perform the numerical experiment for a high-Reynolds-number thin layer
of liquid with high surface tension flowing down a slightly inclined plane, we set We = 5,
Fr2 = 1, Re = 293 and θ = 1◦ (Woods & Lin 1995). The ensuing results are demonstrated
in figure 14. Note that there exist two humps in the temporal growth profile pertaining
to the gravitational and shear instabilities when there is no external oscillatory forcing
(see figure 14a). Obviously, the gravitational instability occurs in the long-wave regime
while the shear instability occurs in the finite wavenumber regime. Therefore, a new
instability, the so-called shear instability, emerges in the finite wavenumber regime when
the Reynolds number is large and the inclination angle is sufficiently small. In fact,
in this case, the given Reynolds number exceeds the critical Reynolds number for the
appearance of shear instability. Note that both gravitational and shear instabilities amplify
with the increasing value of imposed shear stress. Further, the subharmonic and harmonic
resonances disappear from the temporal growth profile because the forcing amplitude of
cross-stream oscillation vanishes (ay = 0). As soon as the forcing amplitude is turned
on (ay = 1) in the numerical experiment, both subharmonic and harmonic resonances
appear in the temporal growth profile along with the gravitational and shear instabilities
(see figure 14b). It should be noted that both gravitational and shear instabilities become
weaker in the presence of external oscillatory cross-stream forcing. However, they become
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Figure 14. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.3 and τ = 0.6, respectively. Flow parameters are (a) ay = 0 and
(b) ay = 1. The other flow parameters are ax = 0, We = 5, Fr2 = 1, Re = 293 and θ = 1◦.

stronger in the presence of imposed shear stress. On the other hand, the subharmonic and
harmonic resonances attenuate with the increasing value of imposed shear stress.

6. Effect of imposed shear stress for a streamwise oscillatory flow

In this section, we shall focus solely on the streamwise oscillation of the bounding
plane, i.e. there is no cross-stream oscillation of the bounding plane (ay = 0). In order
to investigate the effect of imposed shear stress τ on the parametric instability for a
streamwise oscillatory liquid flowing down a vertical plane, we set ax = 6, We = 0.016,
Fr2 = 10 000 and θ = 90◦ in the numerical experiment (Lin et al. 1996). Basically, the
numerical experiment is carried out for a comparatively thicker layer of liquid flow with
small surface tension. Figure 15 displays the neutral curve in the (Reynolds number,
wavenumber)-plane when the imposed shear stress alters. The neutral curve exhibits three
distinct unstable regions specified by I, II and III for the given set of parameter values. In
particular, the unstable regions I and II are developed owing to the streamwise oscillation
of the plane, while the third unstable zone, III, is responsible for the gravitational
instability. Obviously, the imposed shear stress does not have significant impact on the
first resonated unstable zone, I, but the second resonated unstable zone, II, significantly
reduces with the increasing value of imposed shear stress. On the other hand, the third
unstable zone, III, enhances in the presence of imposed shear stress. Further, there exist
stable ranges of Reynolds number, or equivalently, there exist stable ranges of frequency
bandwidths where the streamwise oscillatory flow is completely damped to infinitesimal
disturbances even though the liquid flow occurs on a vertical plane. It is evident that the
stable range of Reynolds number between the resonated unstable zone, II, and the third
unstable zone, III, decreases, and ultimately, vanishes from the neutral diagram with the
increasing value of imposed shear stress. In other words, the resonated unstable zone, II,
and the third unstable zone, III, merge with each other with the increasing value of imposed
shear stress. As a consequence, the neutral curve converts into two distinct unstable zones
separated by a stable range of Reynolds number at τ = 0.1. Further, one can speculate
that there occurs a continuous transition from the resonated instability to gravitational
instability at higher values of the imposed shear stress. Figure 16 reveals the associated
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Figure 15. Neutral curve in the (Reynolds number, wavenumber)-plane for different values of τ . Solid, dashed,
dotted and dash-dotted lines stand for τ = 0, τ = 0.005, τ = 0.05 and τ = 0.1, respectively. The other flow
parameters are ax = 6, ay = 0, We = 0.016, Fr2 = 10 000 and θ = 90◦. Here ‘S’ and ‘U’ represent the stable
and unstable zones, respectively.

Wavenumber
0 0.2 0.4 0.6

G
ro

w
th

 ra
te

–0.0004

0

0.0004

0.0008

0.00012

Wavenumber
0 0.02 0.04 0.06 0.08 0.10

(×10–4)

–1

0

1(b)(a)

Figure 16. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.05 and τ = 0.1, respectively. Reynolds numbers are (a) Re = 12 and
(b) Re = 30. The other flow parameters are ax = 6, ay = 0, We = 0.016, Fr2 = 10 000 and θ = 90◦.

temporal growth rates for the second resonated unstable zone, II, and the third unstable
zone, III, when the imposed shear stress varies. It should be noted that the temporal growth
rate for the resonated unstable zone, II, attenuates in the presence of imposed shear stress
when Re = 12 (see figure 16a). By contrast, the maximum temporal growth rate for the
third unstable zone, III, enhances as soon as the imposed shear stress increases when
Re = 30 (see figure 16b). This fact is fully consistent with the result reported in figure 15.
From the above result, one can conclude that the unstable domain of the resonated wave
for a streamwise oscillatory flow can be reduced by imposing an external shear stress at
the liquid surface in the streamwise direction.
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Figure 17. Neutral curve in the (Reynolds number, wavenumber)-plane for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.1 and τ = 0.2, respectively. The other flow parameters are ax = 6,
ay = 0, We = 0.008, Fr2 = 10 000 and θ = 90◦. Here ‘S’ and ‘U’ represent the stable and unstable zones,
respectively.

If the surface tension, or equivalently, the Weber number is reduced and set to We =
0.008, the numerical result exhibits a similar scenario as shown in figure 15. The neutral
curve reveals three unstable regions, I, II and III, separated by the stable ranges of
Reynolds number when τ = 0 (see figure 17). However, the second resonated unstable
zone, II, significantly enhances in comparison with the result reported in figure 15
with the decreasing value of surface tension. As soon as the imposed shear stress is
incorporated in the numerical experiment, the first resonated unstable zone, I, does
not change considerably as before. But the second resonated unstable zone, II, reduces
considerably with the increasing value of imposed shear stress. On the other hand, the
third unstable zone, III, enhances, and finally, coalesces with the resonated unstable zone
II at higher values of the imposed shear stress. The associated temporal growth rates for
the second resonated unstable zone, II, and the third unstable zone, III, are illustrated in
figure 18 with the variation of imposed shear stress. Obviously, the temporal growth rate
for the resonated unstable zone II becomes weaker in the presence of imposed shear stress
when Re = 12 (see figure 18a). However, the maximum temporal growth rate for the third
unstable zone, III, becomes stronger as soon as the imposed shear stress increases when
Re = 30 (see figure 18b). This fact is fully consistent with the result reported in figure 17.

In order to analyse the parametric instability for a comparatively thinner layer of
oscillatory liquid flow, we set ax = 6, We = 0.016, Fr2 = 100 and θ = 90◦ in the
numerical experiment. In this case, two unstable zones separated by a stable range of
Reynolds number are observed in the neutral diagram. The result can be found in figure 19.
Apparently, it seems that the first unstable zone, I, develops due to the streamwise
oscillation of the bounding plane while the second unstable zone, II, is responsible for
the gravitational instability. Further, the first resonated unstable zone, I, does not change
significantly but the second unstable zone, II, reduces significantly with the increasing
value of imposed shear stress. In addition, the critical Reynolds number for the creation
of second unstable zone, II, decreases as long as the imposed shear stress increases, and
finally, merges with the resonated unstable zone I at τ = 0.7. This fact ensures that the
gravitational instability will evolve at a lower Reynolds number in the presence of imposed
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Figure 18. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.1 and τ = 0.2, respectively. Reynolds numbers are (a) Re = 12 and
(b) Re = 30. The other flow parameters are ax = 6, ay = 0, We = 0.008, Fr2 = 10 000 and θ = 90◦.

1 10 20 30 40
Reynolds number

0

0.4

0.8

1.2

W
av

en
um

be
r

U

S

II

I

Gravitational instability zone

U

Resonated instability zone

Figure 19. Neutral curve in the (Reynolds number, wavenumber)-plane for different values of τ . Solid, dashed,
dotted and dash-dotted lines stand for τ = 0, τ = 0.1, τ = 0.2 and τ = 0.7, respectively. The other flow
parameters are ax = 6, ay = 0, We = 0.016, Fr2 = 100 and θ = 90◦. Here ‘S’ and ‘U’ represent the stable
and unstable zones, respectively.

shear stress for a streamwise oscillatory flow. Further, there occurs a continuous switching
from the resonated instability to gravitational instability at higher values of the imposed
shear stress.

Now the numerical experiment is performed for a high-Reynolds-number thin layer
of oscillatory liquid with high surface tension flowing down a slightly inclined plane.
Consequently, we set ax = 4, ay = 0, We = 5, Fr2 = 1, θ = 1◦ in the numerical
experiment. The ensuing result is displayed in figure 20. It should be noted that there
exist three unstable zones, I, II and III, pertaining to the resonated, gravitational and
shear instabilities in the neutral diagram. Indeed, the shear instability raises in the neutral
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Figure 20. Neutral curve in the (Reynolds number, wavenumber)-plane for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.2 and τ = 0.4, respectively. The other flow parameters are ax = 4,
ay = 0, We = 5, Fr2 = 1 and θ = 1◦. Here ‘S’ and ‘U’ represent the stable and unstable zones, respectively.
Inset figure shows the neutral curve for the resonated instability.
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Figure 21. Variation of temporal growth rate with the wavenumber for different values of τ . Solid, dashed
and dotted lines stand for τ = 0, τ = 0.2 and τ = 0.4, respectively. Reynolds numbers are (a) Re = 40 and
(b) Re = 170. The other flow parameters are ax = 4, ay = 0, We = 5, Fr2 = 1 and θ = 1◦.

diagram because the given Reynolds number crosses the critical Reynolds number for the
shear instability. The resonated instability zone I does not change significantly with the
variation of imposed shear stress as before. However, the gravitational and shear instability
zones II and III enhance with the increasing value of imposed shear stress followed by
the successive reduction of critical Reynolds numbers. Hence, one can report that the
gravitational and shear instabilities can be made stronger by incorporating an imposed
shear stress at the liquid surface. Further, these instabilities happen comparatively fast
for a shear-imposed flow. Figure 21 demonstrates the associated temporal growth rates
for the gravitational and shear instabilities. Obviously, the temporal growth rates for the
gravitational and shear instabilities amplify with the increasing value of imposed shear
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stress when Re = 40 and Re = 170, respectively, which are fully in favour of the results
reported in figure 20.

7. Discussion and conclusions

A study of a shear-imposed viscous liquid flowing down an inclined plane is elucidated
in the present manuscript when the bounding plane is forced to oscillate in streamwise
and cross-stream directions, respectively. The linear stability analysis is carried out under
the framework of time-dependent OS BVP for infinitesimal disturbances of arbitrary
wavenumbers. The time-dependent OS BVP is solved numerically by using the Chebyshev
spectral collocation method along with Floquet theory. A convergence test of the spectrum
procured from the time-dependent OS BVP reports that more Chebyshev polynomials
are required in the numerical simulation for accurate results when the bounding plane
oscillates only in the cross-stream direction, and when the Reynolds number is large.
Further, the present results recover the available results in the literature very well in
appropriate limits.

For a cross-stream oscillatory flow, numerical results reveal that there exist three
different types of unstable regions for low to moderate values of the Reynolds number.
In particular, these unstable regions are associated with the gravitational, subharmonic
and harmonic instabilities. In fact, the gravitational instability occurs in the long-wave
regime while the subharmonic and harmonic instabilities occur in the finite wavelength
regime. Further, the critical amplitude for the creation of subharmonic instability is lower
than that for the creation of harmonic instability. Hence, the subharmonic instability will
initially dominate the primary instability in the finite wavelength regime. It is found that
there exist stable ranges of wavenumber where the cross-stream oscillatory flow will not be
susceptible to instability by infinitesimal disturbances. As soon as the external shear stress
is exerted at the liquid surface, the stable range which existed in the long-wave regime
between gravitational and subharmonic instabilities reduces, and the stable range which
existed in the finite wavenumber regime between subharmonic and harmonic instabilities
completely vanishes with the increasing value of imposed shear stress. This fact implies
that the transition from subharmonic instability to harmonic instability takes place rapidly
in a continuous fashion in the finite wavenumber regime as long as the imposed shear
stress increases. The critical amplitudes for the creation of subharmonic and harmonic
instabilities decrease in the presence of imposed shear stress. Therefore, one can excite
resonated waves, comparatively, at lower forcing amplitudes for a cross-stream oscillatory
shear-imposed flow. Further, the temporal growth rate for the subharmonic instability
which rises at low forcing amplitude intensifies, but attenuates in the presence of imposed
shear stress when the forcing amplitude of cross-stream oscillation is high. By contrast,
the temporal growth rate for the harmonic instability which rises at high forcing amplitude
intensifies in the presence of imposed shear stress. If the Reynolds number is increased,
and if the angle of inclination is sufficiently small, the unstable ranges for the subharmonic
and harmonic waves squeeze, and consequently, more unstable ranges for the subharmonic
and harmonic waves appear alternately in the neutral diagram. However, the critical
amplitude for the first subharmonic instability is always lower than that for the first
harmonic instability. If the Reynolds number is further increased, the shear instability also
appears along with the gravitational, subharmonic and harmonic instabilities. It is found
that the gravitational and shear instabilities can be made weaker by increasing the forcing
amplitude of cross-stream oscillation. However, it can be amplified by incorporating an
imposed shear stress at the liquid surface in the streamwise direction.
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On the other hand, for a streamwise oscillatory flow, numerical results reveal that there
exist three unstable regions, I, II and III, in the neutral diagram separated by the stable
ranges of Reynolds number, or equivalently, the stable ranges of frequency bandwidths
of the streamwise oscillation. In fact, these unstable regions are associated with the
resonated and gravitational instabilities. In particular, the gravitational instability zone
for the unforced liquid flow is turned into two resonated unstable zones, I and II, and a
gravitational instability zone, III, as soon as a streamwise oscillatory forcing is applied to
the bounding plane. It is observed that the resonated instability zone II becomes stronger
with the increasing value of forcing amplitude. However, the resonated instability zone II
becomes weaker in the presence of imposed shear stress. On the contrary, the gravitation
instability zone III enhances, and ultimately, coalesces with the resonated unstable zone II
at higher values of the imposed shear stress. Hence, a continuous switching occurs from
the resonated instability to gravitational instability in the presence of imposed shear stress.
Unlike the cross-stream oscillatory flow, the shear instability zone appears along with the
resonated and gravitational instability zones in the case of a streamwise oscillatory flow
when the Reynolds number is large and the inclination angle is sufficiently small. It is
observed that the gravitational and shear instabilities intensify with the increasing value
of imposed shear stress.
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