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Abstract. In this note we prove that the equation x2 + 1 = y", x,y,n e.N,n>2, has
no solutions (x,y,n) with 2 *y. Moreover, all solutions (x,y,n) of the equation with 2 \y
satisfy n < 5 . 106 and y < exp exp exp 30.

1. Introduction. Let Z, N, Q be the sets of integers, positive integers and rational
numbers respectively. In 1913, Ramanujan [5] conjectured that the equation

x2 + 7 = 2\ (*,neN),

has only the solutions (x,n) = (1,3), (3,4), (5,5), (11,7) and (181,15). In 1948, Nagell [4]
verified the above conjecture. Let k eN with 2 \ k. Lewis [2] proved that the equation

x2 + l = k", x,n<=N,n>2, (1)

has at most two solutions (x,n). Moreover, if k is not a prime power, then (1) has no
solution (x, n). In this note we discuss the solutions (x,y,n) of a general equation

x2 + 7=y",x,y,neN,n>2. (2)

We prove the following results:

THEOREM 1. Equation (2) has no solutions (x,y,n) with 2 \ y.

THEOREM 2. Equation (2) has only finitely many solutions (x,y,n) with 2\y.
Moreover, all solutions (x, y,n) satisfy n < 5. 106 and y < exp exp exp 30.

2. Lemmas. Let a be an algebraic number with minimal polynomial
d

aoz
d + a,*""1 +...+ad = aol\(z- <r,a), a0 > 0,

/=i

where cr,a, . . . , ada are all conjugates of a. Then

1 /
h(a) = - (logao + S logmax(l, |o-,a|

is called the logarithmic absolute height of a.

LEMMA 1. Let au a2 be non-zero algebraic numbers which are multiplicatively
independent, and let log a7 (;' = 1,2) be any non-zero determination of the logarithm of a;.
Further let D be the degree ofQ(au a2), and let

Aj = max(l,h(aj) + log2,2 ), ; 1,2.
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// A = fti l o g a } - b 2 l o g a 2 ¥=• 0 for some b u b 2 e N with m a x ( b u b 2 ) ^ 1 0 6 , then we have

log |A| > -43D4AlA2(l + log B + log log 2B)2,

where B = max^ , b2).

Proof. Since B > 10", by the definitions in [3], we get G > 17-4895. Therefore, we
may choose 6 = 12, Z = 3, c = 9-13, c0 = 136-89, c, = 2-87 and C/Z3 = 43 by [3, Fig. 2].
Thus, by [3, Theorem 5.11], we obtain the lemma immediately.

For any algebraic number a, let \a\ be the maximum absolute value of the conjugates
of a. Let K be an algebraic number field with the degree r, and let DK, OK be the
discriminant and the ring of algebraic integers of K respectively. Further, let F(X, Y) =
a0X" + a^X"-*Y + ...+ anY" e OK[X, Y] be a binary form with the degree n.

LEMMA 2 ([1, Corollary]). Let b s OK. Ifn>3 and F(X, Y) is irreducible in K, then
all solutions (X, Y) of the equation

F(X,Y) = b, X,YeOK,

satisfy

log maxflXI, \Y\) < (25(n + 3)nO'5<"+3V)2('ir+1)n7''(#r('I~1) \Dk\)"
a

(log(2//|D,|))2"r((//r<"-1> \Dk\)
nr2 + log |5|),

where H = max(|ao|, |a,|,... , \an\).

3. Proof of Theorem 1. Let K = © ( V ^ ) , and let hk, OK be the class number and
the ring of algebraic integers of K respectively. Then we have hK = 1 and

(3) a,bel, a =

Let (x,y,n) be a solution of (2) with 2 \ y. If 2 | n, then we get ynl2 + x = l and
y"12 - x = 1, whence we obtain y"12 = 4, a contradiction. So we have 2 \ n.

From (2), we have

(x + V-7)(x-V-7) = y". (4)

Since 2 \ y and hK = 1, we get gcd(* 4- V-7, x - V^7) = 1, and by (4),

where a,, fc, e Z satisfy

a2 + 7b2=_y, gcd(a,,ft1) = 1. (6)

From (5), we have

whence we get bt = ±1 and

,1 "V ( n \ -7V n-2/-l "v)/2 (n\t -i\ln-\)/2-i 2i / ^ \

,-=o \2/ + l / ,=0 \2v
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Since 2 \ y and -1 = l(mod 4), we see from (6) and (7) that 2 || a, and

) (8)
,=o ^ ' '

Let 2° || a,. If n = 3(mod 4), then we have

1 11 (n-l)/2

II ,=i \2(

It implies that (8) is impossible in this case. If n = l(mod 4), let 2" || n - 1, then we have

Let 2V' || 2/ for any / e N. Since v, < (log 2/)/log 2 < 2(/ - 1) if / > 1, we get

~ 2 j ̂ g
B̂ Q ( m o d 22. , , )

Since )3 + 2 ^ 2 a + /3 - 1 , we find from (9) and (10) that (8) is impossible. Thus, the
equation (2) has no solutions (x,y,n) with 2 \ y.

4. Proof of Theorem 2. Let (x, y, n) be a solution of (2) with 2 | y. By [4], it suffices
to prove the theorem while y is not a power of 2. Therefore, by the proof of Theorem 1,
we have 2 \ n.

From (2), we get

2 A 2 / 4 '
Since gcd((* + V=7)/2, (x - V=7)/2) = 1, we see from (3) and (11) that

+ V 7 \ _ 1 (3x7\ A^f3 v \ _ (a + bV^\
2 ) ~ 2 \ 2 + 2 V V'K 2 J' (12)

where As {-1,1} which make (3or - 7A)/2, (AAT + 3 ) / 2 E Z with gcd((3x - 7A)/2,
(Ax + 3)/2) = 1, and a,b el satisfy

a2 + 7fc2 = 4y, gcd(a,6) = l. (13)

Let

We get from (12) that
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Let i = V 3 ! ,

Notice that n > 3, [K:Q] = 2 and DK = -7 . By Lemma 2, we obtain from (13), (14) and
(15) that

Vy = |e| = max(lel, HI) < exp((50n(« + 2,))^n+^(2n)2i2n+l)nln{22(n-')l)n'2

(16)
(Iog28)4"(22("-1)7)"/2 + log8V7).

(17)

(18)

(19)

(20)

(21)

(22)

We see from (15) that

and

2V7

log; - n l o g -

By (17), (18) and (19), we may choose <j>u <f>2 such that

\<px\ = arctan 5, 0< </>i

Then, by (19), (20) and (21), we have

8V7
• , ,n /2 •

Let a1 = (3 + A\ / z 7) / (3-AV z 7) and a2 = e/e. By (13) and (14), a i and a2 satisfy
Aa\ - ai + 4 = 0 and ya\ - (a2 - lb2)a2/2 + y = 0 respectively. So we have h{a{) = log2
and h(a2) = logVy. Since [K:Q] = 2, by Lemma 1, if n > 106, then we have

> exp(-43 .24(log 4)(log 2 ^ ) ( 1 + log n + log log 2nf). (23)

The combination of (22) and (23) yields

log 8V7 + 953-8(log 2Vy)(l + log n + log log 2nf > n logVy. (24)

Since v is not a power of 2, we have y ^ 22, and by (24),

2 + 1381-6(1 + log n + log log 2n)2 > n. (25)

We conclude from (25) that

n<5.106 .

Substitute.(26) into (16), we get y < exp exp exp 30. The theorem is proved.
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