A NOTE ON THE DIOPHANTINE EQUATION $x^{2}+7=y^{n}$ by MAOHUA LE \dagger

(Received 24 July, 1995)

Abstract

In this note we prove that the equation $x^{2}+7=y^{n}, x, y, n \in \mathbb{N}, n>2$, has no solutions (x, y, n) with $2+y$. Moreover, all solutions (x, y, n) of the equation with $2 \mid y$

 satisfy $n<5.10^{6}$ and $y<\exp \exp \exp 30$.1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. In 1913, Ramanujan [5] conjectured that the equation

$$
x^{2}+7=2^{n}, \quad(x, n \in \mathbb{N})
$$

has only the solutions $(x, n)=(1,3),(3,4),(5,5),(11,7)$ and $(181,15)$. In 1948, Nagell [4] verified the above conjecture. Let $k \in \mathbb{N}$ with $2+k$. Lewis [2] proved that the equation

$$
\begin{equation*}
x^{2}+7=k^{n}, \quad x, n \in \mathbb{N}, n>2 \tag{1}
\end{equation*}
$$

has at most two solutions (x, n). Moreover, if k is not a prime power, then (1) has no solution (x, n). In this note we discuss the solutions (x, y, n) of a general equation

$$
\begin{equation*}
x^{2}+7=y^{n}, x, y, n \in \mathbb{N}, n>2 . \tag{2}
\end{equation*}
$$

We prove the following results:
Theorem 1. Equation (2) has no solutions (x, y, n) with $2 \nmid y$.
Theorem 2. Equation (2) has only finitely many solutions (x, y, n) with $2 \mid y$. Moreover, all solutions (x, y, n) satisfy $n<5.10^{6}$ and $y<\exp \exp \exp 30$.
2. Lemmas. Let α be an algebraic number with minimal polynomial

$$
a_{0} z^{d}+a_{1} z^{d-1}+\ldots+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\sigma_{i} \alpha\right), \quad a_{0}>0
$$

where $\sigma_{1} \alpha, \ldots, \sigma_{d} \alpha$ are all conjugates of α. Then

$$
h(\alpha)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left(1,\left|\sigma_{i} \alpha\right|\right)\right)
$$

is called the logarithmic absolute height of α.
Lemma 1. Let α_{1}, α_{2} be non-zero algebraic numbers which are multiplicatively independent, and let $\log \alpha_{j}(j=1,2)$ be any non-zero determination of the logarithm of α_{j}. Further let D be the degree of $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$, and let

$$
A_{j}=\max \left(1, h\left(\alpha_{j}\right)+\log 2, \frac{2 e\left|\log \alpha_{j}\right|}{D}\right), \quad j=1,2 .
$$

[^0]If $\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2} \neq 0$ for some $b_{1}, b_{2} \in \mathbb{N}$ with $\max \left(b_{1}, b_{2}\right) \geq 10^{6}$, then we have

$$
\log |\Lambda| \geq-43 D^{4} A_{1} A_{2}(1+\log B+\log \log 2 B)^{2}
$$

where $B=\max \left(b_{1}, b_{2}\right)$.
Proof. Since $B \geq 10^{6}$, by the definitions in [3], we get $G>17.4895$. Therefore, we may choose $\theta=12, Z=3, c=9 \cdot 13, c_{0}=136 \cdot 89, c_{1}=2 \cdot 87$ and $C / Z^{3}=43$ by [3, Fig. 2]. Thus, by [3, Theorem 5.11], we obtain the lemma immediately.

For any algebraic number α, let $|\bar{\alpha}|$ be the maximum absolute value of the conjugates of α. Let K be an algebraic number field with the degree r, and let D_{K}, O_{K} be the discriminant and the ring of algebraic integers of K respectively. Further, let $F(X, Y)=$ $a_{0} X^{n}+a_{1} X^{n-1} Y+\ldots+a_{n} Y^{n} \in O_{K}[X, Y]$ be a binary form with the degree n.

Lemma 2 ([1, Corollary]). Let $b \in O_{K}$. If $n \geq 3$ and $F(X, Y)$ is irreducible in K, then all solutions (X, Y) of the equation

$$
F(X, Y)=b, \quad X, Y \in O_{K}
$$

satisfy

$$
\begin{gathered}
\log \max (|\bar{X}|,|\bar{Y}|)<(25(n+3) n r)^{15(n+3)}(n r)^{2(n r+1)} n^{7 n}\left(H^{r(n-1)}\left|D_{k}\right|\right)^{n / 2} \\
\left(\log \left(2 H\left|D_{k}\right|\right)\right)^{2 n r}\left(\left(H^{r(n-1)}\left|D_{k}\right|\right)^{n / 2}+\log |\bar{b}|\right),
\end{gathered}
$$

where $H=\max \left(\left|\bar{a}_{0}\right|,\left|\bar{a}_{1}\right|, \ldots,\left|\bar{a}_{n}\right|\right)$.
3. Proof of Theorem 1. Let $K=\mathbb{Q}(\sqrt{-7})$, and let h_{k}, O_{K} be the class number and the ring of algebraic integers of K respectively. Then we have $h_{K}=1$ and

$$
\begin{equation*}
O_{K}=\left\{\left.\frac{a+b \sqrt{-7}}{2} \right\rvert\, a, b \in \mathbb{Z}, a \equiv b(\bmod 2)\right\} . \tag{3}
\end{equation*}
$$

Let (x, y, n) be a solution of (2) with $2 \nmid y$. If $2 \mid n$, then we get $y^{n / 2}+x=7$ and $y^{n / 2}-x=1$, whence we obtain $y^{n / 2}=4$, a contradiction. So we have $2 \nmid n$.

From (2), we have

$$
\begin{equation*}
(x+\sqrt{-7})(x-\sqrt{-7})=y^{n} \tag{4}
\end{equation*}
$$

Since $2+y$ and $h_{K}=1$, we get $\operatorname{gcd}(x+\sqrt{-7}, x-\sqrt{-7})=1$, and by (4),

$$
\begin{equation*}
x+\sqrt{-7}=\left(a_{1}+b_{1} \sqrt{-7}\right)^{n} \tag{5}
\end{equation*}
$$

where $a_{1}, b_{1} \in \mathbb{Z}$ satisfy

$$
\begin{equation*}
a_{1}^{2}+7 b_{1}^{2}=y, \quad \operatorname{gcd}\left(a_{1}, b_{1}\right)=1 \tag{6}
\end{equation*}
$$

From (5), we have

$$
1=b_{1} \sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1} a_{1}^{n-2 i-1}\left(-7 b_{1}^{2}\right)^{i}
$$

whence we get $b_{1}= \pm 1$ and

$$
\begin{equation*}
\pm 1=\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}(-7)^{i} a_{1}^{n-2 i-1}=\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i}(-7)^{(n-1) / 2-i} a_{1}^{2 i} . \tag{7}
\end{equation*}
$$

Since $2 \nmid y$ and $-7 \equiv 1(\bmod 4)$, we see from (6) and (7) that $2 \| a_{1}$ and

$$
\begin{equation*}
\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i}(-7)^{(n-1) / 2-i} a_{1}^{2 i}=1 . \tag{8}
\end{equation*}
$$

Let $2^{\alpha} \| a_{1}$. If $n \equiv 3(\bmod 4)$, then we have

$$
2^{3}\left\|(-7)^{(n-1) / 2}-1, \quad 2^{2 \alpha}\right\| \sum_{i=1}^{(n-1) / 2}\binom{n}{2 i}(-7)^{(n-1) / 2-i} a_{1}^{2 i}
$$

It implies that (8) is impossible in this case. If $n \equiv 1(\bmod 4)$, let $2^{\beta} \| n-1$, then we have

$$
\begin{equation*}
2^{\beta+2}\left\|(-7)^{(n-1) / 2}-1, \quad 2^{2 \alpha+\beta-1}\right\|\binom{n}{2}(-7)^{(n-3) / 2} a_{1}^{2} \tag{9}
\end{equation*}
$$

Let $2^{v_{i}} \| 2 i$ for any $i \in \mathbb{N}$. Since $v_{i} \leq(\log 2 i) / \log 2 \leq 2(i-1)$ if $i>1$, we get

$$
\begin{equation*}
\binom{n}{2 i}(-7)^{(n-1) / 2-i} a_{1}^{2 i}=n(n-1)(-7)^{(n-1) / 2-i} a_{1}^{2}\binom{n-2}{2 i-2} \frac{a_{1}^{2(i-1)}}{2 i(2 i-1)} \equiv 0\left(\bmod 2^{2 \alpha+\beta}\right) \tag{10}
\end{equation*}
$$

Since $\beta+2 \neq 2 \alpha+\beta-1$, we find from (9) and (10) that (8) is impossible. Thus, the equation (2) has no solutions (x, y, n) with $2 \nmid y$.
4. Proof of Theorem 2. Let (x, y, n) be a solution of (2) with $2 \mid y$. By [4], it suffices to prove the theorem while y is not a power of 2 . Therefore, by the proof of Theorem 1, we have $2 \nmid n$.

From (2), we get

$$
\left(\frac{x+\sqrt{-7}}{2}\right)\left(\frac{x-\sqrt{-7}}{2}\right)=\frac{y^{n}}{4}
$$

Since $\operatorname{gcd}((x+\sqrt{-7}) / 2,(x-\sqrt{-7}) / 2)=1$, we see from (3) and (11) that

$$
\begin{equation*}
\left(\frac{3+\lambda \sqrt{-7}}{2}\right)\left(\frac{x+\sqrt{-7}}{2}\right)=\frac{1}{2}\left(\frac{3 x-7 \lambda}{2}+\frac{\lambda x+3}{2} \sqrt{-7}\right)=\left(\frac{a+b \sqrt{-7}}{2}\right)^{n}, \tag{12}
\end{equation*}
$$

where $\lambda \in\{-1,1\}$ which make $(3 x-7 \lambda) / 2, \quad(\lambda x+3) / 2 \in \mathbb{Z}$ with $\operatorname{gcd}((3 x-7 \lambda) / 2$, $(\lambda x+3) / 2)=1$, and $a, b \in \mathbb{Z}$ satisfy

$$
\begin{equation*}
a^{2}+7 b^{2}=4 y, \quad \operatorname{gcd}(a, b)=1 \tag{13}
\end{equation*}
$$

Let

$$
\begin{equation*}
\varepsilon=\frac{a+b \sqrt{-7}}{2}, \quad \bar{\varepsilon}=\frac{a-b \sqrt{-7}}{2} . \tag{14}
\end{equation*}
$$

We get from (12) that

$$
\begin{equation*}
\left(\frac{3-\lambda \sqrt{-7}}{2}\right) \varepsilon^{n}-\left(\frac{3+\lambda \sqrt{-7}}{2}\right) \vec{\varepsilon}^{n}=8 \sqrt{-7} \tag{15}
\end{equation*}
$$

Notice that $n \geq 3,[K: \mathbb{Q}]=2$ and $D_{K}=-7$. By Lemma 2, we obtain from (13), (14) and (15) that

$$
\begin{gather*}
\sqrt{y}=|\varepsilon|=\max \left(|\bar{\varepsilon},|\bar{\varepsilon}|)<\exp \left((50 n(n+3))^{15(n+3)}(2 n)^{2(2 n+1)} n^{7 n}\left(2^{2(n-1)} 7\right)^{n / 2}\right.\right. \\
\left.(\log 28)^{4 n}\left(2^{2(n-1)} 7\right)^{n / 2}+\log 8 \sqrt{7}\right) \tag{16}
\end{gather*}
$$

Let $i=\sqrt{-1}$,

$$
\begin{array}{cl}
\frac{3-\lambda \sqrt{-7}}{2}=2 e^{\phi_{1} i}, & \frac{3+\lambda \sqrt{-7}}{2}=2 e^{-\phi_{1} i}, \\
\varepsilon=\sqrt{y} 2 e^{\phi_{2} i}, \quad \bar{\varepsilon}=\sqrt{y} e^{-\phi_{2} i}, \tag{18}
\end{array}
$$

We see from (15) that

$$
\begin{equation*}
\sin \left(\phi_{1}+n \phi_{2}\right)=\frac{2 \sqrt{7}}{y^{n / 2}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\log \frac{3+\lambda \sqrt{-7}}{3-\lambda \sqrt{-7}}-n \log \frac{\varepsilon}{\bar{\varepsilon}}\right|=2\left|\phi_{1}+n \phi_{2}\right| . \tag{20}
\end{equation*}
$$

By (17), (18) and (19), we may choose ϕ_{1}, ϕ_{2} such that

$$
\begin{equation*}
\left|\phi_{1}\right|=\arctan \frac{1}{3}, \quad 0<\phi_{1}+n \phi_{2}<\pi . \tag{21}
\end{equation*}
$$

Then, by (19), (20) and (21), we have

$$
\begin{equation*}
\left|\log \frac{3+\lambda \sqrt{-7}}{3-\lambda \sqrt{-7}}-n \log \frac{\varepsilon}{\bar{\varepsilon}}\right|<\frac{8 \sqrt{7}}{y^{n / 2}} \tag{22}
\end{equation*}
$$

Let $\alpha_{1}=(3+\lambda \sqrt{-7}) /(3-\lambda \sqrt{-7})$ and $\alpha_{2}=\varepsilon / \bar{\varepsilon}$. By (13) and (14), α_{1} and α_{2} satisfy $4 \alpha_{1}^{2}-\alpha_{1}+4=0$ and $y \alpha_{2}^{2}-\left(a^{2}-7 b^{2}\right) \alpha_{2} / 2+y=0$ respectively. So we have $h\left(\alpha_{1}\right)=\log 2$ and $h\left(\alpha_{2}\right)=\log \sqrt{y}$. Since $[K: \mathbb{Q}]=2$, by Lemma 1 , if $n \geq 10^{6}$, then we have

$$
\begin{equation*}
\left|\log \frac{3+\lambda \sqrt{-7}}{3-\lambda \sqrt{-7}}-n \log \frac{\varepsilon}{\bar{\varepsilon}}\right| \geq \exp \left(-43.2^{4}(\log 4)(\log 2 \sqrt{y})(1+\log n+\log \log 2 n)^{2}\right) \tag{23}
\end{equation*}
$$

The combination of (22) and (23) yields

$$
\begin{equation*}
\log 8 \sqrt{7}+953 \cdot 8(\log 2 \sqrt{y})(1+\log n+\log \log 2 n)^{2}>n \log \sqrt{y} \tag{24}
\end{equation*}
$$

Since y is not a power of 2 , we have $y \geq 22$, and by (24),

$$
\begin{equation*}
2+1381 \cdot 6(1+\log n+\log \log 2 n)^{2}>n \tag{25}
\end{equation*}
$$

We conclude from (25) that

$$
n<5.10^{6}
$$

Substitute (26) into (16), we get $y<\exp \exp \exp 30$. The theorem is proved.

REFERENCES

1. K. Györy and Z. Z. Papp, Norm form equations and explicit lower bound for linear forms with algebraic coefficients, in Studies in Pure Mathematics, Akadémiai Kiadó, Budapest, 1983, 245-257.
2. D. J. Lewis, Two classes of diophantine equations, Pacific J. Math., 11 (1961), 1063-1076.
3. M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse Math. (5) 97 (1989), 43-75.
4. T. Nagell, The diophantine equation $x^{2}+7=2^{n}$, Norsk Mat. Tidsskr. 30 (1948), 62-64.
5. S. Ramanujan, Question 464, J. Indian Math. Sox. 5(1913), 120.

Department of Mathematics
Zhanjiang Teachers College
P.O. Box 524048

Zhaniang, Guangdong
P.R. China

[^0]: \dagger Supported by the National Natural Science Foundation of China and Guangdong Provincial National Science Foundation.

