
36

Four-quark correlators

We shall be concerned here with the two-point correlators associated with the four-quark
operators. These operators can describe a four-quark state but play also a crucial rôle for
describing the flavour changing �S = 1 for the �I = 1/2 rule processes of the weak
hamiltonian and the �S = 2 and �B = 2 for the K − K̄ and B − B̄ oscillations.

36.1 Four-quark states

The two-point function associated to the colour singlet operator:

O± = 1√
2

∑
�=1,γ5

s̄�s(ū�u ± d̄�d) (36.1)

has been evaluated in [465] to leading order in αs and including non-perturbative corrections.
It is shown in Fig. 36.1, and reads:
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(〈ūu〉2 + 〈s̄s〉2)

] }

−
(

8

3q2

)
ms〈s̄s〉〈ūu〉2 , (36.2)

which is free from non-local 1
ε

ln −q2/ν2 pole absorbed by the addition of evanescent
diagrams. The two-point correlator associated to the operator:

O± = 1√
2

∑
�=1,γ5

s̄�λas(ū�λau ± d̄�λad) , (36.3)

has been analysed in citeSN4Q and can be easily deduced from the former to leading order
using the Fierz transform.
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372 VIII QCD two-point functions
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Fig. 36.1. Feynman diagrams corresponding to the OPE of the four-quark correlator: (a) perturbative;
(b) quark condensate; (c) gluon condensate; (d) mixed condensate; (e) four-quark condensate.

36.2 �S = 1 correlator and �I = 1/2 rule

In these weak processes, the short-distance Hamiltonian can be described by the four-quark
operators Qi (x) obtained from the operator product expansion:

Heff = G F√
2

Vud V ∗
us

∑
i

Ci (µ
2)Qi , (36.4)

where Vuq are elements of the CKM mixing matrix, while Ci is the Wilson coefficient
obtained from pQCD calculation. The relevant two-point function for these processes is:

�(q2) ≡ i
∫

dx eiqx 〈0| T {Heff(x)Heff(0)†}|0〉

=
(

G F√
2

)2

|Vud V ∗
us |2

∑
i, j

Ci (µ
2) C∗

j (µ2) �i j (q
2) . (36.5)
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36 Four-quark correlators 373

This vacuum-to-vacuum correlator can be studied with perturbative QCD methods, al-
lowing for a consistent combination of Wilson-coefficients Ci (µ2) and two-point func-
tions of the four-quark operators, �i j , in such a way that the renormalization scheme and
scale dependences exactly cancel (to the computed order). The associated spectral function
1
π

Im��S=1(q2) is a quantity with definite physical information. It describes in an inclusive
way how the weak Hamiltonian couples the vacuum to physical states of a given invariant
mass. In the following we shall analyse the four-quark correlators but build a RS com-
bination that is useful for the physical processes. Here, we shall consider the correlators
associated to the �S = 1 operators:

Q1 = 4 (s̄Lγ µdL ) (ūLγµuL ) , Q2 = 4
(
s̄α

Lγ µdβ

L

)(
ūβ

Lγµuα
L

)
. (36.6)

It is usual to work in the diagonal basis:

Q± = 1

2
(Q1 ± Q2) , (36.7)

and to define the RS-invariant operators [476]:

Q̄± ≡
[
1 +

(αs

π

)
B±

]
Q± , (36.8)

where in the t’Hooft–Veltman (HV) and naı̈ve dimensional regularization (NDR) schemes
(see Chapter 8):

B H V
± = 7

8

(
±1 − 1

N

)
, B N DR

± = 11

8

(
±1 − 1

N

)
. (36.9)

In this basis, the corresponding correlator is:

�̄±± = 1

2

[
1 + 2

(αs

π

)
B±

]
[�11 ± �12] , (36.10)

and is RS-invariant.

1

π
Im�̄±±(s, µ2) = θ (s)
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1
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] }
, (36.11)

with:

A± = 2

45
N (N ± 1) . (36.12)

The coefficient of the logarithm is just equal to the leading-order anomalous dimensions
γ

(1)
± of Q±. Introducing the µ2-dependent Wilson coefficient:

C±(µ2) = αs(µ2)γ
(1)
± /β1

[
1 − αs(µ2)

4π
R±

]
, (36.13)
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374 VIII QCD two-point functions

where the NLO correction R± can be found in [476], it is possible to form the RGI spectral
functions:

1

π
Im�̂±±(s) = 1

π
Im�̄±±(s)C2

±(s) (36.14)

For N = 3 the two spectral functions read:

1

π
Im�̂++(s) = θ (s)

8
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) ]
,

1

π
Im�̂−−(s) = θ (s)

4

15

s4

(4π )6
αs(s)8/9

[
1 + 9139

810

(αs

π

) ]
. (36.15)

Taking αs(s)/π ≈ 0.1, at the NLO we find a moderate suppression of Im�̂++ by roughly
20%, whereas Im�̂−− acquires a huge enhancement on the order of 100%. Because Im�̂++
solely receives contributions from �I = 3/2, and Im�̂−− is a mixture of both �I = 1/2
and �I = 3/2, this pattern of the radiative corrections entails a strong enhancement of
the �I = 1/2 amplitude, which can provide a promising picture for the emergence of the
�I = 1/2–rule.

36.3 The �S = 2 correlator

Here, we shall consider the correlator associated to the �S = 2 operator:

O�S=2 = (s̄Lγ µdL ) (s̄LγµdL ) (36.16)

where:

ψL ≡ 1

2
(1 − γ5)ψ . (36.17)

We shall analyse its phenomenological application in the next chapter. The QCD expres-
sion of the spectral function reads [468]:

1

π
Im��S=2(t) = 1

(16π2)3

1

10

(
1 + 1

N

)
t4αs(t)−4/9

{
1 − A

(αs

π

)

− 40m̄2
s

t
− 20π2

t2
(16πms〈s̄s〉 − 〈αs G2〉)

}
. (36.18)

The coefficient of the perturbative correction is RS dependent. In [471], it has been shown
that one can define a RS invariant combination Q̂�S=2:

Q̂�S=2 ≡ αs(ν)γ�S=2/β1

[
1 −

(αs

π

)
Z
]

Q�S=2 , (36.19)

where Z depends on the regularization scheme used [475]; γ�S=2 is the anomalous dimen-
sion of the operator Q�S=2 defined as:

Q�S=2 ≡ 1

2

[O�S=2 + (
s̄α

Lγ µdβ

L

)(
s̄β

Lγµdα
L

)]
. (36.20)
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36 Four-quark correlators 375

It coincides with O�S=2 in the HV scheme since in HV Fierz symmetry is respected for
current–current operators while O�S=2 renormalizes into itself. This is not the case for the
NDR scheme where the γ5 matrix is naı̈vely anti-commuting while the rest of the calculation
is done in n-dimensions. Within this RS invariant combination one obtains [471]:

A = −3649

1620
, (36.21)

where the global effect reduces by about 20% the lowest-order result.

36.4 The �B = 2 correlator

We shall consider the two-point correlator:

ψ�B=2(q2) ≡ i
∫

d4x eiqx 〈0|T Oq (x)(Oq (0))†|0〉 , (36.22)

built from the �B = 2 weak operator Oq defined as:

Oq (x) ≡ (b̄γµLq)(b̄γµLq) , (36.23)

with: L ≡ (1 − γ5)/2 and q ≡ d, s. This correlator has been firstly evaluated to lowest
order in [472] in the case of massless light quark mass and including non-perturbative
corrections. The perturbative radiative corrections including non-factorizable corrections
have been obtained in [473]. The SU (3) breaking correction has been evaluated in
[474]. The lowest-order perturbative contribution for ms �= 0 to the two-point correlator is
[474]:

1

π
Imψ
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u
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.

(36.24)

Here δ ≡ m2
b/t and δ′ ≡ m2

s /t , respectively. The functions f (x, y) and g(x, y) are defined
by

f (x, y) ≡ 2 − x − y − (x − y)2 ,

g(x, y) ≡ 1 + x + y − 2(x − y)2 . (36.25)
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376 VIII QCD two-point functions

The function λ(x, y, z) is a phase space factor,

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx . (36.26)

We include the αs correction from factorizable diagrams to the ms contribution by using
the results for the two-point correlators of currents [477]. This can be done using the
convolution formula:

1

π
Imψ

αs
�B=2(t) = θ (t − 4(mb + ms)2) × t2

6π4

∫ (1−√
δ−√

δ′)2

(
√

δ+√
δ′)2

dz
∫ (1−√

z)2

(
√

δ+√
δ′)2

duλ1/2(1, z, u)

× {
Im�0

µν(zt)Im�αsµν(ut) + Im�αs
µν(zt)Im�0µν(ut)

}
(36.27)

Here �0
µν(q2) and �αs

µν(q2) are respectively the lowest and the next-to-leading order QCD
contribution to the two-point correlator �µν(q2) which is defined by

�µν(q2) ≡ i
∫

d4xeiqx × 〈0|T (b̄L (x)γµsL (x))(s̄L (0)γνbL (0))|0〉 . (36.28)

The quark condensate contribution reads:

1

π
Imψ s̄s

�B=2(t) = θ (t − 4(mb + ms)2)
1

384π3
ms〈s̄s〉

×
∫ (

√
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(mb+ms )2
dq2

1

√
λ1

(
4 + 2q2 ∂

∂q2

)

×
[√

λ0

{
λ1

(
1 + m2

b

q2
− q2

1

q2

)
q2

1
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(
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b

q2
+ q2

1

q2

) (
q2 − m2

b − q2
1

)}]
. (36.29)

Here λ0, λ1, and f1 are defined by

λ0 ≡ λ

(
1,

q2
1

q2
,

m2
b

q2

)
,

λ1 ≡ λ

(
1,

m2
b

q2
1

,
m2

s

q2
1

)
,

f1 ≡ 1 + m2
b

q2
1

+ m2
s

q2
1

− 2

(
m2

b − m2
s

)2

q4
1

. (36.30)

The gluon condensate contribution reads in the case ms = 0 [472]:

1

π
ImψG2

�B=2(t) = t2

(16π2)2

1

π
〈αs G2〉

∫ 1

x0

dx
∫ y+

y−
dy

× {−(�/2y2)[� − y(1 − y)][2xy + (1 − x)2(1 − y)]
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+ (δx/3y3)(1 − x)2(1 − y)3[2� − y(1 − y)]}

−
∫ (1−√

δ)2

δ

dz z(1 − δ/z)2λ1/2(1, z, δ) , (36.31)

where:

� ≡ δ(y/x + 1 − y) − y(1 − y) (36.32)

and the parametric integration limits are given by:

x0 = δ/(1 −
√

δ)2 ,

y± = 1

2
[1 + δ(1 − 1/x) ± λ1/2(1, δ, δ/x)] . (36.33)
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