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The current study investigates the global linear stability of a two-layer channel flow
with a train of solid particles flowing near the liquid–liquid interface. Three different
mechanisms of instability (shear, interfacial and migration modes) are identified, and their
interactions are examined. The interfacial instability, associated with the viscosity jump
at the liquid–liquid interface, is found to be coupled to the migration of the particle.
The stability of the flow configuration is evaluated for various governing parameters,
including fluid viscosities and flow rate ratios, particle position, inter-particle distance, and
Reynolds and capillary numbers. Our numerical results are compared with the particle-free
flow configuration, indicating that the presence of the particle in the more viscous fluid
promotes the destabilization of the interface. Remarkably, under certain flow parameters,
the presence of the particle stabilizes the interface when flowing in the less viscous
liquid. The impact of particles is more significant as the capillary number increases or
the Reynolds number decreases.
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1. Introduction

The study and control of liquid–liquid interfaces in microfluidic devices has profound
applications in a wide variety of fields, spanning engineering (Magnaudet & Mercier
2020), bio-engineering (Hütten et al. 2004) and chemistry (Ruiz-Martín et al. 2022a).
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Nowadays, there is increasing interest in the development of particle sorting devices,
required in many medical and biological situations. Thus the motion of particles crossing
or flowing near the liquid–liquid interface of immiscible fluids has attracted significant
attention recently, with several studies trying to understand different aspects of the
dynamics of the particles (Lee et al. 2010; Sinha et al. 2013; Moon et al. 2014; Ruiz-Martín,
Rivero-Rodriguez & Sánchez-Sanz 2022b). The stability of the fluid flow is, however,
crucial to predict the dynamics of the dispersed objects. In this paper, we investigate the
stability of viscosity-stratified immiscible liquids co-flowing in a channel with a train of
particles in one of the layers. The influence of the train of particles on the linear stability
of the liquid–liquid interface remains unknown, and will be in the scope of this work.
To evaluate the global stability of the flow, we will consider a two-dimensional physical
space and perform a linear instability analysis in which two spatial directions are resolved
and a time-periodic small-amplitude disturbance is superimposed upon a steady O(1)
two-dimensional basic state. The flow will be said to be globally stable if it is stable to
all finite-amplitude perturbations (Theofilis 2003).

Most particle separation strategies rely basically on the understanding of the migration
forces acting on the dispersed objects (see e.g. Pamme 2007). Xuan et al. (2022)
investigate the control of the transverse position of different typical particles flowing in a
microchannel via a unilateral slip boundary condition, which adjust the parabolic velocity
profile. Rinehart et al. (2020) demonstrate that slip inhomogeneities induce a lift force,
such that the transition from slip to no-slip boundary conditions leads to the particles
moving away from the boundary. In the two-layer flow studied in this paper, this slip
boundary effect is equivalent essentially to regulating the viscosity stratification when the
particle travels in the less viscous layer.

The presence of a train of particles flowing in the two-layer flow introduces a new
instability mechanism, via the migration of the particle, that might interact with other
instability mechanisms to stabilize or destabilize the interface. This effect, never studied
before, constitutes the main goal of this paper. Previous work is limited basically to the
study of the particle migration stability and to the study of the stability of self-assembled
particles in a single-phase flow. Yan, Morris & Koplik (2007), for example, studied
numerically the stability of particle pairs in a linear shear flow. Imposing periodic
boundary conditions, they demonstrated that two solid particles migrating from symmetric
initial conditions can reach asymptotically mirror image limit cycles. Their results
indicated that streamwise periodicity can lead to uniform inter-particle distance. Later, Lee
et al. (2010) investigated, from an experimental point of view, the formation and stability of
longitudinal self-assembly of particles flowing in channels, uncovering the hydrodynamics
mechanism that enables to maintain the inter-particle distance.

Previous studies on the field of the interfacial stability of two-phase flows in the presence
of particles are practically non-existent. Hazra et al. (2022) examine the interplay of
droplet migration and the deformation of two co-flowing immiscible liquids. Their study
predicts the convective instability of the flow, with interface deformations induced by the
droplet growing spatially downstream, whereas constant amplitudes are observed at a fixed
location for a train of particles. Regarding rigid particles, the only related papers that we
found in the literature are those by Khavasi, Firoozabadi & Afshin (2014) and Khavasi &
Firoozabadi (2019). The former considered the linear stability of particle-laden stratified
shear flows. Yet the authors considered single-phase flows, with stratification due only to
the presence of the particles. The latter work analysed the linear spatial stability of the
particle-laden stratified shear layer considering, again, that the flow was not affected by
the presence of the particles.
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Particle impact on the stability of two-layer channel flows

The main goal of this work is to study precisely the effect that the presence of particles
in one of the fluids might have on the stability of the fluid–fluid interface. To do so, we
will identify first the different instability modes to evaluate, and later, their interactions.
Following the nomenclature introduced by Boomkamp & Miesen (1996), Yiantsios &
Higgins (1988) and Charru & Hinch (2000), the instability mechanism associated with
the different modes can be divided into three types, which are listed below.

In the first place, we find the migration of the particles. This mode has been
analysed thoroughly in Ruiz-Martín et al. (2022b), assessing the stable or unstable
character of the potential particle positions for different flow parameters. The onset
of the migration instability is associated with an imperfect pitchfork bifurcation that
takes place when a small change in the value of one parameter around a well-defined
threshold triggers a modification on the state of the system. For a train of particles flowing
in a single-phase channel, Rivero-Rodriguez & Scheid (2018) showed the existence of
imperfect pitchfork bifurcations of the particle position, with the inertial migration force
as the imperfection, and the particle diameter as the varying parameter. In particular,
pitchfork bifurcations correspond to steady-state bifurcations between fixed points, as
opposed to Hopf bifurcations in which a steady-state solution evolves towards a limit
cycle oscillation about the former steady state (see e.g. Seydel 2009; Iooss & Joseph 2012;
Strogatz 2018). Indeed, for small Reynolds number, the damping effect of viscosity leads to
overdamped modes for the migration of the particle in which a particle that moves slightly
from its equilibrium position is dragged back to equilibrium without oscillation. This, as
we will show below, gives zero imaginary part for the eigenvalue of the linear perturbation
of the base flow, and provides a method to identify the migration mode among the infinite
number of eigenvalues existing when inertia is present.

In the second place, we identify shear instability. This mode is a short-wavelength
instability of the Tollmien–Schlichting type linked to shear effects, and appears only at
sufficiently large Reynolds numbers Re. For the small Reynolds numbers considered in
this work, this mode will always be stable with the real part of the eigenvalues negative
and of the order O(Re−1).

Finally, we find interfacial mode instability, which is in the scope of this study. The
interplay between the liquid–liquid interface and the hydrodynamics of the particle
represents a complex phenomenon still to be understood, particularly concerning its impact
on flow stability and interface behaviour. As we show later in the text, for the set of flow
parameters considered in this work, this mode can be identified by looking at eigenvalues
with positive real part and non-zero imaginary part. In the absence of the particles in
the flow, the stability of the interface formed by two superposed liquids with different
viscosities in plane Poiseuille flow was examined thoroughly by Yiantsios & Higgins
(1988). In this work, the authors extended the analysis provided in the seminal work
of Yih (1967), developing an asymptotic solution in the limit of very long waves, and
demonstrating that the flow can be unstable to an interfacial wave regardless of how
small the Reynolds number is. The conditions for the growth of the interfacial wave were
also investigated in terms of the viscosity ratio, the thickness ratio, the density ratio and
the Reynolds and capillary numbers. For density ratio equal to unity, they showed that
the interfacial mode is neutrally stable when the thickness ratio is equal to the square
of the viscosity ratio. For larger values of the thickness of the more viscous fluid, long
waves are stable but short waves are not. As the more viscous layer narrows, the situation
is reversed and the interface becomes unstable to long-wavelength perturbations. This
phenomenon is known as the thin-layer effect and has been analysed previously by Hooper
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Figure 1. Schematics of the flow configuration, including the geometrical and fluid-dynamical relevant
parameters. The centre panel refers to the general problem, and the right-hand panel to the linearized
configuration.

(1985) and Renardy (1985), among others. Yiantsios & Higgins (1988) also demonstrate
that the stabilizing effect of surface tension decreases as the wavelength of the perturbation
becomes larger, with surface tension being negligible in the asymptotic limit of very
long waves. In the present work, we will examine the influence that the presence of a
train of particles in one of the liquids has on the conditions for the growth of interfacial
disturbances.

The paper is structured as follows. In § 2, we describe the mathematical formulation
of the problem. First, the non-dimensional equations and boundary conditions for the
base-state undisturbed flow are presented, followed by the formulation of the linear
stability problem. Also, this section includes a description of the numerical method for
solving the eigenvalue problem. The different instability mechanisms are presented in § 3,
describing the specific features of each one that will allow us to identify them. Henceforth,
the paper focuses on the interfacial mode, discussing the effect of the migrating train of
particles. Relevant numerical results for different flow parameters are illustrated in § 4.
We first study the influence of the particle position and inter-particle distance, and next
we vary the Reynolds and capillary number. An overview of our new findings is given
in § 5. To verify our numerical method, Appendix A illustrates the agreement of our
linearized results with the local stability analysis of the two-layer channel flow, the solution
for the migrating particle in a single-phase channel, or the temporal evolution of the
perturbed base-state flow computed integrating the fully coupled equations. Appendix B
contains mathematical details of the linearized boundary conditions at the perturbed
particle surface and fluid–fluid interface. Finally, the interaction of the different instability
mechanisms is investigated in Appendix C. To do so, the contribution of each mode is
assessed by cancelling successively some artificial parameters introduced in the linearized
equations.

2. Formulation of the problem

We consider the flow of two superposed immiscible liquids co-flowing in a
two-dimensional channel with height h, as depicted in figure 1, carrying volumetric
flow rates Q1 and Q2, respectively. The total volumetric flow rate of the two liquids
is Q = Q1 + Q2, and we assume that the liquids have equal density ρ = ρ1 = ρ2, but
different viscosities μ1 /=μ2, with subscripts i = 1 and i = 2 referring to the lower and
upper fluids, respectively.
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Particle impact on the stability of two-layer channel flows

The interface separating the fluids is located at y = Γ , and it is described by the function
Γ = Γ (x) defining each fluid domain Vi, as indicated in figure 1. Immersed in fluid 2,
we consider a train of particles with the same diameter d that travels with a downstream
constant velocity V while maintaining a constant rotational velocity Ω around the centre
of the particle.

As suggested by the experimental observations by Lee et al. (2010), the particles form
a periodic flow structure with a single line in which each particle is separated from its
closest neighbour by a distance L and has negligible inertia.

To describe the dynamics of the system, we use a reference system attached to a
particle that moves at its terminal velocity V so that the centre of the particle is located
at xp = ypey. The transverse location of the particle yp depends on the intensity of the
uniform volumetric force f acting on both liquids. This relation is explored thoroughly in
Ruiz-Martín et al. (2022b).

2.1. Transient problem
To write the problem in non-dimensional form, we use the channel height lc = h, the
average velocity uc = Q/h, the residence time tc = h2/Q, and pc = μ2Q/h2, as the
characteristic length, velocity, time and pressure. Hereafter, all new variables refer to
non-dimensional variables, and those introduced previously refer to their non-dimensional
counterparts scaled with their characteristic values defined above.

Using this scaling, the dimensionless density and surface tension are the Reynolds
number Re = ρQ/μ2 and the inverse of the capillary number Ca = μ2Q/γ h. With these
non-dimensional variables, the continuity and momentum equations yield

∇ · vi = 0, (2.1)

Re
(
∂vi

∂t
+ vi · ∇vi

)
= ∇ · T̂ i, (2.2)

with the reduced stress tensor given by T̂ i = −p̂iI + μ(∇vi + ∇vT
i ), and vi and p̂i the

velocity and reduced pressure of fluid i, respectively. The viscosity ratio is μ = μ1/μ2 if
y < Γ , and μ = 1 if y > Γ .

To simplify the formulation and computation of the problem, (2.1)–(2.2) are written in
terms of the reduced stress tensor T̂ i, with the reduced pressure field defined in terms of the
pressure pi and the external force, p̂i = pi − f · (x − xp). The uniform volumetric force f
that is acting on both liquids is assumed to have only non-zero vertical component f = f ey.
Introducing the stress tensor T i = −piI + μ(∇vi + ∇vT

i ) in (2.2), and taking into account
that T̂ i = T i + f · (x − xp)I , we would recover the momentum equation written in the
traditional way.

To simplify the characterization of the position of the interface and the particle in order
to carry out the computation and interpretation of the results, we define the normalized
positions of the particle and the interface, ξ = [yp − (ΓL/2 + d/2)]/[1 − (d + ΓL/2)] and
η = ΓL/2/(1 − d), with ΓL/2 = Γ (L/2). The variable ξ is in the range 0 ≤ ξ ≤ 1, and the
two extreme values of ξ correspond to the particle touching the interface yp = ΓL/2 + d/2
when ξ = 0, or the channel wall yp = 1 − d/2 when ξ = 1, respectively (see figure 2). The
normalized position of the interface 0 ≤ η ≤ 1 defines the extreme cases in which only
fluid 2 runs through the channel (η = 0) and in which the particle is squeezed between the
interface and the upper wall (η = 1), as illustrated in figure 2.
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Figure 2. Definitions of the normalized positions (a,b) of the particle ξ with arbitrary η, and (c,d) of the
interface η.

2.2. Boundary conditions of the transient problem
The system of equations given by (2.1)–(2.2) is subject to the following boundary
conditions. First, we enforce equilibrium of forces on the particle and assume
that the particle inertia is negligible,

∫
Σp

T 2 · np dΣ = 0. After substituting the
stress tensor by its reduced counterpart and using Gauss’s theorem to write∫
Σp

f · (x − xp)np dΣ = ∫
Vp

∇{ f · (x − xp)} dV = Vp f , this condition reads∫
Σp

T̂ 2 · np dΣ = Vpf , (2.3)

with np the unit vector normal to the particle pointing towards the fluid, and Vp the volume
occupied by the particle. Thus the external force f acting on the liquids can also be
understood as the volumetric migration force acting on the particle with hydrodynamics
origin. Note that the vector equation (2.3) determines the terminal velocity V and the body
force f .

Furthermore, on the surface of the particle, we also impose the torque balance and the
no-slip condition, considering that the particle moves as a rigid solid:

0 =
∫
Σp

ez ·
{

T̂ 2 × (x − xp)
}

· np dΣ, (2.4a)

v2 = Ω × (x − xp)+ dxp

dt
at Σp, (2.4b)

where ez = ex × ey, and the rotation occurs within the plane with rotational velocity Ω =
Ωez.

No-slip boundary conditions are imposed at the channels walls y = 0 and y = 1, i.e.

v = −Vex, (2.5)

whereas at the borders of the computational domain x = ±L/2, we assume periodic
boundary conditions

v|L/2 = v|−L/2 , ∂xv|L/2 = ∂xv|−L/2 , p|L/2 = p|−L/2 −
p. (2.6a–c)
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Particle impact on the stability of two-layer channel flows

The problem under study is a pressure-driven flow, with the pressure drop 
p being
equal to the corresponding value for the Poiseuille flow plus a correction term due to the
presence of the particle. This pressure drop is unknown initially, and it is calculated as
part of the solution after the position of the particle is imposed. To calculate 
p and the
location of the interface position Γ , we enforce the total flow rate 1 = Q1 + Q2 and the
flow rate ratio Q1/Q2 such that∫ Γ

0
(u1 + V) dy +

∫ 1

Γ

(u2 + V) dy = 1, (2.7)

∫ Γ

0
(u1 + V) dy = Q1

Q2

∫ 1

Γ

(u2 + V) dy, (2.8)

where it has been taken into consideration that the average velocity has been chosen as
the characteristic velocity to render the problem non-dimensional. Once μ1/μ2 and η are
chosen, there is only a value of Q1/Q2 that satisfies mass conservation Q1 + Q2 = 1.

The implicit equation q(x, y, t) ≡ Γ (x, t)− y = 0 is used to describe the evolution of
the interface. Because q = 0 defines the interface at all times, the material derivative must
satisfy

∂q
∂t

+ v · ∇q = 0 at Γ. (2.9)

Then the unit vector normal to the surface Γ pointing from fluid 2 towards fluid 1 is
defined using the function q as n = ∇q/|∇q| = (Γxex − ey)/

√
1 + Γ 2

x .
Additionally, at the fluid–fluid interface, we also impose the continuity of velocities and

the jump condition on the stress tensor,

[v] = 0, (2.10a)

n · [T̂ ] = Ca−1 (−n ∇ · n) at Γ, (2.10b)

with the bracket operator indicating the jump of the variable included between them, e.g.
[L] = L2 − L1. Note that [T̂ ] has been used, since [T ] = [T̂ ].

2.3. Global linear stability problem
To initiate the analysis, we calculate the steady-state solution of the problem’s variables
p̂i,0, vi,0, Γ0,V0,Ω0, f ,
p for a given position of the particle xp,0 by integrating the
system of equations described in the previous subsection without the unsteady terms in
(2.2), (2.4b) and (2.9). This steady-state solution, denoted by the subscript 0, was studied
by Ruiz-Martín et al. (2022b). To perform a global stability analysis, we superimpose
a time-periodic small-amplitude disturbance upon this steady two-dimensional solution.
The flow will be said to be globally stable if it is stable to all finite-amplitude perturbations
(Theofilis 2003).

To carry out the stability analysis, we perturb both the interface and the position
of the particle. To do so, we start by introducing a small normal disturbance δn0 to
the unperturbed fluid–fluid interface Γ0, such that x + δn0 ∈ Γ for x ∈ Γ0, where Γ
represents the perturbed interface. Similarly, the position of the centre of mass of the
particle is perturbed as xp = xp,0 +
xp, such that xp is the centre of mass ofΣp, and xp,0
is the centre of mass of Σp,0, where 
xp is a small vertical displacement of the particle
such that 
xp · ex = 0. Alternatively, it is sometimes more convenient to consider the
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normal displacement of the surface δp, such that x + δpn0 ∈ Σp for x ∈ Σp,0, which also
lies on the perturbed surface as long as δp = 
xp · n0, where n0 = −np is the normal of
the unperturbed surface.

Notice that δ and 
xp are a priori unknown and will be determined as part of the
calculation process. For this reason, to impose the boundary conditions at the perturbed
geometry, our resolution strategy starts by writing (2.3), (2.4a) and (2.4b) for the particle,
and (2.9) and (2.10) for the interface on the unperturbed geometry (see Appendix B for
a detailed explanation of this step). After doing this, in a second step, we perform the
stability analysis for the variables by introducing the expansion

ψ(x, t) = ψ0(x)+ ε eλt ψ1(x), (2.11a)

δ(x, t) = ε eλt δ1(x), (2.11b)

δp(x, t) = ε eλt δp,1(x), (2.11c)

xp(t) = xp,0 + ε eλt xp,1, (2.11d)

where ψ = {p̂i, vi, Γ,V,Ω}, and the subscript 0 indicates the steady-state values
of the corresponding variables. The small vertical displacement of the particle is

xp = ε eλt xp,1 with xp,1 · ex = 0, and the amplitude of the perturbation is small,
ε eλt � 1. Additionally, δp,1 = xp,1 · n0 is the first-order displacement of the particle in
the direction normal to Σp,0. Notice that neither 
p nor f is expanded.

The eigenvalue λ = λr + iλi is a complex number, with its real λr and imaginary λi
parts representing the perturbation’s growth rate and its oscillation frequency, respectively.
The base flow is then unstable when the real part of at least one eigenvalue is positive,
λr > 0. Unlike Salgado Sánchez (2020), we do not consider perturbations in the value of
the volumetric force f , which is why this variable is not in the list of expanded variables
in (2.11). Note that for a generic variable ψi,j, the subscript j = 0 represents the base
state, while j = 1 represents the linearized variable. The subscript i has been defined
previously to refer to the lower layer when i = 1 and the upper layer when i = 2. Thus
v1,0, v1,1 are the velocity fields of the lower liquid for the unperturbed and linearized
problems, and v2,0, v2,1 represent the base-state and perturbed velocities corresponding to
the upper liquid. Subsequently, the jump of the variable across the interface is denoted as
[L]j = L2,j − L1,j.

Substituting (2.11a) in the dimensionless Navier–Stokes (NS) equations, we obtain for
order O(ε) the following system for the linearized problem:

∇ · vi,1 = 0, (2.12)

Re (αNSλvi,1 + vi,0 · ∇vi,1 + vi,1 · ∇vi,0) = ∇ · T̂ i,1, (2.13)

with T̂ i,1 = −p̂i,1I + μ(∇vi,1 + ∇vT
i,1) the perturbed reduced stress tensor at first order.

The artificial parameter αNS is introduced in the equation to study the contribution of the
shear mode on the interfacial stability (see Appendix C). In all calculations shown below,
αNS = 1, with αNS = 0 only in Appendix C to identify the influence of this term in the
development of the instability.
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Particle impact on the stability of two-layer channel flows

2.4. Boundary conditions of the stability problem
This subsection describes the boundary conditions to be imposed in the perturbed problem.
To facilitate the reading of this subsection, the algebra has been reduced to a minimum.
The interested reader can find all mathematical details in the Appendix B.

As explained above, we perturb the position of the particle by introducing a small
displacement 
xp. The perturbed position of the particle xp is unknown and will be
obtained as part of the calculation process. Consequently, the boundary conditions (2.3),
(2.4a) and (2.4b) cannot be imposed explicitly. To circumvent this difficulty, we followed
the methodology developed by Rivero-Rodriguez, Perez-Saborid & Scheid (2018) to write
these boundary conditions referred to the unperturbed particle’s position xp,0. This process
resulted in (B3), (B5) and (B6), respectively, as outlined in detail in Appendix B. Once
this is done, we introduce the expansion (2.11) in (B3), (B5) and (B6) to give the boundary
conditions at the surface of the particle to first order in ε:∫

Σp,0

(
n0 · T̂ 2,1 + Re δp,1v2,0 · ∇v2,0

)
dΣ = 0, (2.14a)

∫
Σp,0

ez ·
{(

n0 · T̂ 2,1 + δp,1 Re v2,0 · ∇v2,0

)
× (x − xp,0)− n0 · T̂ 2,0 × xp,1

}
dΣ = 0,

(2.14b)

v2,1 + δp,1n0 · ∇v2,0 = Ω1 × (x − xp,0)+ Ω0 × (δp,1n0 − xp,1)+ αελxp,1 at Σp,0.
(2.14c)

The artificial parameter αε takes the value αε = 1 in all cases except in Appendix C,
when we evaluate the effect of the migration mode in the solution of the linearized system
and we impose αε = 0.

Next, the velocities at the upper and lower walls, y = 1 and y = 0, are also expanded:

vi,1 = −V1ex, (2.15)

where i = 1 for the lower wall, and i = 2 for the upper one. The perturbation in the
particle’s position in the horizontal direction is considered through a perturbation of the
terminal velocity that keeps the inter-particle distance L constant to conserve the periodic
character of the problem. Periodic boundary conditions are expanded as well:

vi,1
∣∣
L/2 = vi,1

∣∣−L/2 , ∂xvi,1
∣∣
L/2 = ∂xvi,1

∣∣−L/2 , pi,1
∣∣
L/2 = pi,1

∣∣−L/2 . (2.16a–c)

Additionally, it is worth mentioning that the pressure drop 
p has not been expanded.
Following the same procedure as with the particle, the interface separating the fluids is

perturbed by applying a normal differential displacement δn0 that creates a volume as a
result of the displacement of the interface from Γ0 to its perturbed position Γ (x, t), where
the boundary conditions of the problem must be enforced. To do so, we write the boundary
conditions referred to their unperturbed counterpart Γ0, and we substitute the perturbation
(2.11) in the resulting equations (B7), (B10) and (B11). Collecting terms of first order, the
kinematic condition (2.9), the continuity of velocities (2.10a) and the stress balance (2.10b)
can be written as

v2,1 · n0 − DS · (δ1v2,0) = αδλδ1 at Γ0, (2.17a)

[v]1 + δ1n0 · ∇[v]0 = 0 at Γ0, (2.17b)

[T̂ ]1 · n0 − DS ·
(
δ1[T̂ ]0

)
+ Re δ1[v · ∇v]0 = Ca−1 DS · B1 at Γ0, (2.17c)

982 A23-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.114


D. Ruiz-Martín, J. Rivero-Rodríguez and M. Sánchez-Sanz

Parameter Value

Reynolds number Re = ρQ/μ2 0.05 ≤ Re ≤ 30
Capillary number Ca = μ2Q/γ h 10−3 ≤ Ca−1 ≤ 106

Density ratio ρ = ρ1/ρ2 1
Viscosity ratio μ = μ1/μ2 0.01 ≤ μ ≤ 10

Particle position ξ = [yp − (ΓL/2 + d/2)]
[1 − (d + ΓL/2)]

0 < ξ < 1

Interface position η = ΓL/2/(1 − d) 0 < η < 1
Inter-particle distance L 5 ≤ L ≤ 40

Table 1. Relevant non-dimensional parameters.

where DS · b = ∇S · b − (∇S · n)n · b and ∇Sb = (I − nn) · ∇b for any arbitrary
vectorial or tensorial field b. The tensor B1 is the first term of the perturbation of the
rotation tensor B = nS0nS, with nS0 and nS the tangential vectors to the unperturbed
Γ0 and perturbed interface Γ . As particularized from the three-dimensional case given
in Rivero-Rodriguez et al. (2018), the tangential vector reads nS = nS0 + nS0 · (∇Sδ)n0,
to give, after using the expansion (2.11b), the term of order O(ε) of the rotation tensor
B1 = (∇Sδ1)n0 (Ruiz-Martín et al. 2022b). The contribution of the interfacial mode on
the stability of the flow is evaluated by introducing the artificial parameter αδ , which takes
the value αδ = 0 only when we study the importance of this term in the stability of the
interface (Appendix C).

2.5. Numerical method
Once the problem is formulated in non-dimensional form, and taking into account that
the size of the particle is set constant and equal to d = 0.2, it is possible to identify the
parametric dependence of the variables of the base-state problem ψ0, f , 
p with μ1/μ2,
Re, Ca, η, ξ and L.

The functional dependence will be obtained by integrating numerically the system of
equations detailed above in (2.1)–(2.2). Table 1 provides the range of variation of the
values of the non-dimensional parameters. After imposing the parameters of the problem,
the flow variables ψ are calculated simultaneously using a Newton’s iterative method that
continues until the error is below 10−6 (see Ruiz-Martín et al. 2022b).

Once the base flow has been computed, we can solve the linearized system of equations
formed by (2.12) and (2.13) with the boundary conditions (2.14), (2.15), (2.16a–c) and
(2.17), such that one obtains the eigenfunctions of the velocity vi,1 and pressure fields p̂i,1,
the correction for the terminal V1 and rotational Ω1 velocities, particle displacement xp,1
and interface displacements δ1 along with the eigenvalues λ.

The system of equations is solved using the finite element method implemented in
Comsol Multiphysics. Linear Lagrangian elements have been used for pressure, and
quadratic Lagrangian elements for the rest of the variables. The liquid–liquid interface
at zeroth order has been solved with the help of the arbitrary Lagrangian Eulerian method
also implemented in the software.

3. Migration, shear and interfacial modes

According to the classification introduced by Boomkamp & Miesen (1996), the unstable
character of the flow studied here can be associated with three different mechanisms: the

982 A23-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.114


Particle impact on the stability of two-layer channel flows

1.0 2.5 0.3

0.2

0.1

0

–0.1

–2.5

–5.0

–7.5

–10.0

–12.5

–15

0

3

2

1

0

–1

–2

0.5

–0.5

–1.0

–1.5

–2.0

–2.5
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0

(×10–3) (×10–3)(×10–2)
λ

r| m
ig

f0

ξ ξ

S U S U S U

(a) (b)

Figure 3. Evolution of the migration eigenvalue λr|mig (red dashed line) and the body force f0 (blue
dash-dotted line) with the particle position ξ for (a) μ1/μ2 = 10, η = 0.45, Ca−1 = 104, and (b) μ1/μ2 = 0.1,
η = 0.15, Ca−1 = 100. Circle markers indicate critical points (λr = 0), and square markers correspond to
transition points (∂ξ f0 = 0). The Reynolds number is Re = 0.05, and the inter-particle distance is L = 5. Letters
S and U denote the stable and unstable regions, respectively.

shear of the flow, the liquid–liquid interface and the particle migration. The nature of
the different modes will be evaluated by examining the real and imaginary parts of the
eigenvalues, and their dependency on the Reynolds and capillary numbers.

First, we discuss the migration mode. At low values of the Reynolds number Re �
1, the eigenvalues corresponding to the particle migration λ = λ|mig are overdamped
(λi|mig = 0). Consequently, any combination of parameters in which λr > 0 would evolve
towards a new fixed point following a short and non-oscillating transient. In particular,
the transition from stable to unstable migration modes corresponds to the existence of
pitchfork bifurcations in the particle position ξ (Rivero-Rodriguez et al. 2018; Ruiz-Martín
et al. 2022b).

To check this point, we plot in figure 3 the evolution of the real part of the migration
eigenvalue λr|mig and the force acting on the particle in terms of the particle position ξ .
This figure includes the critical particle positions ξc (red filled circles), defined as the
particle positions at which the real part of the eigenvalue vanishes, to compare them with
the transition positions obtained previously in Ruiz-Martín et al. (2022b) as ∂ξ f0 = 0 (blue
filled squares). In all cases, the imaginary part of the eigenvalue was checked to be equal
to zero.

The shear mode instability, which belongs to the modes of Tollmien–Schlichting type,
is dominated by inertia and hence appears only at sufficiently high Reynolds number
(see e.g. Hooper & Boyd 1987; Drazin & Reid 2004). For small Reynolds numbers, as
those considered in this work, shear eigenmodes are then stable. Considering that Re � 1,
we can identify shear mode eigenvalues by considering that convective terms are negligible
and shear mode eigenvalues λr ∼ Re−1 are necessary for the unsteady term to match the
order of magnitude of volumetric force term (see (2.13)).

For the set of flow parameters considered here, the interfacial instability can be identified
as those eigenvalues with positive real part and non-zero imaginary part. The aim of this
work is precisely to analyse the interfacial mode instability under the influence of the
migration of the train of particles.
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The interaction of the different instability modes presented here is investigated in
Appendix C by cancelling successively the artificial parameters α introduced previously.
We conclude that the migration mode, associated with equilibrium solutions, is uncoupled
from the other instability mechanisms and can be studied separately, whereas the
interfacial instability is found to be coupled to the migration of the particle.

4. Interfacial mode: results and discussion

The numerical results obtained for the interfacial mode are presented here. When inertial
effects are taken into account, there exists an infinite number of modes, and consequently
we need to obtain a sufficiently large number of eigenvalues to assess accurately the
stable (S) or unstable (U) character of the interfacial mode. In particular, for each set
of fluid parameters, we obtained a total of 45 different eigenvalues, some of which are
spurious modes that can be filtered out by repeating the calculations twice with a different
computational grid. Once this is done, the eigenvalue with zero imaginary part is identified
as the migration mode, as we demonstrated above. Eigenvalues corresponding to the shear
instabilities are of order λr ∼ Re−1 and are identified easily when the Reynolds number
is small (Re = 0.05 in our calculations). Once these two modes are identified, and for the
set of fluid parameters analysed here, we can consider the rest of the eigenvalues with
non-zero imaginary part as those controlling the stability of the interface, therefore we
focus on the eigenvalue with the largest real part.

As we specified in the formulation in § 2.3, the perturbation of all variables is considered
periodic in the portion of channel of length L separating two different particles, so that
the particle interaction induced by perturbations whose region of influence includes more
than one particle is not considered. Also, the presence of the particle modifies the position
of the interface, and for constant flow rates ratio Q1/Q2, the position of the interface η
for the problem with and without particles might differ. For this reason, and to facilitate
the comparison of our computations with previous results, in this section we use Q1/Q2
instead of η as the parameter controlling the height of each fluid layer.

4.1. Particle position effect
To examine the influence of the particle position on the stability of the interface, we show
in figure 4 the neutral stability diagrams in the L–ξ parametric space for different viscosity
and flow rate ratios. In this figure, vertical solid lines represent the value of L beyond which
the interface is unstable in the case with no particle. In particular, figure 4(b) shows that
when the particle is immersed in the most viscous liquid (μ1/μ2 = 0.10), the presence of
the particle has a clear destabilizing effect, narrowing the combination of parameters for
which the interface is stable.

Interestingly, this figure illustrates how the particle can stabilize the interface when
μ1/μ2 = 10. As shown in Yiantsios & Higgins (1988), the two-phase Poiseuille flow
becomes unstable to long-wavelength perturbations when the thickness of the most viscous
fluid is sufficiently low (thin layer effect). Remarkably, when the particle travels in the less
viscous fluid (μ1/μ2 = 10), an increment of the volumetric flow rate shifted the unstable
modes towards the cases in which the particle is close to either the interface ξ < 0.2 or
the upper wall ξ > 0.6 (see figure 4). In this case, intermediate values 0.2 < ξ < 0.6
seem to be stable, λr < 0, with the presence of the particle stabilizing the interface for
L > 26. For instance, the interface is stable for Q1/Q2 = 1.68 and L > 26 (blue line
in figure 4a) when the particle is located at 0.30 < ξ < 0.60, with this region being
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Figure 4. Neutral stability diagram in the ξ–L plane (dashed lines) and comparison with the particle-free value
of L beyond which the interface is unstable (vertical solid lines) for Re = 0.05, Ca−1 = 1 for different η values,
or equivalently flow rate ratios (see table 2), with (a) μ1/μ2 = 10, (b) μ1/μ2 = 0.10. In (a), the dashed orange
line corresponding to η = 0.10, Q1/Q2 = 2.40 × 10−3 is not depicted because it is always unstable. In (b), the
solutions for η = 0.10, Q1/Q2 = 5.50 × 10−2 (solid orange line) and η = 0.25, Q1/Q2 = 2.25 × 10−1 (solid
brown line) are always stable in the particle-free case.

Q1/Q2 η = 0.10 η = 0.25 η = 0.50 η = 0.85

μ1/μ2 = 10 2.40 × 10−3 2.24 × 10−2 1.93 × 10−1 1.68
μ1/μ2 = 0.10 5.50 × 10−2 2.25 × 10−1 1.09 11.59

Table 2. Values of the flow rate ratio Q1/Q2 for μ1/μ2 = 10 and μ1/μ2 = 0.10 for different values of η,
corresponding to the lines plotted in figure 4.

unstable in the particle-free problem. It is worth mentioning that the interaction between
the particles induced by interface perturbations with a region of influence higher than the
inter-particle distance is not considered in this work, and the disturbance always fits within
the inter-particle distance L. Hence as we increase L, new unstable modes that could not
develop at smaller values might emerge.

4.2. Inertial and capillary effects
In this subsection, we investigate the influence of inertial and capillary effects in the
two-dimensional problem. In the frame of the local stability analysis carried out by
Yiantsios & Higgins (1988) at small or moderate Reynolds numbers, the imaginary wave
speed ci of the two-layer Poiseuille flow depends linearly on the Reynolds number. Using
our global stability analysis, we illustrate in figure 5 the dependence on the Reynolds
number of the most dangerous eigenvalue λr|max for the interfacial mode. (Note that the
most dangerous interfacial eigenvalue is that with the largest real part λr|max and λi /= 0.)
For the flow parameters considered here, λr|max is independent of the particle position ξ ,
and essentially follows the trend defined by the interface in the absence of the particle. For
sufficiently low values of the Reynolds number, capillary effects become dominant and the
particle changes the stability of the flow. Indeed, for Re = 0.05 and the flow parameters
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Figure 5. Most dangerous eigenvalue as a function of the Reynolds number for Ca−1 = 1, with dotted black
line representing the level λr|max = 0. The inset in (b) shows the solution in the zoomed region Re < 1. The
red line represents the particle-free configuration solution, the violet line is for the particle located at ξ = 0.90,
the green line is for ξ = 0.50, and the blue line is for ξ = 0.10. Flow parameters are μ1/μ2 = 0.1, L = 20 and
(a) η = 0.07, Q1/Q2 = 3.31 × 10−2, (b) η = 0.40, Q1/Q2 = 0.59.

considered in figure 5, the flow is stable only when the particle is sufficiently far from the
interface ξ > 0.50.

In figure 6, we show the evolution of the absolute real part of the most dangerous
eigenvalue with the inverse of the capillary number for these flow parameters. Figure 6
illustrates that the presence of the particle becomes more noticeable in the limit of small
surface tension, whilst as Ca−1 � 1, the evolution of λr|max is independent of the particle
position, and identical to the result obtained with the particle-free configuration. This is
consistent with the fact that at high values of the surface tension, the interface deformation
due to the presence of the particle becomes negligible, and consequently the influence of
the particle on the interfacial mode decreases. The size of the perturbations is limited
by the inter-particle distance, so that beyond a certain value of the surface tension, the
eigenvalue is seen to increase linearly with Ca−1. In figure 6(a), the greatest eigenvalue
λr|max computed for small values of the volumetric flow ratio is negative for all values
of Ca−1 when the particle is far from the interface. For ξ < 0.6, approximately, λr|max
becomes positive at low surface tension, with small stability regions that emerged for
intermediate values of Ca−1 before λr|max finally achieves a positive constant value that
is independent of the surface tension. As the flow ratio Q1/Q2 increases, the unstable
behaviour of the interface emerges approximately at the same capillary number for all
values of ξ , as illustrated in figure 6(b). This figure shows the variations on the evolution
of the growth rate in the limit of small surface tension Ca−1 due only to a change in the
frequency of the wave.

To study this in more detail, we represent in figure 7 the evolution of the most
dangerous eigenvalue λr|max for the interfacial mode using L = 22 and Q1/Q2 = 2.05. In
this figure, we consider both the global stability solution as well as the results obtained
for perturbations of wavenumber kL = 2π/L. Note that the swift variations close to
Ca−1 = 10−3 and Ca−1 = 10−1 for the particle-free configuration are related to a change
in the wavenumber of the perturbation with the maximum growth rate. In essence, the

982 A23-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.114


Particle impact on the stability of two-layer channel flows

101

100

10–1

10–2

10–3

10–4

10–5

10–6

10–3 10–1 101 103 105 10–3 10–1 101 103 105

101

100

10–1

10–2

10–3

10–4

10–5

10–6

Ca–1 Ca–1

|λ r
| m

ax
|

Particle-free

Particle ξ = 0.90

Particle ξ = 0.50

Particle ξ = 0.10

(a) (b)

Figure 6. Absolute real part of the most dangerous eigenvalue as a function of the inverse of the capillary
number for Re = 0.05 and the same flow parameters as considered in figure 5. Solid lines for stable (negative)
eigenvalues and dashed lines for unstable (positive) values.
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Figure 7. Most dangerous eigenvalue as a function of the inverse of the capillary number. (a) The result
obtained in the particle-free configuration is compared with the solution for perturbations of wavenumber
k = 2πn/L = nkL. (b) The evolution of the most dangerous eigenvalue in the two-dimensional problem for
different particle positions is compared with the particle-free global stability analysis (red line). Solid lines for
stable (negative) eigenvalues and dashed lines for unstable (positive) values. Flow parameters are Re = 0.05,
μ1/μ2 = 0.1, η = 0.60, Q1/Q2 = 2.04, L = 22.

wavenumber of the most dangerous perturbation increases as Ca−1 → 0, as the stabilizing
effect of surface tension decreases at small values of the wavenumber. On the other hand,
in the limit Ca−1 → ∞, the wavelength is limited by the inter-particle length L, and
beyond a certain value, the most dangerous eigenvalue is seen to depend linearly on Ca−1.

Neutral stability diagrams for μ1/μ2 = 0.10 and different particle positions (ξ = 0.10,
0.50, 0.90) are shown in figure 8 for Re = 0.05 (figure 8(a) and solid lines in figure 8(b))
and for Re = 5 (dashed lines in figure 8b). Figure 8 illustrates that at lower values of the
Reynolds number, capillary migration becomes dominant and the interface deformation
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Figure 8. Neutral stability diagram in the Q1/Q2–L plane for μ1/μ2 = 0.10 and (a) Ca−1 = 1, Re = 0.05,
and (b) Ca−1 = 10, Re = 0.05 for solid lines and Re = 5 for dashed lines. The particle position is ξ = 0.10
for the blue line, ξ = 0.50 for the green line, and ξ = 0.90 for the violet line. The red line corresponds to the
particle-free configuration.

induced by the particle more significant. Consequently, the particle position has a higher
impact on the stability of the flow, whereas for dominant inertial effects, the neutral lines
collapse in the η–L plane for the different particle positions. In addition, the unstable
region for higher values of the Reynolds number widens towards lower values of the
flow rate ratio and inter-particle distance (lower values of the perturbation wavelength).
On the other hand, comparing the neutral stability diagram presented in figure 8(a) and
that obtained for Re = 0.05 and Ca−1 = 1 with the results plotted in figure 8(b) with
solid lines – which have also been obtained for Re = 0.05 but for a higher surface tension
Ca−1 = 10 – we can see the stabilizing effect of the surface tension for lower values of
the inter-particle distance. This is in agreement with the results obtained for the stability
of the two-phase Poiseuille flow (Yiantsios & Higgins 1988).

If the particle is immersed in the most viscous fluid (μ1/μ2 ≤ 1), then the liquid–liquid
interface becomes unstable at low values of the flow rate ratio when the particle is
sufficiently close to the interface, independently of the inter-particle distance. Also,
particle positions closer to the interface widen the unstable region towards lower values
of the particle distance L. As mentioned before, the increase of the surface tension
stabilizes the flow for relatively low values of L. Remarkably, the presence of the particle is
stabilizing when the particle is in the less viscous fluid (μ1/μ2 = 10) in a narrow region
at relatively high flow rate ratios (Q1/Q2 ∼ 1), regardless of the inter-particle distance
considered (see figure 9). This stabilizing effect is more pronounced when the particle is
far from the interface and appears only at low values of Ca or large values of Re, as shown
in figure 10.

To understand further the effect of the particle on the interfacial instability, the
eigenfunctions for the most unstable interfacial mode are plotted in figures 11 and 12,
considering two sets of parameters. With the first set, the particle stabilizes the interface,
whilst with the second set, the particle destabilizes the interface, which is stable in the
particle-free problem. Due to the slenderness of the computational domain, the vertical
axis has been stretched in figures 11 and 12 to facilitate the reading of the figures. The
ellipsoidal geometry of the particle is only a visual consequence of that change of scale.
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Figure 9. Neutral stability diagram in the Q1/Q2–L plane for different values of the particle position, Re =
0.05, μ1/μ2 = 10 and Ca−1 = 1. The particle position is (a) ξ = 0.50 and (b) ξ = 0.90. Red lines correspond
to the particle-free configuration. In (b), the shaded region represents the parameter range for which we were
unable to compute a solution. The particular case highlighted by the star marker (�) in the figures is analysed
in detail in figure 14.

From figure 9, we identified a set of parameters in which the particle stabilizes
the interface – Re = 0.05, μ1/μ2 = 10, η = 0.69 (Q1/Q2 = 0.629), ξ = 0.90, L = 30,
Ca−1 = 1 – before plotting the real part of the eigenfunctions in figure 11. To facilitate the
comparison, we included in figure 11(b) the eigenfunction in the case without particles.

On the other hand, figure 12 includes the eigenfunctions of the most unstable mode for
the same flow parameters considered previously, but with the interface closer to the upper
wall: Re = 0.05, μ1/μ2 = 10, η = 0.95 (Q1/Q2 = 3.17), ξ = 0.90, L = 30, Ca−1 = 1.
In this case, the particle induces the formation of a recirculating region near the particle
that extends to affect the lower fluid, destabilizing the interface. The eigenfunction of the
particle-free configuration is included in figure 12(b), illustrating the effect of the particle
on the flow pattern. A more detailed plot of the region surrounding the particle is included
in figure 13, comparing the cases η = 0.65 and 0.95. In this figure, we can identify the
recirculating regions formed near the particle surface and at the lower and more viscous
liquid.

The analysis of the eigenfunctions suggests that these regions of flow recirculation
in the lower liquid play a key role in destabilizing the interface. In multi-layer flows
without particles, it has been suggested that the interfacial instability can be explained by
the out-of-phase vorticity disturbances that appear as a result of the vorticity advection
by the base flow (see Hinch 1984; Charru & Hinch 2000; Govindarajan & Sahu
2014). For the destabilizing case discussed above (Re = 0.05, μ1/μ2 = 10, η = 0.95,
Q1/Q2 = 3.17, ξ = 0.90, L = 30, Ca−1 = 1), the particle-free configuration is stable
because the surface tension stabilizes short-wavelength interfacial disturbances. Also,
long-wavelength disturbances remain stable (Charru & Hinch 2000) as the downstream
convection of vorticity remains relevant only in the thicker, more viscous lower liquid
layer. Interestingly, figure 12 suggests that the assumption of negligible advected vorticity
is no longer valid in the thinner, less viscous liquid layer in the presence of particles.
This figure shows a particle-induced vertical flow motion that extends to the lower and
more viscous liquid. This effect is not observed in figure 11, when the particle stabilized
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Figure 10. Neutral stability diagram in the Q1/Q2–L plane forμ1/μ2 = 10, Ca−1 = 10 and (a,c,e) Re = 0.05,
(b,d,f ) Re = 5. Plots in each row are dedicated to a different particle position ξ . Red lines correspond to the
particle-free configuration. Letters S and U denote the stable and unstable regions, respectively.

the interface. An in-depth analysis of the physical mechanisms that trigger the instability
is of unquestionable interest. However, that study is out of the scope of this work.

As the surface tension of the interface is reduced (lower values of Ca−1), the
maximum deformation of the interface becomes larger, achieving deformation amplitudes
g = Γ (x)− ΓL/2 of the order of the size of the particle. An example of that effect is shown
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Figure 11. Contour plots of the perturbed streamlines (light grey lines). The positions of the unperturbed and
perturbed interfaces are depicted with solid and dashed lines, respectively, for (a) a particle located at ξ =
0.90 with λ = −3.4486 × 10−5 + 0.19373i, and (b) the particle-free configuration with λ = 4.4319 × 10−6 +
0.38565i. The rest of the flow parameters are Re = 0.05, μ1/μ2 = 10, η = 0.69 (Q1/Q2 = 0.629), L = 30,
Ca−1 = 1.

in figure 14 for Re = 0.05, μ1/μ2 = 10, Q1/Q2 = 0.35 (η = 0.60), ξ = 0.90, L = 14
and Ca−1 = 1. Keeping the other parameters unchanged, the range L ∈ [5, 40] gives a
very small radius of curvature of the interface, which is what hinders the numerical
calculation of the problem. This region is identified in figure 9(b) by using shading.
This problem becomes especially acute when the particle is immersed in the less viscous
fluid and the interface becomes unstable to long-wavelength perturbations (Yih 1967). An
example of this behaviour is included in figure 14(a), where we plot the deformation of
the interface g for different values of the surface tension Ca−1, with ΓL/2 = Γ (L/2). As
shown in this figure, the maximum value of g increases, creating a sharp gradient near the
particle that sharpens further as Ca−1 is reduced. In figure 14(b), we plot the evolution of
the maximum value of the normal vector in the axial direction nx at the interface Γ . As the
surface tension lowers, nx increases to become nx 
 |n| for sufficiently small values of the
surface tension. This causes the interface deformation gradient dg/dx to become infinite,
anticipating the multi-evaluation of the function g at a range of values of x. This behaviour
is illustrated in the inset of figure 14(a). The information depicted in this figure suggests,
therefore, that the breakdown of the code at Ca−1 = 1, identified in figure 9(b) with a
black star, is associated with wave steepening of the interface that would need specific
numerical techniques in order to be described.
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Figure 12. Contour plots of the perturbed streamlines (light grey lines). The position of the unperturbed
and perturbed interfaces are depicted with solid and dashed lines, respectively, for (a) a particle located at
ξ = 0.90 with λ = 5.0833 × 10−5 + 0.20982i, and (b) the particle-free configuration with λ = −1.6913 ×
10−6 + 0.3139i. The rest of the flow parameters are Re = 0.05, μ1/μ2 = 10, η = 0.95 (Q1/Q2 = 3.17),
L = 30, Ca−1 = 1.

The wave steeping of the interface illustrated in figure 14 suggests what could be
expected beyond the linear regime considered in the present work. In this regard, Boeck
et al. (2007) showed that for a two-layer channel flow without the train of particles,
the nonlinear temporal instability associated with the interfacial mode usually results in
the formation of ligaments. Valluri et al. (2010) described the nonlinear spatio-temporal
instability in two-layer Poiseuille flow, also illustrating the formation of ligaments. The
nonlinear interaction of these ligaments with the particle might trigger an unexpected
behaviour that is difficult to anticipate. That question opens the door to new research that
is, undoubtedly, of great interest for future study. All the same, different numerical studies
in viscosity-stratified flows have concluded that the linear global analysis can anticipate
the initial nonlinear performance (see e.g. Tammisola et al. 2011; Govindarajan & Sahu
2014), with a final saturated state that, even if different, is closely related to the linear
origin.

5. Conclusions

This work considers the effect of a train of particles on the stability of the interface formed
by two immiscible liquids from a numerical point of view. To do this, we have adapted
the use of the method developed by Rivero-Rodriguez & Scheid (2018), used therein for
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(a) (b)

(c) (d)

Figure 13. Contour plots of the perturbed streamlines in the fluid near the particle for (a,c) η = 0.65 (Q1/Q2 =
0.629) with λ = −3.4486 × 10−5 + 0.19373i, and (b,d) η = 0.95 (Q1/Q2 = 3.17) with λ = 5.0833 × 10−5 +
0.20982i. The real part of the velocity field is at the top, and the imaginary part is at the bottom. The
unperturbed interface position Γ0 is shown as a solid red line.The rest of the flow parameters are Re = 0.05,
μ1/μ2 = 10, ξ = 0.90, L = 30, Ca−1 = 1.

expansion of the variables in Re and Ca, to a stability analysis approach that we have also
validated against full transient simulations.

During our analysis, we have identified shear, migration and interfacial modes as the
three instability mechanisms. For the small values of the Reynolds number considered in
this work, the eigenvalues associated with the shear mode have large negative real part
λr ∼ Re−1. The eigenvalues of the migration mode, described extensively in Ruiz-Martín
et al. (2022b), have zero imaginary part and are uncoupled from the other instability
modes. On the contrary, the interfacial mode is clearly affected by the migration of the
particle. In general, our numerical results show that the presence of the solid particles
have a destabilizing effect.

When the particle is in the more viscous fluid (μ1/μ2 < 1), the existence of migrating
particles always promotes the unstable character of the liquid–liquid interface. On the
contrary, when the particle is in the less viscous fluid (μ1/μ2 > 1), we find a range of
parameters for which the presence of the particle stabilizes the interface, independently of
the inter-particle distance and especially when the particle is close to the upper wall.
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Figure 14. (a) Interface deformation g/d for different values of the inverse of the capillary number Ca−1.
(b) Evolution with the inverse of the capillary number of the maximum value of the normal vector at the
interface Γ in the axial direction nx. The rest of the parameters are Re = 0.05, μ1/μ2 = 10, Q1/Q2 = 0.35
(η = 0.60), ξ = 0.90, L = 14.

The results obtained demonstrate that the position of the particle plays a crucial role in
determining the stability of the interface, and becomes more significant as Ca increases or
Re decreases.

The stability of the flow is linked closely to the deformation of the interface caused by
the vertical force exerted by the particle and by the out-of-phase vorticity disturbances that
appear as a result of the vorticity advection by the base flow (see e.g. Hinch 1984; Charru
& Hinch 2000; Govindarajan & Sahu 2014). Vorticity disturbances are created on both
sides of the interface and advected downstream, creating vortex pairs that are out of phase
with the interface deformation (Charru & Hinch 2000).
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Appendix A. Code verification

To verify our numerical code, we compare the solution obtained by integrating the
above-described system of equations in the absence of particle with the asymptotic
solution obtained by Yiantsios & Higgins (1988) in the limit of long-wavelength
perturbations. Additionally, our results are compared with the Chebyshev tau method
developed by Blyth & Pozrikidis (2004) for different values of the thickness ratio in
figure 15. To facilitate the comparison, we adopt the notation used in their local stability
analysis, in which the perturbed variable is written as ψ1(x) = φ( y) exp[ik(x − ct)],
where k is a prescribed real wavenumber, and c is the complex wave speed. Thus for a
particular computational domain of length L, the wavenumber of the fundamental mode
(wavelength equal to L) is defined as k = 2π/L, whereas the wave speed is c = iλ/k.
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Figure 15. Comparison of the solution in the absence of particles for Re = 0.5, k = 0.1 and (a) Ca−1 = 0,
(b) Ca−1 = 1. The parameter r1/r2 represents the liquid thickness ratio.
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Figure 16. Neutral stability diagrams in the r1/r2–k plane for different values of the capillary number Ca, Re =
0.5, and (a) μ1/μ2 = 10, (b) μ1/μ2 = 0.1. Solid black lines show the results obtained with the Chebyshev
method, and dashed blue lines show our global stability analysis.

In addition, neutral stability diagrams in the r1/r2–k plane, with r1/r2 = Γ/(1 − Γ ), are
shown for μ1/μ2 = 10 and μ1/μ2 = 0.1 in figure 16.

The verification of the linearized equilibrium of forces, torque balance and no-slip
boundary conditions at the particle surface (2.14) has been carried out by analysing the
time-dependent migration of the particle. We have considered first that the particle is
immersed in a single-layer channel flow. The initial position of the particle is yp(t0), and
we impose a body force f imp different to the value necessary to maintain the particle at
the initial position yp(t0). During a short time tc ∼ 10−4, we introduce a perturbation in
the form Q = ∫ 1

0 u dy = 1 − e−t/tc , so that the particle moves away from its initial location
yp(t0).
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Parameters Eigenvalue λ Transient Λ Relative error %

Case 1 Re = 5 −0.0397 −0.0396 0.25yp = 0.2203

Case 2 Re = 50 −0.3251 −0.3245 0.18yp = 0.2203

Case 3 Re = 20 −0.2114 −0.2118 0.19yp = 0.351

Table 3. Comparison of the eigenvalues obtained with the transient code and the linearized system of
equations for a particle immersed in a single-layer channel flow with L = 2.

If the combination of parameters chosen in the calculations falls inside a stable region,
then a steady solution is reached at sufficiently long times t1 � tc, with the particle landing
at yp(t1), where the condition ∫

Σp

T̂ · np dΣ = f impVp (A1)

is satisfied. The evolution with time of the particle position follows an exponential law
yp(t)− yp(t1) = Â eΛt, with the exponent Λ obtained using numerical fitting, equal to the
eigenvalue associated with the final steady solution (the perturbed base-state flow with the
particle located at yp(t1)).

The comparison of the exponent Λ with the eigenvalue λ obtained by integrating the
linearized problem formulated in § 2.3 is given in table 3 for different Reynolds numbers
and particle equilibrium positions yp(t1). As shown in table 3, the eigenvalues given by the
linearized problem formulated above are in excellent agreement with the results obtained
with the transient computation, with relative errors with respect to the transient solution
approximately 0.17 %.

The full system of equations, with the particle embedded in a two-layer channel flow,
was validated in Ruiz-Martín (2022) using the same technique as above. In particular,
the equilibrium of forces on the particle surface in the vertical direction is perturbed
during a short period of time in the form (

∫
Σp

np · T̂ 2 dΣ) · ey = fVp + A e−t/tc , with
A an arbitrary amplitude such that the particle position ξ is changed by a distance of
order O(10−3). If the steady-state solution is stable, then the perturbation fades away
and the solution evolves to recover the initial condition. The different modes – shear,
migration and interfacial – are coupled but get damped progressively so that at long
times, the most dangerous eigenvalue dominates and the fluid variables evolve with time
following an exponential law. The different fluid variables ψ can then be expressed as
ψp(t) = ψp(0)+ C eΛt, where C and Λ are obtained from the transient simulations. For
a perturbed stable solution μ1/μ2 = 0.10, η = 0.15, ξ = 0.50, L = 5, Ca−1 = 100, the
temporal evolution of the particle position providesΛ 
 −1.2 × 10−3, a value that agrees
with the result obtained for the migration mode in figure 3(b). On the contrary, for
the perturbed unstable solution μ1/μ2 = 10, η = 0.75, ξ = 0.50, L = 40, Ca−1 = 1, an
exponential growth is observed, in agreement with an unstable solution with eigenvalue
Λ > 0, in which case the solution moves away from the base-state flow. This method to
verify the fully coupled equations has been extended further here to a wider range of flow
parameters (see table 4). Up to six distinct cases have been studied, for both the small and
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Parameters Linearized λr Transient Λ Relative error %
Ca−1 η ξ L

100 0.15 0.50 5 −0.001068 −0.001098 2.73
1 0.89 0.50 7.5 −0.016512 −0.01592 3.72
1 0.33 0.50 15 −0.027735 −0.02755 0.67
1 0.65 0.50 12.5 −0.047100 −0.0462 1.94

Table 4. Comparison of the migration eigenvalues obtained with the transient problem and the linearized
system of equations for a particle immersed in a two-layer channel flow with μ1/μ2 = 0.10 and Re = 0.05.
The flow parameters of the first case study (first row) are the same as in figure 3. For the rest of the case studies,
the neutral diagram is shown in figure 8.

large viscosity ratio considered here, with different values of the surface tension, interface
and particle positions for each sample.

To verify our calculations further, we have considered a different strategy to emphasize
the coupling of the particle and interface equations. To do so, we perturbed the
liquid–liquid interface, introducing a random noise to calculate the temporal evolution
of the particle migration using (2.1)–(2.2). Both the growth rate and temporal frequency
are compared with the most dangerous eigenvalue for the interfacial mode computed
using our linearized system of equations. As we will show below, the agreement between
the calculations is excellent. The form of the random perturbation of the interface is
similar to that used by Valluri et al. (2010). Specifically, during a short period of time
of O(tc), we introduce a small-amplitude sinusoidal perturbation at the interface of the
form A(x, t) e−t/tc that vanishes for large values of t, with A(x, t) being a random-phase
perturbation defined as

A(x, t) =
(∫ ∞

0

∣∣∣Â(wf )

∣∣∣ exp(i[ωf t + θ(ωf )]) dωf

)

×
(∫ ∞

0

∣∣∣Â(w̄f )

∣∣∣ exp(i[ω̄f x + θ̄ (ω̄f )]) dω̄f

)


 A0

⎛
⎝ 1

Nf

Nf∑
j=0

exp(i( jωmaxt/Nf + θj))

⎞
⎠

⎛
⎝ 1

N̄f

N̄f∑
j=0

exp(i( jω̄maxx/N̄f + θ̄j))

⎞
⎠ ,

(A2)

with A0 such that the amplitude of the perturbation is O(10−3), Nf = N̄f = 1000, and the
phases 0 < θj, θ̄j < 2π are generated randomly. The cut-off frequencies ωmax, ω̄max are
taken sufficiently large to consider a wide range of frequency spectrum. As typical values
we chose ωmax = 3, ω̄max = 3.6, whereas tc = 3.5.

After perturbing the interface as defined in (A2), we advanced the solution in time
to monitor the behaviour of the interface. We chose two different sets of parameters
in which the interfacial mode is stable (parameters given in the caption of table 5).
Using them, our unsteady evolution calculations confirmed that the perturbed interface
evolved to return to its original unperturbed shape in times t ∼ λ−1

r , with λr the
real part of the most dangerous mode. The time evolution of the particle position
relative to its final equilibrium position y∗

p is shown in figure 17 for this combination
of parameters. Remembering that the perturbation of the variables follows the form
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g1 g2 g3 g4 g5

Case 4 6.76 × 10−4 −9.9 × 10−3 0.0484 −6.21 7.39 × 10−7

Case 5 3.59 × 10−4 −3.48 × 10−3 0.3093 −9.19 2.35 × 10−6

Table 5. Fitting parameters for a damped sinusoidal curve of the form yp = g1 eg2t sin(g3t + g4)+ g5 for Re =
0.05, ξ = 0.50, L = 5, Ca−1 = 1, with μ1/μ2 = 0.1 and η = 0.21 (case 4) and μ1/μ2 = 10 and η = 0.63
(case 5).
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Figure 17. Evolution of the particle position yp with time relative to its final equilibrium position y∗
p for a

randomly perturbed interface. The red line shows the numerical solution, and the blue line shows the fitted
curve yp = g1 eg2t sin(g3t + g4)+ g5 for (a) case 4 and (b) case 5 of table 5. The fitting parameters gi are
included in table 5.

ψ(x, t) = ψ0(x)+ exp((λr + iλi)t) ψ1(x), we fit the unsteady evolution of the particle
to a damped sinusoidal curve yp − y∗

p = g1 eg2t sin(g3t + g4)+ g5, with gi the vector of
parameters determined using the least squares method. The values of the fitting parameters
gi are summarized in table 5 for the two cases considered. For the first set of parameters
(case 4), the fitted curve is plotted in figure 17(a) with g2 = −0.0099 and g3 = 0.04840
for a sum of square residuals below 5 × 10−5. The agreement with the most dangerous
eigenvalue calculated with the stability analysis for the interfacial mode λr = −0.009366
and λi = ±0.04846 is excellent. For case 5, the fitted curve is plotted in figure 17(b),
and we obtained g2 = −0.003480 and g3 = 0.3093 versus the values λr = −0.00354 and
λi = 0.3093 computed using the stability analysis.

Appendix B. Boundary conditions at perturbed geometries

In this appendix, we provide details about the perturbation of the boundary conditions at
deformable boundaries, namely at the particle surface and the interface between the two
liquids, around the unperturbed geometry. To do so, we will make use of two versions of
the divergence theorem given in Weatherburn (1927) for three-dimensional geometries,
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Ω0

Σp,0

δp

Σp
Ω

dΣ

xp,0

A0

A

A

n0

A0

�xp

�xp

xp

Vp,1

Vp,1

Figure 18. Volume of fluid created by the particle as a consequence of the displacement from xp,0 to xp =
xp,0 +
xp, with δp = 
xp · n0 the normal displacement of a point on the surface of Σp,0 such that dV =
δp dΣ .

which we rewrite for two-dimensional geometries for any vectorial or tensorial field b as∫
S
∇ · b dS =

∫
∂S

n · b dl, (B1a)∫
L

DS · b dL =
∫
∂l

nS · b d(∂l), (B1b)

where S, l, n and nS are a generic surface, a generic curve, the outer normal vector to
the contour of the surface ∂S, and the outer normal vector to the contour of the curve ∂L,
which is perpendicular to n, i.e. tangent to the curve l. Equation (B1b) has been written in
a shorter form using the operator DS · b = ∇S · b − (∇S · n)n · b.

B.1. Boundary conditions of a solid body at the perturbed particle surface
To satisfy the boundary conditions, the integral on the surface of the particle Σp, given in
(2.3), needs to be transformed into one that is evaluated on the unperturbed surface of the
particle Σp,0. To do this, we integrate the momentum equation (2.2) on the volume Vp,1
enclosed between the perturbed and unperturbed surfaces, Σp and Σp,0, as indicated in
figure 18. After applying the divergence theorem (B1a) and rearranging terms, we have∫

Σp,0

{
n0 · T̂ 2 + Re δp

(
∂v2

∂t
+ v2 · ∇v2

)}
dΣ =

∫
Σp

n · T̂ 2 dΣ, (B2)

where δp = 
xp · n0 is the displacement of the particle in the direction normal to the
unperturbed surface of the particleΣp,0 (see figure 18). It has been taken into account that
for a small displacement δp, a differential of the referred enclosed volume can be written
as dVp = δp dΣ on Σp,0. Hence, using (B2), (2.3) can be written as∫

Σp,0

{
n0 · T̂ 2 + Re δp

(
∂v2

∂t
+ v2 · ∇v2

)}
dΣ + Vpf = 0. (B3)

The torque balance (2.4a) can be rewritten in a similar manner, but in this case, the
momentum balance is first rotated around xp by taking the wedge product of (2.2) and
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x − xp. In so doing, one obtains∫
Σp,0

{
n0 · T̂ 2+Re δp

(
∂v2

∂t
+ v2 · ∇v2

)}
× (x − xp) dΣ =

∫
Σp

n · T̂ 2 × (x − xp) dΣ,

(B4)

where it has been taken into account that (∇ · T̂ 2)× (x − xp) = ∇ · [T̂ 2 × (x − xp)],
since the stress tensor is symmetric. Hence, using (B4), the boundary condition (2.4a)
can be written as∫

Σp,0

{
n0 · T̂ 2 + Re δp

(
∂v2

∂t
+ v2 · ∇v2

)}
× (x − xp) dΣ = 0. (B5)

Finally, the no-slip condition at the particle surface (2.4b) can be written at Σp,0 by
performing a Taylor expansion in the normal direction:

v2 + δpn0 · ∇v2 = Ω × (x + δpn0 − xp)+ dxp

dt
at Σp,0, (B6)

where all variables and the outer normal vector are defined at Σp,0.

B.2. Boundary conditions of the fluid-fluid interface
The continuity of velocities at the fluid–fluid interface (2.10a) can be written at the
unperturbed interface by performing a Taylor expansion in the normal direction, i.e.

[v] + δn0 · ∇[v] = 0 at Γ0. (B7)

To write the jump condition on the stress tensor at the unperturbed surface Γ0, we start
by considering the left-hand side of the boundary condition (2.10b). First, we apply the
bracket operator to (2.2) at the interface. Second, we integrate the resulting equation on
the volume generated by displacing any arbitrary surface Γ ′

0 lying on Γ0 by an amount
δn0 towards Γ ′, with Γ ′ lying on Γ . After using the divergence theorem and rearranging
terms, as well as considering that the normal vector to the generatrix is nS0 , we obtain∫

Γ ′
[T̂ ] · n dΓ =

∫
Γ ′

0

{
[T̂ ] · n0 − DS ·

(
δ[T̂ ]

)
+ Re δ

(
∂vi

∂t
+ vi · ∇vi

)}
dΓ, (B8)

where the surface integral at the generatrix has been written, by virtue of the divergence
theorem (B1b), as

∫
∂Γ0

nS · (δ[T̂ ]) d(∂Γ ) = ∫
Γ0

DS · (δ[T̂ ]) dΓ . For more details of this
procedure, readers are referred to Rivero-Rodriguez & Scheid (2018), Ruiz-Martín et al.
(2022b) and Cappello et al. (2023).

The right-hand side of (2.10b) can be written at Γ0 using the divergence theorem (B1b)
to give∫

Γ ′
(−n∇ · n) dΓ =

∫
∂Γ ′

nS d(∂Γ ) =
∫
∂Γ ′

0

nS0 · B dx =
∫
Γ ′

0

DS · B dΓ, (B9)

where B = nS0nS is the rotation tensor, and nS0 and nS are the vectors tangential to the
unperturbed Γ0 and perturbed interface Γ , respectively.
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Figure 19. Most dangerous eigenvalue for Re = 0.05, μ1/μ2 = 0.1, L = 40, Ca−1 = 1 and different values
of the interface position η corresponding to: (a) full linearized system, αδ = αε = αNS = 1; (b) no shear mode
system, αδ = αε = 1, αNS = 0; (c) no migration mode system, αδ = αNS = 1, αε = 0, (d) pure interfacial
system, αδ = 1, αε = αNS = 0.

Finally, using (B8) and (B9), and considering that they are valid for any arbitrary Γ ′
0,

(2.10b) can be rewritten as

[T̂ ] · n0 − DS ·
(
δ[T̂ ]

)
+ Re δ

(
∂vi

∂t
+ vi · ∇vi

)
= Ca−1 DS · B at Γ0. (B10)

Similarly, the kinematic condition (2.9) can be written at the unperturbed interface by
integrating (2.1) for liquid 2 on the same generated volume, yielding

v2 · n0 − DS · (δv2) = ∂δ

∂t
at Γ0. (B11)
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Figure 20. (a) Eigenvalue associated with the particle migration. Red lines with circle markers represent
the solution given by the full linearized system; blue lines with cross markers indicate zero interfacial mode
contribution (αδ = 0); asterisk markers are for vanishing NS local term (αNS = 0, zero hydrodynamics mode
contribution); and up arrows are for the pure migration system (αδ = αNS = 0). (b) Pure shear mode (αNS = 1,
αε = αδ = 0). The inset shows the evolution of the most dangerous shear mode with Re for ξ = 0.50. (c) Shear
mode without the effect of the interfacial mode (αNS = αε = 1, αδ = 0). (d) Shear mode without the effect of
the particle migration (αNS = αδ = 1, αε = 0). The flow parameters are the same as in figure 19.

Appendix C. A simple mathematical strategy to analyse the interaction of the
different modes

To check whether the particle migration, interfacial and shear modes are coupled, the
significance of each contribution can be assessed by cancelling out successively the
corresponding local term in the linearized system of equations. To do so, we introduce
the artificial parameter αNS in the first term in the momentum equation (2.13) for the shear
mode, αδ in the first term on the right-hand side of (2.17a) for the interfacial mode, and αε
in the last term on the right-hand side of (2.14c) for the migration mode. The interaction
of the different modes will be evaluated by switching the factor αNS, αδ , αε from 1, if the
contribution of the mode is accounted for, to 0 when it is neglected.
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For the interfacial instability (λi /= 0), the evolution of the real part of the largest (most
dangerous) eigenvalue with the particle position ξ is shown in figure 19 for different
interface positions η or, equivalently, flow rate ratios. In figure 19(a), we consider the
full system of linearized equations. To analyse their relative importance, we cancel
the shear mode with αNS = 0 in figure 19(b) and the particle migration with αε = 0
in figure 19(c). The evolution of the pure interfacial mode (αε = αNS = 0) is shown
in figure 19(d). Comparing figures 19(a) and 19(b), we understand that the coupling
between the different instability mechanisms can introduce additional unstable modes. The
potential destabilizing effect of the shear mode is illustrated in figures 19(a) and 19(b) for
η = 0.50 (red line), with the zeroing of the shear mode contribution stabilizing the system
for ξ > 0.70 even at very small Reynolds number Re = 0.05. The comparison between
figures 19(a) and 19(c) reveals that particle migration affects significantly the interfacial
mode by increasing the maximum growth rate, especially when the particle is near the
interface.

Considering the same values of the interface position η considered in figure 19, we
illustrate in figure 20(a) the evolution of the migration, and in figures 20(b–d) shear
modes with the particle position. As anticipated, the migration mode, associated with
equilibrium solutions, is uncoupled from the other instability mechanisms and can be
studied separately (Ruiz-Martín et al. 2022b). In figures 20(b–d), we plot the real parts
of the eigenvalues with non-zero imaginary part. From the figure we can check that they
are of order λr ∼ O(Re−1), a value that is characteristic of eigenvalues that belong to the
shear mode. Comparing figures 20(b) and 20(c), we can see that the shear mode is barely
affected by the particle migration, whereas comparing figures 20(b) and 20(d), we see that
the interfacial mode increases the growth rate of the shear mode, especially at smaller
values of η. The inset in figure 20(b) shows the evolution of the shear mode with the
Reynolds number η = 0.50, demonstrating the linear dependency λr ∼ −Re−1 anticipated
in § 3.
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