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ON SINGLE-LAW DEFINITIONS OF GROUPS

VLADIMIR Tasié

It will be proved that any mononomic variety of groups can be considered as a variety of
(p,€) or (p,7) or (v,e)-algebras, or as a variety of n-groupoids—which satisfy a single
law, where: 2yp = z.y~! —1.y~!, ¢ is the identity, and for certain

interpretations of the n-ary operation. The problem is discussed for {I-groups, too.

2T = z‘l,zyv =2

The problem of single-law definability of mononomic (that is finitely axiomatisable)
varieties of groups is a very intriguing subject, not least because of the questions it raises
in universal algebra—such as: when is it possible to adjoin a new operation, with some
describable interpretation, to a language which defines a variety by a single law, and
to preserve the property? This is not always possible: see [3]; on the other hand, it
sometimes happens to be the case, as it will be shown below.

The notation is consistent with that of [2], [3] and [4]: lower case Greek letters
denote operations, and capital letters other than A (which is reserved for a carrier)
denote mappings of a considered carrier. Both operations and these mappings are
written as right-hand operators.

For universal algebraic notions the reader is referred to [1].

It has been shown in [2] that the variety of groups satisfying the law w =e (w is
a term containing only the right-division operation z.y™!, e the identity) is definable
by the law

(?) TTTPWPYPZPTTPTPZPPP =Y

1

in language (p) of type (2) with interpretation zyp = =.y~'. A more general result

will be proved here:

THEOREM 1. Let w be an n-ary group-polynomial which is capable of expressing
basic group operations. Then any mononomic variety of groups is definable by a single

law in language () ) of type (n ), with interpretation A = w.

PROOF: Let us express w in terms of right-division, say by the equation z, - .- z,w
=t,(¢1,...,%n), and let right division p be expressed via w by thelaw zyp = ¢,(z,y).
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Let the variety of groups concerned be defined by u = e where » is a term containing
only the right division operation (every mononomic variety of groups is definable by
such a law: see [2]). We define the term w to be uz;---zawiy(z1,...,2,)pp, where
no variable z; occurs in u. Now express the law (i) in terms of w, by substituting
t.(s,t) for (stp), and replacing each occurrence of symbol w by the symbol A thus
obtaining a (A )-law; let us call it (*). (*) is the law for which we are looking. Indeed,
let A = (A,)) be an n-groupoid such that 4 = (). Then a new operation p on A
is introduced by zyp = ta(x,y) where ¢ is the term obtained from ¢, by replacing
occurrences of w by A. Then we have A* = (A,p) k= (i); however, we cannot (yet)
use the theorem from [2] because our w contains operation symbols other than p. As
is easily seen from the proof of Theorem 3.2. of [2], the fact that w contains only p
is used only to prove w = e (by assigning y; = e for all its variables y;, and using
eep = e). This can be avoided in the following way: let L., R, : A — A be defined
by zyp = yL, = xzR,. Then one arrives at eep = e and L.y,R;Rezp.pl. = I (the
identity map) just as in [2]. Let = z = e; then using eep = ¢ we get Ley,R:L. = I.
In particular, eLewazL, = e; now since e = eep = el, = eR., it follows that
eLowpR:L, = eR?L,. But R,, L, are bijective (see[2]), and hence:

eleyp = €.
From eL.,,, = wL.R,. it follows that
wLeRe = eLewp =€ =eL R,
and again by bijectiveness of L.R. we obtain
w=e.

Thus, proceeding as in [2], it follows that A* is a group with zyp = =z.y™!.

Now set z; = e for all variables z; of u; this, by eep = e, yields © = ¢ and hence
e=w=exy - TpAtp(T1,...,Tn)pp whichimplies z,,...,znA = ty(x1,...,2n), which
is the desired interpretation: A = w. u = e followsin an obvious way and, consequently,
the defined group belongs to the variety. It is easy to check that (*) holds in any group
which satisfies « = e, with interpretation A = w—which finishes the proof. 1

The observation that has just been made above has one more consequence:

THEOREM 2. Let w be an n-ary operation which is describable by a single law
of group theory. Then any mononomic variety of groups is definable by a single law

1

of language (p,m ) of type (2,n ), with interpretation such that zyp = ».y~' and «

satisfies the law which describes w.

ProOOF: Let t; = £, be the law which describes (that is defines implicitly in a

sense) w. Put w = usys,pp, where u = e is the law defining the variety concerned, and
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81,32 are (p,7)-terms obtained from #;,¢; respectively, by substituting occurrences of
w by m, and expressing basic group operations via right-division p. The law (i) defines
this variety in the language ‘(p,7) with zyp = z.y~! (since by the observation made
in the proof of Theorem 1., we can use Theorem 3.2 of [2] now). Set z; = e for all
variables z; of u; then u = e and hence every algebra of this variety satisfies s; = s,

which proves that n has the desired property. The rest is trivial. [ ]

In particular, if w = e or zw = z~!, Theorem 2, provides an affirmative answer
to a question asked in [4): whether there is a single law in language (p,¢),(p, 7} which
1

defines mononomic varieties of groups with zyp = z.y~™!, 27 = z7! and ¢ the identity.

These laws are (w = e defines the variety):
TTTPWATAAPAPPPPYPZPTTPTPZPPP = Y, TITPWEAAPPPPYPZPTTPTPZPPP = .
3. One more question from [4] has an affirmative answer:

THEOREM 3. A variety of grops which satisfy w = e is defined by the law

(i2) zeyvetwvvtw'vvzvvezvyvvy =

1y~ and € the identity where w' is a

in language (v,€) of type (2,0) with zyv =z~
term obtained from w by substituting a new variable =} for each x; which occurs in

w.

PROOF: By examining the proof of Theorem 1. of [4], the reader will see that the
difference between the law (ii) and the law (1) of [4] only affects the proofs of identities
(5)-(8) from [4]. These are:

(5) etvty = ¢

(6) TeTeyySezvyvT; = I, the identity map;
(7 eT.S. = €

®) T.-s.

where A = (A,v,€) = (i) and, as in [4], T%,5:. : A — A are defined by zyv = yT, =
zS,, e is the interpretation of ¢ (this will turn out to be the identity hence we call it
e). Since the law (ii) has etwwvrtw'vy instead of etviv,we have to prove, in place of

(5):
(5’) etwvvtw'vy = e.

Now using maps T, S,, (ii) can be written as

... 5
(1‘1.1.) Tetwvvtw’vuTevaezvyu:lz = I7
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from which it follows, copying [4], that T%,S. are bijections for each z. Then the
identity (iii) yields Torwprtwive = T;IS;},WT:V}, , and we see that T,,,,,tw'vy does not
depend on f,w,w'; hence the term etwvrtw'vy does not depend on t,w,w’, neither.

Put f=eT. )t = fS!,x; = z!; this means efv = e,lwv = f,w = w' and thus:
etwvvtw'vy = etwuvtwvy < efvfv = efv =e.

Therefore (5’) holds. (6) follows immediately by (iii) and (5’). As in [4], one proves
that 7,5, does not depend on « - let this permutation be denoted by K. Now choose

in (5°) z; = 2! and { = eS;? (that is w = w',twy = e); then:
e = etwvrvtw' vy = etwuvtwrr = eever = eT.S, = eK

which is (7). And finally, for any a € A let z; = z},t = aS;'. It follows that
eavS, = aevS,, since:

eavS, = eavav = e , by (5’) and our choice of ¢,w ,w’
=eK , by (7)
= eTyS,, since K =T.S. = T,5,
= aevS,.

By the bijectiveness of S, we obtain aev = eav, that is T, = S., which is (8).

The proof now proceeds as in [4], whereas A is a group with zyv = z~1.y7?!

the unity. To prove A |=w =¢,set z) =e, t = e; (5’) then implies (by eev = ¢):

,E=¢€

e = eewvveevy = eewvver = w1, thus w = e.

(ii) is easily seen to hold in any group which satisfies w = e, with this interpretation;
this completes the proof. 1

4. For the case of f2-groups, the following is true (no proof will be given—it uses
arguments similar to those in proofs of Theorem 1 and Theorem 2.)

THEOREM 4. Any mononomic variety of (S, A )-groups, such that nontrivial con-
ditions are set on operators from 1, is definable by || + 1 laws of language ((£2, )), p)
with zyp = z.y~!, where || is the number of operators in Q2. The condition is said
to be trivial if it is of the form e...ew = €. .

Clearly, || laws are of the form zzp...zzpw = zzp for w € N, and the remaining
one defines p,A and assures that the nontrivial laws for operators from 1 hold. The
last law is constructed as’in Theorem 1. or Theorem 2. In particular, for mononomic
varieties of rings we have (by putting = (7) of type (2), A-the empty word, in
Theorem 4.):
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COROLLARY 1. A mononomic variety of rings defined by w' = 0 is defined by

(p,m) laws:
zzprzpn = zzp (R1)

zzzpw' jkkpkppkjjpipppcabprcamcbrppdepfrdfn
— efmppghinmghmimppppppypzpzzpzpzppp =y (R2)

where zyp = z + (—y),zyr = z.y.

A similar result has been announced in [5]: namely, it is easily seen that Theorem
1. of [5] is closely connected to our results. In particular, it yields a somewhat weaker
(3 laws) result for the case of rings. However, the assertions that have been made in [5]
have not received a published proof, as far as I know; also, the ring-laws (in fact, in [5]
it was asserted that if (R1) and another law hold then rings are single-law definable)
were not given explicitly. Theorem 3. of [5] can be sharpened, too:

COROLLARY 2. A mononomic variety of rings with unity which is defined by w =0,
is defined by (p, m, €) laws:

zzzpr =zzp (RU1)

zzpem = zxp (RU2)

and law (RU3), where (RU3) is the same as (R2) but with w' = utewtpesmsppp, where
zyp =z + (—y),zym = z.ye and is the (multiplicative) identity.

PROOF: Let A = (A,p,m,¢) = (RU1)&(RU2)&(RU3). Then (RU3) assures that
(A,p) is a group in which w = 0, where w is the term which consists of the first 57
symbols following zzzp in (R2) (the reader should note that we defined w in such a
way that (RU3) reduces to (i)). Put v = 0 for every v € [a, k], the closed interval of
the alphabet. Then by (RU1) 00x = 0, and by 00p = 0, it follows w' = 0. Now set
t=0,s = 0; thus by (RU2) Oemr = 0, and by (RU1)eOmr = 0, and hence we have:

0 = w' = u0em0pe0m0ppp = u00p00ppp = u00pp = ulp = u.

Now w' = 0 yields temtpesmspp = 0, and therefore by (RU1) putting s = 0 implies
temtp = 0,that is
temr = t.

It easily follows that esw = s holds, too. Since w' = 0(RU3) reduces to (R2),
thus A |= (R1)&(R2) and consequently (A4,p,n) is a ring. By the above observations
¢ is the unity of this ring, and A belongs to the variety defined by « = 0. Laws
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(RU1)-(RU3) hold in any ring with unity with this interpretation, in which v = 0
holds. ]

5. I do not know whether it is possible to improve Theorem 4.; another question

is whether it is possible to define groups by a single law in language (v,e,m) with

zyv = z-1.y~! ¢ the identity and with 7 as some single-law-describable operation. It

would suffice to prove that w' from Theorem 3. attains the value e for some valuation,

without referring to operation symbols occuring in w'.
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