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ON SINGLE-LAW DEFINITIONS OF GROUPS

VLADIMIR TASIC

It will be proved that any mononomic variety of groups can be considered as a variety of
(p,c) or (P,T) or (v,c)-algebras, or as a variety of n-groupoids—which satisfy a single
law, where: xyp — x.y~l ,xr = x"1 ,xyv = x~x .y~x, e is the identity, and for certain
interpretations of the n-ary operation. The problem is discussed for ft-groups, too.

The problem of single-law definability of mononomic (that is finitely axiomatisable)
varieties of groups is a very intriguing subject, not least because of the questions it raises
in universal algebra—such as: when is it possible to adjoin a new operation, with some
describable interpretation, to a language which defines a variety by a single law, and
to preserve the property? This is not always possible: see [3]; on the other hand, it
sometimes happens to be the case, as it will be shown below.

The notation is consistent with that of [2], [3] and [4]: lower case Greek letters
denote operations, and capital letters other than A (which is reserved for a carrier)
denote mappings of a considered carrier. Both operations and these mappings are
written as right-hand operators.

For universal algebraic notions the reader is referred to [1].

It has been shown in [2] that the variety of groups satisfying the law w = e (w is
a term containing only the right-division operation x.y~1, e the identity) is definable
by the law

(i) xxxpwpypzpxxpxpzppp = y

in language (p) of type (2) with interpretation xyp = x . j / " 1 . A more general result
will be proved here:

THEOREM 1. Let w be an n-ary group-polynomial which is capable of expressing
basic group operations. Then any mononomic variety of groups is definable by a single
law in language (X) of type (n), with interpretation X — w.

PROOF: Let us express w in terms of right-division, say by the equation x\ • • • xnw
= tp{xi,... , xn), and let right division p be expressed via w by the law xyp = tu(x,y).
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Let the variety of groups concerned be defined by u = e where u is a term containing
only the right division operation (every mononomic variety of groups is definable by
such a law: see [2]). We define the term w to be ux\ • • •xnwtp(xi,... ,xn)pp, where
no variable xi occurs in u. Now express the law ( i ) in terms of w, by substituting
t^(s,t) for (stp), and replacing each occurrence of symbol w by the symbol A thus
obtaining a ( A)-law; let us call it (*). (*) is the law for which we are looking. Indeed,
let A — (A, A) be an n-groupoid such that A \= (*). Then a new operation p on A

is introduced by xyp = t\(x,y) where t\ is the term obtained from tu by replacing
occurrences of « by A. Then we have A* = (A,p) \= ( i); however, we cannot (yet)
use the theorem from [2] because our w contains operation symbols other than p. As
is easily seen from the proof of Theorem 3.2. of [2], the fact that w contains only p

is used only to prove w = e (by assigning yi = e for all its variables yi, and using
eep = e) . This can be avoided in the following way: let Lx, Ry : A —• A be defined
by xyp = yLx = xRy. Then one arrives at eep = e and LewpRzRexpzpLx = I (the
identity map) just as in [2]. Let x = z = e; then using eep = e we get LewpR\Le = I.

In particular, eLewpR\Le = e; now since e = eep = eLe = eRe, it follows that
eLewpR\Le = eR2

eLe. But RX,LX are bijective (see[2]), and hence:

eLewp = e.

From eLewp = wLeRe it follows that

wLeRe — eLewp — e — eLeRe

and again by bijectiveness of LeRe we obtain

w — e.

Thus, proceeding as in [2], it follows that A* is a group with xyp = K.J/"1 .
Now set zi = e for all variables z< of u; this, by eep = e, yields u = e and hence
e = w = exj • • • xn^tp{xi,... ,xn)pp which implies xi,... ,xn\ = ip(x\,... ,xn), which

is the desired interpretation: A = w . u = e follows in an obvious way and, consequently,
the defined group belongs to the variety. It is easy to check that (*) holds in any group
which satisfies u = e , with interpretation A = u>—which finishes the proof. |

The observation that has just been made above has one more consequence:

THEOREM 2. Let u> be an n-&ry operation which is describable by a single law

of group theory. Then any mononomic variety of groups is definable by a single law

of language (p,ir) of type (2,n), with interpretation such that xyp = v.y~1 and TV

satisfies the law which describes u>.

PROOF: Let <j = t2 be the law which describes (that is defines implicitly in a
sense) u>. Put w = US1S2PP, where u = e is the law defining the variety concerned, and
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31,32 are (p,n)-terms obtained frorn <i,<2 respectively, by substituting occurrences of

a; by 7T , and expressing basic group operations via right-division p. The law (i) defines

this variety in the language (p,7r) with xyp = z . j / " 1 (since by the observation made

in the proof of Theorem 1., we can use Theorem 3.2 of [2] now). Set Z{ = e for all

variables zi of it; then u = e and hence every algebra of this variety satisfies 3j — s2

which proves that TT has the desired property. The rest is trivial. |

In particular, if u> = e or xui = x~l , Theorem 2. provides an affirmative answer

to a question asked in [4]: whether there is a single law in language (p, e),(p,r) which

defines mononomic varieties of groups with xyp = x.y~l , XT = x~x and e the identity.

These laws are (w = e defines the variety):

xxxpwaraapappppypzpxxpxpzppp = y,xfxpweaappppypzpxxpxpzppp = x.

3. One more question from [4] has an affirmative answer:

THEOREM 3. A variety of grops which satisfy w = e is defined by the law

(ii) zcyvetwvvtw' vvxvvzzvyvvv = x

in language (is, e) of type (2,0) with xyv — x~* .y~* and e the identity where w' is a

term obtained from w by substituting a new variable x\ for each X{ which occurs in

w.

PROOF: By examining the proof of Theorem 1. of [4], the reader will see that the

difference between the law (ii) and the law (1) of [4] only affects the proofs of identities

(5)-(8) from [4]. These are:

(5) etvtv = e;

(6) TeTeyvSezvyvTz = / , the identity map;

(7) eTeSe - e;

(8) Te = Se

where A = (A, u,e) \= (ii) and, as in [4], TX,SX : A —> A are defined by xyv = yTx —

xSy, e is the interpretation of e (this will turn out to be the identity hence we call it

e). Since the law (ii) has ttwvvtw'vv instead of etvtv ,v?e have to prove, in place of

(5):

(5') etwvviv) vv = e.

Now using maps Txy Sz, (ii) can be written as
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from which it follows, copying [4], that TX,SX are bijections for each x . Then the
identity (iii) yields Tetwvvtwivv — T'1 S^vyvT~^v , and we see that Tetwvvtwivv does not
depend on t,w,w'; hence the term etwvvtw'vv does not depend on t,w,w', neither.
Put / — eT~*,t = fS~x,Xi = x\\ this means efu = e,twu — f,w = w' and thus:

etwvvtw'vv = etwvvtww = efvfv = efu = e.

Therefore (5') holds. (6) follows immediately by (iii) and (5'). As in [4], one proves
that TXSX does not depend on i - let this permutation be denoted by K. Now choose
in (5') xi — x\ and t = eS~* (that is w = w',twv = e); then:

e = etwvvtw'vv = etwvvtwvv = eevev = eTeSe — eK

which is (7). And finally, for any a € A let xt = x'^t — aS^1. It follows that
eavSa = aevSa, since:

eavSa = eavau = e , by (5') and our choice of t ,w ,w'
= eK , by (7)
= eTaSa , since K =TeSe = TaSa

= aevSa.

By the bijectiveness of Sa we obtain aev — eav, that is Te = Se, which is (8).
The proof now proceeds as in [4], whereas A is a group with xyv = x"1.!/"1, e = e
the unity. To prove A \= w — e, set x\ = e, t = e; (5') then implies (by eev = e):

e = eewvveevv = eewwev = to"1, thus w = e.

(ii) is easily seen to hold in any group which satisfies w — e, with this interpretation;
this completes the proof. |

4. For the case of fl-groups, the following is true (no proof will be given—it uses
arguments similar to those in proofs of Theorem 1 and Theorem 2.)

THEOREM 4. Any mononomic variety of (T2, A )-groups, such that nontrivial con-
ditions are set on operators from fi, is definable by |ft| +1 laws of language ((ft, A),p)
with xyp = x.y~1, where |ft| is the number of operators in ft. The condition is said
to be trivial if it is of the form e ... ew = e.

Clearly, |ft| laws are of the form xxp ... xxpw = xxp for u> £ ft , and the remaining
one defines p,\ and assures that the nontrivial laws for operators from ft hold. The
last law is constructed as'in Theorem 1. or Theorem 2. In particular, for mononomic
varieties of rings we have (by putting ft = (TT) of type (2), A-the empty word, in
Theorem 4.):
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COROLLARY 1. A mononomic variety of rings defined by w' — 0 is defined by

(p,7r) laws:

xxpxxpir — xxp (-R1)

xxxpw' j kkpkppkjj pj pppcabpncancbTrppdepfndfn

—> efTrppghimrghTriTrppppppypzpxxpxpzppp = y (-R2)

where xyp = x + (—y), xyir — x.y .

A similar result has been announced in [5]: namely, it is easily seen that Theorem
1. of [5] is closely connected to our results. In particular, it yields a somewhat weaker
(3 laws) result for the case of rings. However, the assertions that have been made in [5]
have not received a published proof, as far as I know; also, the ring-laws (in fact, in [5]
it was asserted that if (Rl) and another law hold then rings are single-law definable)
were not given explicitly. Theorem 3. of [5] can be sharpened, too:

COROLLARY 2. A mononomic variety of rings with unity which is defined by u = 0,

is defined by (p, ir, e) laws:

xxxpn = xxp (RUl)

xxpen = xxp (RU2)

and law (RU3), where (RU3) is the same as (R2) but with w' = utewtpeansppp, where

xyp = x + (—y),xyir = x.yt and is the (multiplicative) identity.

PROOF: Let A = (A,p,Tr,e) \= (RUl)b(RU2)&(RU3). Then (RU3) assures that
(A,p) is a group in which w = 0, where w is the term which consists of the first 57
symbols following xxxp in (R2) (the reader should note that we defined w in such a
way that(i?[/3) reduces to (i)). Put v = 0 for every v 6 [a, k], the closed interval of
the alphabet. Then by (RUl) OOTT = 0, and by OOp = 0, it follows w' - 0. Now set
t = 0,5 = 0; thus by (RU2) Oew = 0, and by (RU1)£0TT = 0, and hence we have:

0 = w' = uOenQpeOTtOppp = uOOpOOppp = uOOpp = uOp = u.

Now w' — 0 yields tentpesKspp = 0, and therefore by (RUl) putting s — 0 implies
tentp — 0 ,that is

teir - t.

It easily follows that esn = 3 holds, too. Since iu' = 0(RU3) reduces to (R2),
thus A \= (J?l)&(-R2) and consequently (A,p,ir) is a ring. By the above observations
e is the unity of this ring, and A belongs to the variety defined by u = 0. Laws
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(RUl)-(RU3) hold in any ring with unity with this interpretation, in which u = 0
holds. |

5. I do not know whether it is possible to improve Theorem 4.; another question

is whether it is possible to define groups by a single law in language (i/,e,n) with
xyv = x~1.y~1,e the identity and with -K as some single-law-describable operation. It
would suffice to prove that w' from Theorem 3. attains the value e for some valuation,
without referring to operation symbols occuring in w'.
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