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Abstract

The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric
central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple
dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the
mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions
of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the
rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as
a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool
for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations
that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in
barred galaxies.
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1 INTRODUCTION

It is well known that the axial symmetry in galaxies is only
a first approach. In essence, galaxies exhibit deviation from
the axial symmetry which can be very small or more ex-
tended. In the latter category, we may include the case of
barred galaxies. Observations indicate that a large percent-
age of disk galaxies, about 70%, shows bar-like formations
(e.g., Eskridge et al. 2000; Sheth et al. 2003). Bars are linear
extended structures located in the central regions of galax-
ies. Usually bars are formed either from angular momentum
redistribution within the disk or from disk instabilities (e.g.,
Athanassoula 2003; Berentzen et al. 2007; Foyle, Courteau,
& Thacker 2008).

Kormendy (1979) conducted the first systematic investi-
gation regarding the sizes of the galactic bars. He found that
the size of the bar is actually correlated with the luminosity
of the galaxy. In the same vein, Elmegreen & Elmegreen
(1985) showed that bars in early-type disk galaxies tended to
be larger than bars in later Hubble types (Regan & Elmegreen
1997). Recent observations using charge-coupled devices
(CCDs) or near-infrared images supported the initial find-
ings of Kormendy and Elmegreen (e.g., Chapelon, Contini,
& Davoust 1999; Laine et al. 2002; Laurikainen & Salo
2002; Laurikainen, Salo, & Rautiainen 2002). Moreover, it

is observed that barred galaxies may display different char-
acteristics regarding the size of the bar. There are galaxies
with a prominent barred structure (Elmegreen & Elmegreen
1985) and also galaxies with faint weak bars (Wada & Koda
2001).

Galactic bars are very efficient at driving gas inwards and
thus may help to frow central bulge components in galaxy
disks (e.g., Dalcanton, Yoachim, & Bernstein 2004; Debat-
tista et al. 2006; Gadotti 2011). Galaxies with earlier-type
morphologies, which have more prominent bulges, tend to
have more extended bars (e.g., Barazza, Jogee, & Marinova
2008; Hoyle et al. 2011; Masters et al. 2011; Weinzirl et al.
2009). Furthermore, in some galaxies, the central bulges and
the bars seem to contain similar stellar populations (Sánchez-
Blázquez et al. 2011). However, there are some barred galax-
ies that lack completely bulges and many bulge-dominated
galaxies which lack bars (e.g., Laurikainen et al. 2007; Pérez
& Sánchez-Blázquez 2011). It should also be noted that in
some cases, the formation of the central bulges is the result
caused by disk dynamical instabilities (Kormendy & Kenni-
cutt 2004).

An important and striking phenomenon in barred galaxies
is associated with nuclear rings which are active sites of
new star formation (e.g., Knapen et al. 1995; Mazzuca et al.
2008; Sandstrom et al. 2010; Hsieh et al. 2011). It is believed
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that the formation of nuclear rings is due to the effect of a
non-axially symmetric potential of the bar in a large supply
of interstellar gas. A key role in this mechanism is played
by the torque of the bar, which causes the gas to form the
nuclear rings (Kim et al. 2012b). Observations show that
the rate of star formation in the nuclear rings not only is
different in several types of barred galaxies but also varies
significantly with time (e.g., Buta et al. 2000; Benedict et al.
2002; Comerón et al. 2010).

The formation and evolution of dust lanes and nuclear
rings have been extensively studied using numerical sim-
ulations (e.g., Piner, Stone, & Teuben 1995; Englmaier &
Gerhard 1997; Maciejewski et al. 2002; Regan & Teuben
2003; Thakur, Ann, & Jiang 2009). The formation of nuclear
rings from the resonant interaction of the gas with the poten-
tial of the bar appears not to be consistent with recent studies,
suggesting the action of a different mechanism (e.g., Kim,
Seo, & Kim 2012a). According to this mechanism, there is
a centrifugal barrier which cannot be overcome by the in-
flowing gas. This barrier is responsible for the formation of
the nuclear rings. Finally, recent research reveals that more
massive bars cause smaller nuclear rings, for supporting ob-
servational data see Comerón et al. (2010).

Over the last decades, a huge amount of research work has
been devoted to understand the orbital structure in barred
galaxy models (e.g., Athanassoula et al. 1983; Pfenniger
1984; Combes et al. 1990; Athanassoula 1992; Pfenniger
1996; Kaufmann & Contopoulos 1996; Ollé & Pfenniger
1998; Pichardo, Martos, & Moreno 2004). The reader can
find more information about the dynamics of barred galax-
ies in the reviews by Athanassoula (1984); Contopoulos &
Grosbøl (1989); Sellwood & Wilkinson (1993). We would
like to point out, that all the above-mentioned references on
the dynamics of barred galaxies are exemplary rather than ex-
haustive. However, we should like to discuss briefly some of
the recent papers on this subject. Skokos, Patsis, & Athanas-
soula (2002a) conducted an extensive investigation regarding
the stability and morphology of both 2D and 3D periodic or-
bits in a fiducial model representative of a barred galaxy. The
work was continued in the same vein in Skokos, Patsis, &
Athanassoula (2002b), where the influence of the system’s
parameters on the 3D periodic orbits was revealed. Moreover,
Kaufmann & Patsis (2005) presented evidence that in two-
dimensional models with sufficiently large bar axial ratios,
stable orbits having propeller shapes play a dominant role to
the bar structure. Manos & Athanassoula (2011) estimated
the fraction of chaotic and regular orbits in both two- and
three-dimensional (3D) potentials by computing several sets
of initial conditions and studying how these fractions evolve
when the energy and also basic parameters of the model,
such as the mass, size, and pattern speed of the bar vary.
Computing the statistical distributions of sums of position
coordinates Bountis, Manos, & Antonopoulos (2012) quan-
tified weak and strong chaotic orbits in 2D and 3D barred
galaxy models. A time-dependent barred galaxy model was
utilised in Manos, Bountis, & Skokos (2013) in order to ex-

plore the interplay between chaotic and regular behaviour of
star orbits when the parameters of the model evolve.

So far, many publications use the Ferrer’s triaxial model
(Ferrers 1877) to describe the bar. The corresponding poten-
tial however is too complicated and it is not known in a closed
form. On this basis, we decided to construct a new simpler
but none the less realistic potential with a clear advantage
on the performance speed of the numerical calculations in
comparison with the Ferrer’s potential.

The paper is organised as follows: in Section 2, we present
the structure and the properties of the new barred galaxy
model. In Section 3, we construct Poincaré maps in order
to investigate how all the parameters entering the bar model
influence the orbital properties in the invariant surface z =
pz = 0. In Section 4, we use the Smaller Alignment index
(SALI) method (Skokos 2001) to reveal the influence of the
parameters on the full 3D properties. In the following section,
we present numerical evidence that our dynamical model can
realistically simulate the creation as well as the evolution of
twin spiral arms of a real barred galaxy. The paper ends with
Section 6, where the discussion and the main conclusions of
our work are presented.

2 THE NEW DYNAMICAL MODEL

Our total analytical gravitational 3D potential �(x, y, z) con-
sists of three main components: a central spherical compo-
nent �n, a flat disk �d, and a bar potential �b. We decided
to include only these three components, so as to be able to
directly relate our results with those of the corresponding
three component model presented in Pfenniger (1984).

For the description of the spherically symmetric nucleus,
we use a Plummer potential (Binney & Tremaine 2008)

�n(x, y, z) = − GMn√
x2 + y2 + z2 + c2

n

, (1)

where G is the gravitational constant, while Mn and cn are
the mass and the scale length of the nucleus, respectively. At
this point, we must point out that potential (1) is not intended
to represent a black hole nor any other compact object, but
a dense and massive bulge (nucleus). Therefore, we do not
include any relativistic effects.

The flat disk is modelled by a Miyamoto-Nagai potential
(Miyamoto & Nagai 1975)

�d(x, y, z) = − GMd√
x2 + y2 +

(
k + √

h2 + z2
)2

, (2)

where Md is the mass of the disk, while k and h are the
horizontal and vertical scale lengths of the disk, respectively.

In order to model the properties of the galactic bar, we
decided to develop a new dynamical model. The basic idea
is to construct a bar from a mass distribution of length 2a
which lies along the x-axis and has a continuum of centres
going from x = −a to x = +a. We call this interval lying in
the 3D position space IB. The total mass of the bar is Mb. We
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Introducing a New 3D Dynamical Model for Barred Galaxies 3

imagine that in a first step, we have a mass distribution along
IB with a constant linear mass density m = Mb/2a. To avoid
all problems with singularities of point densities and in order
to include the transverse width cb of the bar, we imagine that
in a second step the linear density m belonging to a single
point of IB is smeared out over the effective width cb. Thereby
each point s from the interval IB becomes the centre of the
regularised monopole potential of the form

v(x − s, y, z) = − Gm√
(x − s)2 + d2

, (3)

where

d2 = y2 + z2 + c2
b (4)

and the total potential �b(x, y, z) becomes the integral of
these contributions over the interval IB, i.e.,

�b(x, y, z) =
∫ +a

−a
ds v(x − s, y, z)

= GMb

2a

[
arcsinh

(
x − a

d

)
− arcsinh

(
x + a

d

)]

= GMb

2a
ln

(
x − a +

√
(x − a)2 + d2

x + a +
√

(x + a)2 + d2

)
. (5)

As always, we recover the corresponding mass density
ρ(x, y, z) from the Poisson’s equation

ρ(x, y, z) = 1

4πG
∇2�b(x, y, z)

= Mbc2
b

8πa

∫ +a

−a
ds((x − s)2 + d2)−5/2

= Mbc2
b

8πa
(g(x + a, y, z) − g(x − a, y, z)), (6)

where

g(x, y, z) = x(2x2 + 3d2)d−2(x2 + d2)−3/2. (7)

Note that the integral of ρ over all space gives correctly Mb.
The rotationally symmetric limit a → 0 gives correctly

�b(x, y, z) = − GMb√
x2 + d2

, (8)

ρ(x, y, z) = 3Mbc2
b

4π
(x2 + d2)−5/2. (9)

The bar rotates clockwise around its z-axis at a constant
angular velocity �b. The major axis of the bar points into
the x direction while its intermediate axis points into the y
direction. Therefore, the effective potential is

�eff(x, y, z) = �(x, y, z) − 1

2
�2

b

(
x2 + y2

)
. (10)

We use a system of galactic units, where the unit of length
is 1 kpc, the unit of mass is 2.325 × 107M� (solar masses)
and the unit of time is 0.9778 × 108 yr (about 100 Myr).
The velocity unit is 10 km s−1, the unit of angular momen-
tum (per unit mass) is 10 km kpc s−1, while G is equal to
unity. The energy unit (per unit mass) is 100 km2s−2, while

Figure 1. The isoline contours of the effective potential in the (x, y)-plane
for z = 0 for the standard model. Included are the five Lagrangian points.

the angle unit is 1 radian. In these units, the values of the
involved parameters are: Mn = 400 (corresponding to 9.3
×109 M�), cn = 0.25, Md = 7 000 (corresponding to 1.6275
×1011 M�), k = 3, h = 0.175, Mb = 3 500 (corresponding
to 8.13 ×1010 M�), a = 10, cb = 1, and �b = 1.25. This set
of the values of the parameters defines the Standard Model
(SM).

The isoline contours of constant effective potential on the
(x, y)-plane for z = 0 as well as the position of the five La-
grangian points Li, i = 1, 5 are shown in Figure 1. Three
of them, L1, L2, and L3, known as the collinear points,
are located on the x-axis. The central stationary point L1
at (x, y) = (0, 0) is a local minimum of �eff. At the other
four Lagrangian points, it is possible for the test particle to
move in a circular orbit, while appearing to be stationary
in the rotating frame. For this circular orbit, the centrifugal
and the gravitational forces precisely balance. The station-
ary points L2 and L3 are saddle points, while points L4 and
L5 on the other hand, are local maxima of the effective po-
tential, enclosed by the banana-shaped isolines. The annulus
bounded by the circles through L2, L3, and L4, L5 is known
as the ‘region of co-rotation’. The numerical value of the
effective potential at the two Lagrangian points L2 and L3
results in a critical Jacobi constant CL = −869.70514693.
Similarly, in Figure 2, we observe the isoline contours of the
mass density on the (x, y)-plane for z = 0 of the total grav-
itational potential. The barred structure is clearly visible in
the region −10 ≤ x ≤ +10 kpc. Here, we should emphasise
that the shape of the equidensity curves is very similar to
that of the Ferrer’s ellipsoid [see e.g., Figure 1 in Pfenniger
(1984)].
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4 Jung and Zotos

Figure 2. The isoline contours of the mass density on the (x, y)-plane for
z = 0 of the total gravitational potential �(x, y, z) for the standard model.

The motion of a test particle with a unit mass (m = 1)

in our rotating barred galaxy model is governed by the
Hamiltonian

H = 1

2

(
p2

x + p2
y + p2

z

)
+ �(x, y, z) − �b

(
xpy − ypx

)
= E,

(11)
where px, py, and pz are the momenta per unit mass, conjugate
to x, y, and z respectively, while E is the numerical value of
the Jacobi integral, which is conserved.

ẋ = px + �by,

ẏ = py − �bx,

ż = pz,

ṗx = −∂�

∂x
+ �b py,

ṗy = −∂�

∂y
− �b px,

ṗz = −∂�

∂z
, (12)

where the dot indicates derivative with respect to the time.
In the same vein, the variational equations which

govern the evolution of a deviation vector w =
(δx, δy, δz, δpx, δpy, δpz) are

˙(δx) = δpx + �bδy,

˙(δy) = δpy − �bδx,

˙(δz) = δpz,

( ˙δpx) = −∂2�

∂x2
δx − ∂2�

∂x∂y
δy − ∂2�

∂x∂z
δz + �bδpy,

( ˙δpy) = − ∂2�

∂y∂x
δx − ∂2�

∂y2
δy − ∂2�

∂y∂z
δz − �bδpx,

( ˙δpz) = − ∂2�

∂z∂x
δx − ∂2�

∂z∂y
δy − ∂2�

∂z2
δz. (13)

3 NUMERICAL RESULTS FOR THE 2-DOF
SYSTEM

The subspace Sz of the phase space defined by z = 0 and
pz = 0 is invariant, i.e., initial conditions in Sz lead to orbits
lying entirely in Sz. The restriction of the dynamics to Sz will
be the restricted system with two degrees of freedom. We
frequently use the standard polar coordinates R and φ in the
(x, y)-plane and their conjugate momenta pR and L.

The restricted system has several integrable limit cases.
The most important ones are the limits a = 0 and Mb = 0.
Both of these cases are rotationally symmetric and therefore
the intersection condition of the Poincaré map and the vari-
ables used in the domain of the map should be chosen with
these limit cases in mind to describe well these limit cases,
where the angular degree of freedom is decoupled from the
rest of the system (this also holds for the full 3-DOF sys-
tem). Ideally, the symmetric limit cases should be described
by pure twist maps and their corresponding twist curves.
We study the restriction of the Poincaré map to the invariant
subset z = pz = 0 which will be called Pr in the following
and it is a pure twist map in the rotationally symmetric limit
cases. Therefore, the variables used in the full dimensional
Poincaré map should contain the action-angle variables of
this degree of freedom, i.e., L and φ and for the restricted
map, the domain is simply the cylindrical domain of these
two coordinates. Then, naturally the intersection condition
must be a condition in the variables R and pR. At the mo-
ment, we are only interested in bound motion and then the
most simple and natural intersection condition is the condi-
tion that R runs through a relative maximum and pR changes
from positive to negative values. Almost all bound orbits run
an infinite number of times through this intersection condi-
tion in the limits t → ±∞. The only exceptions might be
orbits with R = constant, e.g., the orbit in the 3-DOF system
which oscillates up and down the z-axis. And in the sym-
metric limit case, there is the circular orbit around the origin
with constant R. Fortunately, such orbits do not appear in
the restricted system as soon as the rotational symmetry is
broken. Therefore, this intersection condition is the best one
possible for our purposes.

To understand the dynamics of the restricted system, we
first pick a case which we use as standard case and then
study the development of Pr under the change of the various
parameters in the potential of the bar, i.e., the parameters
Mb, a, cb, �b and finally, we are also interested in the de-
pendence on the value E of the Hamiltonian in the rotating
frame. As standard case, we use E = −900, Mb = 3 500,
a = 10, cb = 1, and �b = 1.25. The corresponding plot of
the restricted Poincaré map Pr is presented in Figure 3a. In
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Introducing a New 3D Dynamical Model for Barred Galaxies 5

Figure 3. (a-left): The restricted Poincaré map Pr for the standard model and (b-right): Regions of different values of the SALI in a dense grid of
initial conditions on the (φ, L)-plane. Light reddish colours correspond to ordered motion, dark blue/purple colours indicate chaotic motion, while all
intermediate colours suggest sticky orbits. Note the excellent agreement between the two methods. However, we should point out that the SALI method
can easily pick out small stability regions embedded in the chaotic sea which cannot be easily detected by the classical PSS method.

this figure and in the following ones, we restrict the plot to
the interval L ∈ (−150, 150) since this is the most relevant
interval for the real galaxy. However, when useful for the
understanding of the dynamics we will mention structures
outside of this interval. Figure 3b shows the corresponding
final SALI values obtained from the selected grid of initial
conditions, in which each point is coloured according to its
SALI value at the end of the numerical integration (Please see
Section 4 for a description of our use of the SALI method). In
this SALI plot, light-reddish colours indicate ordered orbits,
dark blue/purple colours correspond to chaotic orbits, while
all the intermediate colours represent initial conditions of or-
bits whose chaotic nature is revealed only after long times
(the so-called ‘sticky orbits’1). A comparison of parts (a)
and (b) of Figure 3 demonstrates in which form SALI plots
identify regions in the plane of initial conditions covered by
regular motion. More details on the SALI method will be
given in the beginning of the following section.

In the standard case, the major part of the domain of the
map is covered by a large scale chaotic sea, only the part
for large negative values of L shows mainly regular motion.
The centre of the regular motion is an orbit of period 2 at
φ = ±π/2, L ≈ −170. The corresponding orbit in position
space encircles the origin in an almost circular orbit in
negative (clockwise) orientation where the maximal values
of R lie along the y-axis (i.e., φ = ±π/2) creating the two
corresponding points of period 2 in the map. As seen in
the figure, from the secondary structures around this basic
stable periodic orbit the one of coupling ratio 1:3 is the most
prominent one.

As usual for bound systems with a smooth Hamiltonian,
the large chaotic sea contains an infinity of small stable is-
lands. However, the size of such islands and even the sum of
all their sizes are so small that they do not have any significant

1A sticky orbit is a chaotic orbit which behaves as a regular one for a long
time period before revealing its true chaotic nature.

Figure 4. The rotation angle ω as a function of the angular momentum L
for Mb = 0.

influence on the global dynamical behaviour of the system.
For all practical purposes, we can treat the large chaotic sea
as if it would be completely chaotic. This consideration also
holds for all large scale chaotic seas which we encounter in
the following Poincaré plots.

3.1. Dependence on the mass of the bar

In the case Mb = 0, the bar has zero mass and therefore
does not have any effect on the dynamics, i.e., the dynamics
does not have any bar at all. Accordingly, the dynamics is
rotationally symmetric, L is conserved, and Pr becomes a
pure twist map. It is characterised by the rotation angle ω as
function of L. In the position space of the rotating frame, the
twist angle ω gives the angular advance of the orbit between
two consecutive relative maxima of the radial coordinate.
This twist curve is plotted in Figure 4. Note that for the
integrable case Mb = 0, the values of a and cb are irrelevant
whereas these values matter for the details of the perturbation
scenario away from the symmetric case. Under perturbations,
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6 Jung and Zotos

Figure 5. Examples of the perturbed map Pr for various values of the mass of the bar Mb when E = −900. (a-upper left): Mb = 100; (b-upper right):
Mb = 500; (c-lower left): Mb = 1000; (d-lower right): Mb = 5 000.

i.e., here for Mb becoming different from zero, we expect k : n
resonances to become important whenever the twist angle has
the value 2πk/n for some small integer n. From the Figure 4,
we expect a 1:4 resonance for L ≈ −70, a 1:3 resonance
for L ≈ 0, and a 1:2 resonance for L ≈ 90. In Figure 5a–
d, we show the perturbed map for four different non-zero
values of Mb. For the small value Mb = 100 in part (a), we
clearly see the large secondary 1:2 structure at a L interval
around the expected value of approximately 90. We observe
secondary KAM islands centred around the period 2 elliptic
points at angle values φ = 0 and φ = π and a chaos strip
organised by the hyperbolic period 2 points sitting at angle
values φ = ±π/2. We also see clearly the 1:4 secondary
structure around the L value −70. Here, the fine chaos strips
organised by the hyperbolic points still come very close to
a separatrix curve. The expected 1:3 resonance structure has
already decayed into a chaos strip even for the small value
Mb = 100. As seen from Figure 4, the twist curve has a very
large slope when it passes the value 2π/3 and therefore the
corresponding resonance structure is extremely unstable and
turns into a large scale chaos strip at very small perturbations.
For values of Mb < 50, we see two different chains of very
small secondary islands of period 3. Because of the discrete
symmetry φ → φ + π in our system, the periodic points of
odd period come in two different copies in general.

For the value Mb = 500 in part (b) of the figure, we still see
the secondary KAM islands of the 1:2 resonance and also of
the 1:4 resonance. The corresponding chaos strips have al-
ready merged to one global chaotic sea. For this value of
Mb, we still find primary KAM curves for large positive and
large negative values of L. As seen in part (c) of the figure, the
secondary islands of the 1:2 resonance have disappeared for
Mb = 1 000 whereas the secondary 1:4 islands still exist on a
very small scale. For this perturbation value also the primary
KAM curves for large values of L have decayed. For the case
of the very large value Mb = 5 000 shown in part (d), there is
little difference compared to the standard case. Only the sec-
ondary structures at large negative values of L have changed.

3.2. Dependence on the major axis of the bar

For a = 0, the bar is rotationally symmetric and therefore
we have again a case where L is conserved and Pr is again a
pure twist map which is characterised by its twist curve. The
twist curve of this limiting case is presented in Figure 6. The
most important resonances are a 1:2 resonance at L ≈ 120,
a 2:5 resonance at L ≈ 40, a 3:8 resonance at L ≈ 20, a 1:3
resonance at L ≈ 0, a 1:4 resonance at L ≈ −25, and a 1:6
resonance at L ≈ −80. The perturbation of this twist map
under a change of the parameter a is presented in Figure 7.
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Introducing a New 3D Dynamical Model for Barred Galaxies 7

Figure 6. The rotation angle ω as a function of the angular momentum L
for a = 0.

For the small value a = 1 in part (a), we see the secondary
structures expected from the twist curve of Figure 6. Remem-
ber that again the odd period structures of the 2:5 resonance
and the 1:3 resonance come in two distinct copies. For this
small value of the perturbation, all fine chaos strips are still
very small and appear in the plots like separatrix curves.

For a = 2 plotted in part (b), the L interval (−60, 80) is
already dominated by a large scale chaotic sea in which many
of the previously seen secondary structures are dissolved.
For a = 3 shown in part (c), we see small remnants of the
secondary 1:2 and 1:6 islands. Otherwise the only regular
structures on a visible scale in the plot are the primary KAM
curves for large negative values of L. There is another pair
of islands at very large positive values of L ≈ 270 outside
of the frame of the figure. For further increasing values of a,
we approach the structure of the standard case without any
further important changes in the large scale structure.

3.3. Dependence on the scale length of the bar

For cb → ∞, we approach a rotationally symmetric case
which is equivalent to the case Mb = 0. However, very large
values of cb do not describe realistic models of real galaxies.
Therefore, we do not describe this limiting case in detail.
In Figure 8, we just show the cases cb = 0.1 and cb = 2.5
to demonstrate that for realistic values of cb there is little
development of the dynamics at all under changes of cb.

3.4. Dependence on the rotational velocity of the bar

For increasing values of �b, the dynamics becomes rather
rapidly unstable because of the increasing centrifugal forces.
Then, most orbits are scattering orbits which come from
infinity and return to infinity. In this paper, our topic is not
the chaotic scattering dynamics, we are only interested in
bound motion. Therefore, we describe the dependence on �b
for a smaller value of the energy E where still a large part of
the motion is bound also for values of �b up to five. For the
numerical examples, we choose the value E = −2 400. Some
examples of the corresponding map Pr are plotted in Figure 9.

For �b converging to zero, the map becomes upside down
symmetric in L because for �b = 0 the two orientations of
angular motion become equivalent and correspondingly the
sign of L becomes irrelevant. For �b small and L not too close
to zero the motion becomes stable for φ values around ±π/2.
That is, motion around the origin and mainly perpendicular
to the bar becomes dynamically stable.

In part (a) of the figure for �b = 1, we see two distinct
island chains of period 2 with centres at φ = ±π/2, one at
positive and one at large negative values of L. Increasing
values of �b break the symmetry between the two rotational
orientations, i.e., between the two signs of L. The motion
with positive values of L becomes unstable soon whereas the
motion with large negative values of L remains stable up to
very large values of �b. Note that for intermediate values of
�b [see parts (b) and (c) of the figure] motion with small
values of L and along the direction of the bar becomes stable.
See the islands at φ = 0 and φ = π . The coming and going
of these islands indicates that motion along the bar never
becomes very unstable and that this type of motion can play
the role of an important organisation centre of the dynamics
also when it is slightly unstable.

In part (d) of the figure for �b = 5, almost all the orbits
of the large scale chaotic sea are in reality scattering orbits
which go to infinity in the long run. For typical initial con-
ditions in this chaotic sea, the orbit first increases its value
of L to values above 500 and then the value of R becomes
large monotonically, i.e., the orbit reaches the asymptotic re-
gion and does no longer produce any intersections with the
surface of section of the Poincaré map. This transition to the
asymptotic behaviour is not the topic of the present paper.

3.5. Dependence on the orbital energy

We have already seen a lot of maps for E = −900 and in the
�b series also some for E = −2 400. Finally, let us see two
more examples for different values of E. Figure 10(a) and
(b) present the examples for E = −1 650 and E = −3 000,
respectively, otherwise the plots are for the standard values
of the bar parameters. In Figure 10, we see again the stable
islands at φ = 0 and φ = π which also exist for some other
parameter combinations. And for E = −3 000, we see the
large scale islands of period 2 at φ = ±π/2 and for both
maximal positive and negative values of L.

The minimal possible value of the energy for the standard
bar parameters is E = Emin = −4 854. In the limit E → Emin,
the motion converges to completely integrable harmonic mo-
tion even in 3-DOF. This is the last integrable limit case
encountered in our study.

Certainly, the most persistent type of stable motion in Sz
is the motion at the maximal negative values of L and in par-
ticular for angles in the neighbourhood of φ = ±π/2. We
did not find any combination of reasonable realistic param-
eter values which makes this motion unstable. It is motion
in negative orientation around the centre where the maxi-
mal values of R occur in the direction perpendicular to the
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8 Jung and Zotos

Figure 7. Examples of the perturbed map Pr for various values of the major axis of the bar a when E = −900. (a): a = 1; (b): a = 2; (c): a = 3; (d):
a = 5; (e) a = 7; (f): a = 9.

bar. In comparison, motion mainly in direction of the bar is
stable for limited parameter regions only. As Figure 7 shows,
this last mentioned motion grows out of the 1:2 resonance of
the integrable limit case a = 0 and it becomes unstable for
a ≈ 4.7.

3.6. The x1 orbital family

As seen in Figure 7 for small values of a, the 1:2 resonance in
the Poincaré map gives the largest secondary KAM islands.
In this sense, the periodic orbit belonging to the central pe-

riodic point of these islands plays a prominent role in the
dynamics. From the Poincaré maps, we observe that this or-
bit stays stable until a ≈ 4.7. And we expect that it still serves
as an important organising centre of the dynamics also for
larger values of a. Therefore, in this subsection, we study this
periodic orbit in more detail.

In Figure 11a, we show the orbit in position space for the
value a = 7. It is evident that it is an orbit moving mainly
in the direction of the bar (x-axis) making at the same time
smaller oscillations perpendicular to the bar directions(i.e.,
along the y-axis). Between these longitudinal and transverse
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Introducing a New 3D Dynamical Model for Barred Galaxies 9

Figure 8. Examples of the perturbed map Pr for various values of the scale length of the bar cb when E = −900. (a-left): cb = 0.1; (b-right): cb = 2.5.

Figure 9. Examples of the perturbed map Pr for various values of the rotational speed of the bar �b when E = −2 400. (a-upper left): �b = 1; (b-upper
right): �b = 2; (c-lower left): �b = 3; (d-lower right): �b = 5.

oscillations in the bar potential, a 1:3 resonant coupling is
evident. Orbits that are elongated parallel to the bar within
co-rotation are known as x1 orbits and in this sense our
main orbit is a 1:3 resonant x1 orbit. Along one complete
revolution, this orbits runs through two maxima of R and
therefore it appears as period 2 point in our Poincaré sections
with the intersection condition that R is maximal.

In the next Figure 12a, we present graphically the stability
type of this orbit, we plot the trace Tr of its monodromy ma-

trix as function of a as the black curve. Remember that a pe-
riodic orbit is elliptic if −2 < Tr < 2, it is normal parabolic
if Tr = 2, normal hyperbolic if Tr > 2, inverse parabolic
if Tr = −2, and inverse hyperbolic if Tr < −2. The eigen-
values λ of the monodromy matrix are obtained from the
trace as

λ = Tr/2 ±
√

(Tr/2)2 − det. (14)
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10 Jung and Zotos

Figure 10. Examples of the perturbed map Pr for various values of the total orbital energy E. (a-left): E = −1 650; (b-right): E = −3 000.

Figure 11. (a-left): An unstable x1 1:3 periodic orbit for a = 7 when E = −900; (b-right): The two left-right asymmetric x1 1:3 periodic
orbits for a = 7 when E = −900. Note that one orbit is the mirror image of the other one.

And because the monodromy matrix is symplectic, we always
have det = 1 for its determinant. Because of the importance
of the values +2 and −2 for the trace, two horizontal dashed
lines (blue in the colour version) at these values are included
in the figure.

As we have mentioned before, for a = 0, we have a pure
twist map which is globally parabolic and therefore the curve
in Figure 12a must start with the value Tr = 2 at a = 0. With
increasing value of a, the eigenvalues run along the complex
unit circle and when the phase of the eigenvalues reaches
π then the trace reaches the value −2. Because of discrete
symmetry, the orbit does not become inverse hyperbolic at
this point. It stays elliptic and the eigenvalue continues to run
along the unit circle. For a ≈ 4.77, the eigenvalue reaches
+1, the trace reaches +2, and here the orbit becomes normal
hyperbolic in a pitchfork bifurcation. The trace curve of the
original 1:3 x1 orbit passes through this bifurcation as smooth
curve. At the moment of the change of stability, the original

orbit splits off two descendants where each one breaks the
left–right symmetry. But one of them is the mirror image of
the other one. Figure 11b shows these two periodic orbits in
position space for a = 7.

Figure 12b presents a bifurcation diagram of the pitchfork
bifurcation. Here, the maximal value of the x coordinate of
each one of the three orbits is plotted as function of a. The
curve for a < 4.7 and the middle curve for a > 4.7 belong to
the original symmetric 1:3 x1 orbit. The two outer branches
for a > 4.7 belong to the two orbits split off in the pitchfork
bifurcation. As long as the corresponding orbit is stable, the
curve is green and when the orbit is unstable the curve in
Figure 12b is red.

Also included in Figure 12a for a > 4.77 is the trace of
the monodromy matrix of the asymmetric orbits split off in
the pitchfork bifurcation. It is the lower curve in the figure.
The split-off orbits are born with Tr = 2 and are stable in
a small a interval. At a ≈ 5.04, the trace passes through
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Introducing a New 3D Dynamical Model for Barred Galaxies 11

Figure 12. (a-left): Evolution of the trace of the monodromy matrix of the x1 1:3 family as a function of the major axis of the bar a
when E = −900. The blue horizontal dashed lines at –2 and +2 delimit the range of the trace for which the periodic orbits are stable;
(b-right): The characteristic curve of the x1 1:3 family.

the value −2 and the orbits become inverse hyperbolic in a
period doubling bifurcation. The orbits do not become very
unstable for increasing a. After a first increase, the instability
even returns to rather moderate values and around a = 10 the
orbits are almost stable. Interestingly, also the instability of
the original 1:3 x1 orbit saturates for these values of a. All
these orbits become very unstable only for very large values
of a outside of the range where the model makes physical
sense. For extreme values of a, the split-off orbits change
from 1:3 x1 type to 1:2 x1 type, i.e., then they make two
transverse oscillations only for each longitudinal oscillation
along the bar.

In total, we find the following situation for a ∈ (6, 10):
There is a whole chaotic braid of 1:3 x1 orbits, the original
left–right symmetric one, the two ones split of in the pitchfork
bifurcations breaking the left–right symmetry, and the infin-
ity created in the doubling cascades of the split-off orbits. At
least some of them have rather moderate instability which
implies that also the instability of the whole braid is moder-
ate. And this in turn implies that this chaotic braid serves as
an important organising centre for the whole dynamics.

4 NUMERICAL RESULTS FOR THE 3-DOF
SYSTEM

A simple qualitative way for distinguishing between ordered
and chaotic motion in a Hamiltonian system is by plotting
the successive intersections of the orbits using a Poincaré
surface of section (PSS). This method has been extensively
applied to 2-DOF models, as in these systems the PSS is a
two-dimensional plane (see Section 3). In 3-DOF systems,
however, the PSS is four-dimensional and thus the behaviour
of the orbits cannot be easily visualised.

One way to solve this problem is to choose a two- dimen-
sional plane in the phase space, cover it with a sufficiently
fine grid of points, use these points as initial conditions for
orbits and check for each one of these orbits whether its
motion is regular or chaotic, following the method used in
Manos & Athanassoula (2011); Zotos & Caranicolas (2013);
Zotos (2014). In this way, we are able to identify again re-
gions of order and chaos, which may be visualised, because
we choose as domains only planes of dimension-2. For most
of our SALI plots, we use as domain the (x, z)-plane, choose
for each orbit an initial point (x0, z0) in this plane, take three
other initial conditions as y0 = px0 = pz0 = 0 and obtain the
last initial condition py0 from the value of the energy ac-
cording to Equation (11), where we use the positive branch
of the solution. Thus, we are able to construct again a two-
dimensional plot depicting the (x, z)-plane. All the initial
conditions of the 3D orbits lie inside the limiting curve de-
fined by

f (x, z) = �eff(x, y = 0, z) = E. (15)

In a few examples, we also show SALI plots on the (y, z)-
plane as domain. They can be understood by exchanging the
roles of x and y in the above mentioned construction.

For distinguishing between order and chaos in our mod-
els, we use the SALI method (Skokos 2001). We chose for
each value of the free parameter of the effective potential,
a dense uniform grid of 105 initial conditions in the (x, z)-
plane, regularly distributed in the area allowed by the value
of the energy E. For each initial condition, we integrated
the equations of motion (12) as well as the variational equa-
tions (13) with a double precision Bulirsch–Stoer algorithm
(Press et al. 1992). In all cases, the value of the Jacobi in-
tegral [Equation (11)] was conserved better than one part in
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12 Jung and Zotos

Figure 13. Regions of different values of SALI in a dense grid of initial
conditions on the (x, z)-plane for the standard model.

10−11, although for most orbits, it was better than one part in
10−12.

All initial conditions of orbits are numerically integrated
for 103 time units which correspond to about 1011 yr or in
other words to about 10 Hubble times. This vast time of
numerical integration is justified due to the presence of the
sticky orbits. Therefore, if the integration time is too short,
any chaos indicator will misclassify sticky orbits as regular
ones. In our work, we decided to integrate all orbits for a
time interval of 103 time units in order to correctly classify
sticky orbits with sticky periods of at least of 10 Hubble
times. At this point, it should be clarified that sticky orbits
with sticky periods larger than 103 time units will be counted
as regular ones, since such extremely high sticky periods are
completely out of scope of this research.

Now, we use the SALI plots to observe the parameter de-
pendence of the dynamics of the full 3-DOF system. To each
Poincaré map from the previous section, we show the corre-
sponding SALI plot. We begin with the SM in Figures 13
and 14, where Figure 13 is the SALI plot in the (x, z)-
plane and Figure 14 is the SALI plot in the (y, z)-plane. The
corresponding Poincaré plot has already been presented in
Figure 3a.

Let us explain the connection between the Poincaré plot
in the (φ, L)-plane and the SALI plot in the (x, z)-plane. The
line z = 0 in the SALI plot belongs to the invariant subset
Sz. The part for x positive corresponds to φ = 0 and the part
for x negative corresponds to φ = π . For all points in the
domain of the SALI plot, we have y = 0 and also px = 0,
therefore automatically we have pR = 0. Remember that the
intersection condition of the Poincaré map is pR = 0 with
negative intersection orientation, i.e., pR has to change from
positive to negative, i.e., R has to run through a relative
maximum.

We need to understand which points in the SALI plot cor-
responds to maxima of R and which ones to minima. When
an orbit starts perpendicular to the SALI plane and with small

Figure 14. Regions of different values of SALI in a dense grid of initial
conditions on the (y, z)-plane for the standard model.

value of the coordinate x then there is very little radial accel-
eration and the radial distance increases. In contrast, when
the orbit starts with a large absolute value of x, then there
is a strong acceleration in negative radial direction, the orbit
starts with a large value of inward curvature and the initial
value of R is a maximum. In this sense, approximately the
outer half on both sides of the domain of the SALI plots
corresponds to negative orientation with respect to the in-
tersection condition pR = 0 and the inner half on both sides
corresponds to positive orientation of this intersection. It is
also clear that points with positive x correspond to positive
values of L and points with negative values of x correspond
to negative values of L.

Accordingly, in total we have the following correspon-
dence: Points on the outer half of the line segment z = 0, x >

0 in the SALI plot can be identified with points in the Poincaré
plot along the line φ = 0 and positive values of L and points
on the outer half of the line segment z = 0, x < 0 in the SALI
plot can be identified with points in the Poincaré plot along
the line φ = π and negative values of L. Analogous consid-
erations hold for SALI plots in the (y, z)-plane where the
corresponding values of φ are ±π/2. Here, we have only
to remember that orbits start with positive values of px and
therefore positive values of y in the SALI plot correspond to
negative values of L and negative values of y in the SALI plot
correspond to positive values of L. The outermost values of
either x or y always correspond to L = 0.

Now, let us check this correspondence for the plots of the
SM presented in Figures 3a–b, 13 and 14. In the Poincaré
plot of Figure 3a, we see large scale regular structures for
φ = ±π/2 and negative values of L only. Accordingly in
Figure 13, we see no large scale regular structures at all for
large absolute values of x and for z = 0 and in Figure 14, we
see a small strip of regular behaviour along the line z = 0 for
positive values of y.

In the next figures, we show SALI plots in the (x, z)-plane
for all cases for which we have given Poincaré plots in the
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Introducing a New 3D Dynamical Model for Barred Galaxies 13

Figure 15. Regions of different values of SALI in a dense grid of initial conditions on the (x, z)-plane when E = −900. (a-upper left): Mb = 100;
(b-upper right): Mb = 500; (c-lower left): Mb = 1 000; (d-lower right): Mb = 5 000.

invariant plane Sz in Section 3. Figure 15 shows the plots in
dependence on Mb, Figure 16 contains the plots in depen-
dence on a, Figure 17 shows the plots in dependence on cb,
Figure 18 gives the plots for various values of �b, and finally
Figure 19 shows the plots for two values of the total orbital
energy E. In all cases, we can confirm the correspondence
between SALI plots and Poincaré plots which we have ex-
plained above for the SM. In the Figures 20a–c, we show the
relative fraction of chaotic orbits found in the SALI plots as
function of Mb, a and �b, respectively. Looking carefully at
Figure 20a–c, it becomes evident that the percentage of the
chaotic orbits in the (x, z)-plane increases in the following
three cases: (i) when the bar becomes more massive, (ii) when
the major semi-axis of the bar increases, and (iii) when the
rotational velocity of the bar increases. In all three cases, for
large enough values of the parameters (Mb > 3500, a > 9,
�b > 2.3) initial conditions of chaotic orbits dominate cov-
ering more than 85% of the (x, z)-plane.

The great value of all these SALI plots lies in the following:
By the comparison with the Poincaré plots, we obtain the

information to which extent the regular structures found in the
Poincaré plots are stable against perturbations in z direction.
For the example of the SM, a comparison between Figures 3a
and 14 shows that the regular structure at φ = ±π/2 and
negative values of L in the Poincaré plot corresponds to a
rather narrow stable strip around z = 0 and large values of
y in the SALI plot of Figure 14. Accordingly, this stable
structure is rather sensitive against out of plane perturbations
and can be destroyed by moderate out of plane perturbations.
In contrast, the stable structure along the line z = 0 in SALI
plot of Figure 19b, the case for E = −3 000, is very wide in z
direction and therefore we conclude that the stable structure
seen in the Poincaré plot of Figure 10b is rather stable against
out of plane perturbations. Analogous considerations hold for
all other parameter cases.

For most of the SALI plots, we see a large stable structure
at small negative values of x and at large values of z. They
correspond to tilted loop orbits which encircle the bar along a
large loop, where the radial coordinate R is much larger than
the width cb of the bar, and tilted at an angle of approximately
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14 Jung and Zotos

Figure 16. Regions of different values of SALI in a dense grid of initial conditions on the (x, z)-plane when E = −900. (a): a = 1; (b): a = 2; (c):
a = 3; (d): a = 5; (e) a = 7; (f): a = 9.

π/4 relative to the axis of the bar. This class of stable orbits
seems to be the most persistent class of stable 3D orbits in
our model. Figure 21 shows an example of such an orbit
in position space with initial conditions: x0 = −3.3, y = 0,

z0 = 4.45, px0 = 0, py0 > 0, pz0 = 0. The existence of this
class of orbits in triaxial rotating models of galaxies is known
for a long time, see e.g., (Heisler, Merritt, & Schwarzchild
1982).
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Introducing a New 3D Dynamical Model for Barred Galaxies 15

Figure 17. Regions of different values of SALI in a dense grid of initial conditions on the (x, z)-plane when E = −900. (a-left): cb = 0.1; (b-right):
cb = 2.5.

Figure 18. Regions of different values of SALI in a dense grid of initial conditions on the (x, z)-plane when E = −2 400. (a-upper left): �b = 1;
(b-upper right): �b = 2; (c-lower left): �b = 3; (d-lower right): �b = 5.
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16 Jung and Zotos

Figure 19. Regions of different values of SALI in a dense grid of initial conditions on the (x, z)-plane. (a-left): E = −1 650; (b-right): E = −3 000.

Figure 20. Evolution of the relative fraction of chaotic orbits found in the SALI plots on the (x, z)-planes as function of (a): Mb, (b): a and (c): �b.

Figure 21. A characteristic example of an inclined 3D loop orbit along with
its projections on the three primary planes.

5 THE SPIRAL STRUCTURE

It is well known that when stars escape from star clusters
through the Lagrangian points, they form complicated struc-
tures known as tidal tails or tidal arms [e.g., (Capuzzo Dol-
cetta, Di Matteo, & Miocchi 2005; Di Matteo, Capuzzo Dol-
cetta, & Miocchi 2005; Just et al. 2009; Küpper, Macleod,
& Heggie 2008; Küpper et al. 2010)]. In the same vein, in
the case of barred spiral galaxies, we observe the formation
of spiral arms [e.g., (Ernst & Peters 2014; Grand, Kawata, &
Cropper 2012; Masset & Tagger 1997; Minchev & Quillen
2006; Quillen et al. 2011; Roškar et al. 2008; Sellwood &
Kahn 1991)]. Usually, a star cluster rotates around its par-
ent galaxy in a circular orbit. Thus, the tidal tails follow the
curvature defined by the circular orbit and they are nearly
straight for orbits moving in large galactocentric distances.
The spiral arms of barred galaxies on the other hand, are
formed by the non-axisymmetric perturbation of the bar. In
particular, in barred spiral galaxies with prominent spiral-
like shape, the two arms start from the two ends of the bar
and then they wind up around the banana-shaped forbid-
den regions which enclose the Lagrangian points L4 and
L5.

It would be very challenging to investigate if our simple
gravitational model has the ability to realistically simulate
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Introducing a New 3D Dynamical Model for Barred Galaxies 17

Figure 22. The four parts of the figure show for four different values of the time the distribution of the position of 106 stars in the
physical (x, y)-plane initiated (t = 0) within the Lagrangian radius, for E = −1860 and �b = −3.5. We see that as time evolves two
symmetrical spiral arms are formed. The green arm contains stars that escaped through L1, while the red arm contains stars that escaped
through L2. The bound stars inside the interior galactic region are shown in cyan, while the forbidden regions around L4 and L5 are filled
with gray.

the formation of spiral arms. We shall try to replicate the
spiral structure of the SBb galaxy NGC 1300. According to
Binney & Tremaine (2008) (plate 10) the semi-major axis of
the bar is about 10 kpc. This means that we have to choose
such values of the parameters so that the position of the
Lagrangian points L1 and L2 to be at the two ends of the bar.
For this purpose, we choose �b = −3.5, while the values of
all the other parameters remain as in SM.

In order to test this, we reconfigured our integration numer-
ical routine so as to yield output of all orbits for a 3D grid of
size Nx × Ny × Nẋ = 100 × 100 × 100, when z0 = pz0 = 0.
This dense grid of initial conditions is centred at the ori-

gin of the physical (x, y) space and we allow for all orbits
both signs of ẏ. Our purpose is to monitor the time-evolution
of the path of the orbits and simulate the spiral arm for-
mation. At t = 0, all orbits are regularly distributed within
the Lagrangian radius inside the interior galactic region. In
Figure 22, we present four time snapshots of the position of
the 106 stars in the physical (x, y)-plane. We observe that at
t = 1 time units, which corresponds to 100 Myr the majority
of stars are still inside the interior galactic region. However,
a small portion of stars has already escaped passing through
either L1 or L2. At t = 1.5 time units (150 Myr), we have the
first indication of the formation of spiral arms, where with
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18 Jung and Zotos

green and red colour we depict stars that escaped through
Lagrangian points L1 and L2, respectively, while stars that
remain inside the Lagrangian radius are shown in cyan. As
time goes by, we see that the two symmetrical spiral arms
grow in size and at t = 2 time units (200 Myr) the barred
galaxy has obtained its complete spiral structure, while the
interior galactic region is uniformly filled. In Figure 22a–d,
the density of points along one star orbit is taken to be propor-
tional to the velocity of the star according to Ernst & Peters
(2014). Being more specific, a point is plotted (showing the
position of a star), if an integer counter variable which is
increased by one at every integration step, exceeds the ve-
locity of the star. Following this technique, we can simulate,
in a way, a real N-body simulation of the spiral evolution of
the barred galaxy, where the density of stars will be highest
where the corresponding velocity is lowest. Therefore, we
proved that for E = −1 860 and �b = −3.5 the scenario of
evolution of spiral arms in our new barred galaxy model is
indeed viable. Additional numerical simulations reveal that
this is also true for other (lower or higher) values of en-
ergy. In fact, the particular energy level mainly controls how
tight the spiral arms wind up around the forbidden regions of
motion.

6 DISCUSSION AND CONCLUSIONS

The main topic of the paper is a rather simple analytic grav-
itational model for the potential of a rotating bar in a disk
galaxy with an additional spherical dense nucleus. We claim
that our new model has some advantages over older mod-
els treated in the literature. Our model has intentionally only
three components (nucleus, bar, disk) so as to be able to com-
pare the results with the previous model used in Pfenniger
(1984).

Advantages of our model of the bar compared to the model
with the Ferrer’s triaxial bar: We have a relatively simple
functional form with a moderate number of parameters. The
parameters a and cb control the shape of the bar and these
parameters have a simple physical meaning: cb is the width
in y and z directions, while a is the length in x direction. If
one wants to have different widths in y and z direction then
one can replace in Equation (3) z by γ z and in analogy in
the following equations by inserting this modified function
υ. In addition, we have the parameters Mb and �b which
are mass and angular velocity of the bar. Fortunately, the
function �b(x, y, z) is an elementary function and therefore
it is trivial to include a closed form of the forces into a com-
puter programme to construct orbits. In addition, we have
the same functional form globally. We do not need any cuts
at large distance nor any switch to other functional forms.
Interestingly, the mass density resulting from our model and
as plotted in Figure 2 is very similar in shape to the one re-
sulting from the more complicated traditional models and as
plotted in Figure 1 of Pfenniger (1984). This may be taken as

a first hint that our model gives realistic density distributions
with moderate effort.

In contrast to simple logarithmic models, our new model
of the bar has the correct asymptotic behaviour for large
distance. As seen in Equation (5) also our new model is
basically a logarithmic model. However, the argument of
the logarithm in Equation (5) is constructed such that we
obtain the correct asymptotic form −Mb/r of the potential
for the limit of large distance r from the centre. This correct
asymptotic behaviour will become relevant when we want to
study scattering behaviour, i.e., when we want to study how
outside objects become trapped by the galaxy (for most initial
conditions only temporarily) and escape again to infinity. Of
course, before starting to investigate scattering behaviour one
should add to the total potential an additional term describing
the halo of the galaxy.

As a further justification of our model serves, the behaviour
of the most important periodic orbit families of the dynamics.
As seen in the Poincaré sections plotted in Section 3, one
of the stable types of motion in the plane Sz is clockwise
(negative orientation) motion around the centre with maximal
negative angular momentum. Such orbits have their largest
distance from the centre for φ = ±π/2 but they are rather
close to circular. For our typical parameter values, the average
distance from the centre for such orbits is around 6 kpc.
Another class of important periodic orbits are the ones of
x1 type, as described in detail in Subsection 3.6. They are
mainly oscillations along the bar. Such orbits are stable for
some parameter regions, in particular for small values of
a. But interestingly, when they become unstable for more
interesting larger values of a then they form a whole infinity
of similar descendants forming a braid of such orbits of very
moderate global instability. The persistence of this braid of
x1 orbits may be taken as a dynamical explanation of the
formation and stability of the bar structure.

These two most prominent types of motion would also be
of highest importance for the 3-DOF dynamics if they would
be stable under perturbations out of the invariant plane, i.e.,
under perturbations in z or pz direction. We have made some
fast preliminary calculations of the behaviour of the peri-
odic orbit for large negative values of L and also for the
1:3 x1 orbit including small perturbations in pz. We have
done it for values of a where the respective in plane orbit is
still stable. The numerical results indicate that also the orbits
with out of plane perturbations remain stable. This numerical
behaviour can be taken as evidence that the corresponding
types of motion also serve as organising centres of the dynam-
ics in the full 3-DOF dynamics. The most persistent stable
orbits for all parameter values of the bar are the inclined
3D loop orbits where a typical example has been shown in
Figure 21.

The results from Section 5 suggest a stellar dynamical
explanation of the formation of spirals which start at the ends
of the bar and consist of stars leaking out from the interior
part of the effective potential via the Lagrangian points L1
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and L2. Also this behaviour is consistent with the results of
Ernst & Peters (2014). Thus, we may claim that our new
galactic potential has the ability to model the formation and
also the evolution of twin spiral structures observed in all
barred galaxies.
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