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Squishy oscillations
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The dynamics of soft porous media involves complex interactions between fluid flow and
elasticity. The recent paper by Fiori et al. (J. Fluid Mech., vol. 974, 2023, A2) highlights
phenomena relating to the periodic loading of such poro-elastic media, including hysteresis
and the localisation of deformation at high frequencies. These effects could result in
rectification and steady streaming in many important applications.
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1. Overview

Poro-elasticity characterises a wide range of materials including soils and rocks, the
tissues of plants and animals, and various gels involved in manufactured pharmaceuticals.
These materials fundamentally consist of at least two phases: an elastic scaffold and a
permeating fluid. In many cases, such as a bathroom sponge, the scaffold is intrinsically
elastic, and flows are driven by external mechanical forces. In others, such as hydrophilic
gels (hydrogels), the scaffold can derive its elasticity in part from interactions with
the interstitial fluid, and flows can be driven by internal osmotic gradients. There is
a vast literature discussing the physico-chemical characterisations of different systems.
However, from a continuum, fluid-mechanical perspective, the macroscopic characteristics
of flows through all these types of poro-elastic media are similar, describable by the
same equations. There is relatively little written from the continuum perspective, and the
paper by Fiori, Pramanik & MacMinn (2023) provides new insight into the fundamental
character of deformation and flow in poro-elastic media.

The particular focus of the paper by Fiori et al. is the response of a poro-elastic medium
to periodic forcing. Such forcing might be found in the perivascular system surrounding
arterial blood vessels in the brain (e.g. Kelley 2021), the forcing by ocean tides of
melt-water flows in sub-glacial till (Warburton, Hewitt & Neufeld 2023), and the response
of ground water to solid-Earth tides (Allègre et al. 2016), to give just a few examples in
very different contexts and at vastly different scales. Two principles are highlighted by this
study. The first is that, although the mechanical description is of fluid flow, the response of
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the system is diffusional in character, giving rise to the sorts of evanescent diffusion waves
seen in the thermal response of the ground and of thick-walled buildings to seasonal cycles
and typified by Stokes’s second problem of a flat plate oscillating in its own plane adjacent
to a viscous fluid with inertia. The second is that nonlinearities in the material properties
of a poro-elastic medium and in the nature of the forcing can lead to pronounced hysteresis.

2. Fundamentals

As described above, poro-elastic media exist at widely different scales and in different
contexts, studied by scientists from different disciplines. When that happens, terminology
can sometimes limit the cross-fertilisation of ideas. For example, a physical chemist or
colloid scientist might normally describe the flux of one component of a mixture relative
to another as driven by gradients in chemical potential or concentration, whereas an earth
scientist might rather describe groundwater flow as driven by gradients in pore pressure.
Additionally, the latter might describe the stresses within the porous scaffold as the
effective stress in the manner of Terzaghi (1943), while the former might describe the same
pressures as osmotic. At the macroscopic, continuum level, these physical descriptions are
equivalent. So, while Fiori et al. use the language of soil scientists, their results are equally
applicable to colloidal gels and biological tissue.

A macroscopic starting point is to consider the pressure P measured by a transducer
large enough to sample both phases of the mixture, be it a solution (mixed at the molecular
scale), a colloidal suspension, a gel, a sponge or a rock. Additionally, consider the pressure
p measured in a chamber separated from the mixture by a semi-permeable membrane that
allows just one component (the fluid) to pass freely. The difference P − p is the osmotic
pressure Π . This description is familiar in the context of salt solutions, for example, but it
is applicable and useful in all the contexts mentioned above. For example, osmotic pressure
thus defined is used as an important descriptor for particle suspensions (Deboeuf et al.
2009). Whereas the total pressure P and the solvent pressure p are dependent variables of
the macroscopic system, the osmotic pressure Π(φ) is a material property dependent on
the concentration (volume fraction) of the solute in the mixture φ.

Armed with these definitions, it can be shown (Peppin, Elliot & Worster 2005) that
Darcy’s law for flow through a porous medium and Fick’s law for the diffusion of a solute
are equivalent, with the permeability k and the bulk diffusivity D related by

D = kM
μ

, (2.1a)

where

M = φ
dΠ

dφ
(2.1b)

is the osmotic modulus and μ is the dynamic viscosity of the solvent. Note that the
bulk diffusivity of a medium (tendency towards uniform concentration) is distinct from
the self-diffusivity of components of the medium. They are equal for solutions but the
self-diffusivity is essentially zero for concentrated suspensions and gels while the bulk
diffusivity is substantial. It is unusual to think of the permeability of a salt solution or the
diffusivity of a porous medium but this universal equivalence comes into its own when
discussing colloidal suspensions, gels and poro-elastic media. The diffusivity given by
(2.1) is that derived in Fiori et al. once one identifies the osmotic pressure Π with −σ ′,
where σ ′ is the effective stress of the elastic scaffold, given that φ = 1 − φf , where φf is
the porosity of the medium, the volume fraction of solvent (interstitial fluid).
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x = a(t) x = L

A

x

Figure 1. Schematic diagram of a saturated poro-elastic medium between a porous piston to the left and an
impermeable wall to the right. Oscillatory compression is begun from time t = 0. After Fiori et al. (2023).

3. Hysteresis

Hysteresis in periodically forced flows through poro-elastic media has been observed
experimentally (MacMinn, Dufresne & Wettlaufer 2015; Hewitt et al. 2016). As an
idealisation to reveal important physical principles analytically, Fiori et al. consider the
one-dimensional system illustrated in figure 1, described by the equations

∂φ

∂t
= ∂

∂x

(
D(φ)

∂φ

∂x

)
, (3.1)

φ
da
dt

= −D(φ)
∂φ

∂x

∣∣∣∣
x=a(t)

,
∂φ

∂x

∣∣∣∣
x=L

= 0, (3.2a,b)

with the boundary location a(t) = (A/2)(1 − cos ωt) a prescribed sinusoidal compression.
The physical description of the system combines mass conservation of both scaffold and
fluid with Darcy’s law for flow of the fluid through the scaffold and a mechanical stress
balance relating the fluid pressure to the effective stress (osmotic pressure), together with
a constitutive relationship between the effective stress and the porosity. These all combine
to form the diffusion equation (3.1), with the boundary conditions (3.2a,b) representing
mass conservation at the porous piston and the impermeable wall, respectively.

This system is constitutively nonlinear given that, in general, k, M and, therefore,
D are functions of φ. It is also kinematically nonlinear given that the first boundary
condition is applied at the moving piston. However, it can be linearised for sufficiently
small displacements such that |φ − φ0| � φ0 and A � √

D/ω, where φ0 is the solid
fraction of the relaxed state, by taking the diffusivity D to be constant and applying the
first boundary condition at x = 0. In common with other sinusoidally forced diffusion
equations, a diffusion wave is generated along the medium, with displacements localised
near the piston at high frequencies and varying linearly with distance from the piston at
low frequencies. There is a phase shift between the stress and strain (displacement) at the
piston, as illustrated for small-amplitude oscillations in figure 2(a). The downwards trend
of the major axis of the phase portrait shows the general increase in compressive stress
−σ ′ with strain a. Note that σ ′ > 0 indicates that, in this scenario, the porous medium
is adhered to the piston and must be retracted by external forces rather than just relaxing
elastically.

The symmetric, almost linear response for small-amplitude deformations, illustrated by
figure 2(a), contrasts significantly with the nonlinear response resulting from a maximum
strain of 20 %, shown in figure 2(b). The hysteresis shown in figure 2(a) results simply
from the phase lag between stress and strain associated with a diffusion wave. The
much stronger hysteresis shown in figure 2(b) is a consequence both of the fact that
the permeability decreases with decreasing porosity and that, given the constitutive
model for the elasticity of the scaffold that these authors employ (Hencky elasticity), the
osmotic modulus increases with decreasing porosity, which represents a form of strain
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Figure 2. Stress vs strain at the porous piston for rapid, small-amplitude (a) and large-amplitude
(b) oscillatory compressions of a poro-elastic medium. Reproduced from Fiori et al. (2023).

hardening under compression. Note, by scaling (2.1) and (3.2a), that, for rapid oscillations
with

√
D/ω � L, the strain −σ ′ = Π ∝ √

μωM/kA, so strain hardening and decreasing
permeability act similarly in modifying the stress–strain relationship at the porous piston,
illustrated in figure 2.

The sort of set-up and analysis presented by Fiori et al. could potentially be exploited
to determine the material properties of poro-elastic media. By varying the amplitude and
frequency of the forcing and measuring the amplitude and phase of the response, one
can, in principle, determine both the permeability and elastic modulus of the medium,
and the frequency domain can provide a robust framework within which to analyse such
data (Géraud et al. 2020). In terms of modelling, there are very many problems of
practical interest involving flows in periodically forced poro-elastic media. In addition to
the examples mentioned above, the sorts of nonlinearities highlighted here could perhaps
lead to flow rectification and be exploited in microfluidic diodes. Other applications, such
as microfluidic actuators (D’Eramo et al. 2018), require an understanding of the elastic,
morphological response of gels to various stimuli promoting fluid flow and differential
swelling. Such responses are beginning to be explored from the perspective of fluid
mechanics (Butler & Montenegro-Johnson 2022). The associated continuum modelling
can be challenging but recent developments by Webber, Etzold & Worster (2023) suggest a
tractable way of linearising the governing equations of poro-elasticity for small deviatoric
strains while allowing large, locally isotropic strains associated with swelling and drying.
We can look forward to many more fluid-mechanical studies of gels and other poro-elastic
materials in the future.
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