
A SIMPLE PARAMETRIC MODEL FOR RATING AUTOMOBILE
INSURANCE OR ESTIMATING IBNR CLAIMS RESERVES

BY THOMAS MACK

Munich Re, Munich, FRG

ABSTRACT

It is shown that there is a connection between rating in automobile insurance
and the estimation of IBNR claims amounts because automobile insurance
tariffs are mostly cross-classified by at least two variables (e.g. territory and
driver class) and IBNR claims run-off triangles are always cross-classified by
the two variables accident year and development year. Therefore, by translat-
ing the most well-known automobile rating methods into the claims reserving
situation, some known and some unknown claims reserving methods are
obtained. For instance, the automobile rating method of BAILEY and SIMON
produces a new claims reserving method, whereas the model leading to the
rating method called "marginal totals" produces the well-known IBNR claims
estimation method called "chain ladder". A drawback of this model is the fact
that it is designed for the number of claims and not for the total claims amount
for which it is usually applied.

As an alternative for both, rating and claims reserving, we describe a simple
but realistic parametric model for the total claims amount which is based on
the Gamma distribution and has the advantage of providing the possibility of
assessing the goodness-of-fit and calculating the estimation error. This method
is not very well known in automobile insurance—although a satisfactory
application is reported—and seems to be completely unknown in the field of
claims reserving, although its execution is nearly as simple as that of the chain
ladder method.
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1. A SHORT OVERVIEW OF SOME AUTOMOBILE RATING METHODS

In the automobile insurance tariffs of many countries several tariff variables
are used, e.g. the horse-power class of the car, the bonus/malus (or no claims
discount) class of the driver or the class of the territory where the car is
principially garaged. In this way the portfolio of automobile insurance policies
is cross-classified into a number of cells which are each supposed to be
homogeneous, so that all policies of the same cell pay the same premium. For
the sake of simplicity we will consider in the following only two tariff variables,
which are subdivided into m and n classes respectively. When then have mn
cells labelled (i,j), i = 1,.. -, m, j = 1,..., n. Now let «,-,- be the known number
of insureds (policy years) of cell (i,j) and Sy their observed total claims amount
as realization of the random variable Sy. For some of the cells, ntj may be so
small that it is not advisable to use Sy as the only basis for the calculation of
the net premium E(Sy)/ny of that cell. Therefore one searches for marginal
parameters x,,, i = \,...,m, and yj,j = \,...,n, with

either xtyj — E{S^lny (multiplicative approach),

or Xi+.yj = E(Sg)/ny (additive approach).

This also reduces the number of figures needed to describe the tariff premiums
from mn to m + n. In the following we only consider the multiplicative
approach, but the methods described can easily be translated to the additive
approach, too.

The problem of finding appropriate marginal parameters x, and j 7 is one of
the classical problems of insurance mathematics. It has been known for a long
time that the simple marginal averages

yj = (s+j/n+J)/(s++/n++)

(where a ' + ' indicates summation over the corresponding index) give a
satisfactory approximation of E(Sy)/ny only if the tariff variables are indepen-
dent. But generally this is not the case. Therefore, in the last 30 years several
different methods have been proposed. We will now shortly review three of the
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most well-known mainly following the description given by VAN
EEGHEN/GREUP/NIJSSEN (1983). For a more comprehensive and more recent
comparative analysis see JEE (1989).

The first breakthrough was achieved by BAILEY/SIMON (1960), who esti-
mated Xj, yj by minimizing

m n

Q = Z Y (su~nijxiyj)2l(nyxiyj)
1=1 y=i
m n

= Z Z nij(sij/nij~xiyj)2/(xiy?'
< = 1 7 = 1

but their underlying assumption of Q having (up to a factor) the distribution of
a chi-square will normally not be true (see VAN EEGHEN/GREUP/NIJSSEN 1983).
Moreover, it can be shown (VAN EEGHEN/NIJSSEN/RUYGT 1982) that for the
minimizing parameters xt, yj the inequalities

j j Z SU> i=

7 = 1 7 = 1

1=1 1=1

hold, i.e. there results an overestimation of all marginal loss amounts (in the
multiplicative case only).

Therefore BAILEY (1963) and later JUNG (1968) proposed estimating xt,yj
directly from the intuitively appealing conditions

n n

(la) Y nuxiyj= Y sv> i= 1. • • • . « .
7=1 7=1

and
m m

(lb) f nuxiy,= f Sll, j= \,...,n,
/ = 1 l = 1

which can be solved iteratively: starting with, for example, yj = 1, (la) results
in Xj = si+ jni+ , which is inserted in (lb) giving new ys etc. The procedure
converges quickly. This method has been called "marginal totals". If the
random variables Sg denote the number of claims instead of the total claims
amount, then this method can be shown to be maximum likelihood under the
assumption that all Sg are independent and Poisson distributed with parameter
riyXjyj (see VAN EEGHEN/GREUP/NIJSSEN 1983, p. 93). But for the more
important case where Sg is the total claims amount one has no model from
which the equations above derive and thus, for example, a statistical test of the
goodness-of-fit cannot be designed either.
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SANT (1980) proposed estimating Xj,yj by the method of weighted least
squares, i.e. by minimizing

m n m n

Z Z (sij~nijxiyj)2/nu= Z Z nv(sijlnv-xiyj)2-
1=1

But the powerful tools of regression analysis like the R2 — statistic, the analysis
of residuals and the estimation of the prediction error can only be applied
rigorously if all Sy are normally distributed with Var (Sy) proportional to ntj.
Both assumptions are not very realistic.

Using the additive approach, the weighted least squares method leads to the
same equations for the marginal parameters xit y} as the marginal totals
method, which in this case is no longer the maximum likelihood estimator for
Poisson distributed numbers of claims.

Altogether, in the case of Sy being claims totals all three methods described
above are only of a heuristic nature without an underlying realistic model.

2. SOME METHODS OF ESTIMATING IBNR CLAIMS RESERVES
AND THEIR CONNECTION TO AUTOMOBILE RATING METHODS

We now turn to the problem of estimating IBNR claims reserves. For an overview
see VAN EEGHEN (1981) or TAYLOR (1986). Here sy and Sy respectively—we
intentionally use the same symbols as before—denote the inflation-adjusted
total amount of payments made in development year j,j = l,...,n, for
accidents occurred in accident year /, i = 1,..., m. If one works with incurred
amounts, Sy and Sy denote the total amount of changes in valuation made in
development year j on behalf of claims of accident year i. Working with
incremental amounts we may assume that all Sy are independent. Typically,
one has n = m and Sy is known for all i+j < m+l (run-off triangle), and one
is interested in estimating E(Sy) for i+j > m+l. The known measure of
exposure n4j here normally only depends on the accident year z, i.e. «,-, = n,
(number of policies or number of claims reported in the first development year)
or is even ignored (i.e. «,-, = 1 for all i,j).

One of the most important ways of treating the IBNR problem is to assume
a multiplicative structure of the type

E(SV) = x,yj

and to estimate the parameters x,, j>7- from the triangle of known data. This
way was used, for example, by DE VYLDER (1978), who estimated x,, jy by
minimizing

(where the summation is for all i,j where Sy is known). This is exactly the same
method as was used by SANT (1980) in the context of automobile insurance if
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one puts all «,-,- = 1 there. Analogously each method which estimates the
marginal parameters x,-, yt for cross-classified automobile insurance data can
also be translated into a method for estimating the IBNR claims reserve. One
only must take the different pattern of known data (triangle instead of
rectangle) into account.

Let us consider as further example the method of marginal totals.
Again working with n = m and «,-, = 1, we get the conditions

Z Wj = Z j=

where the summation is for those indices where the corresponding sg- are
known (i.e. in the case of a full triangle j runs from 1 tom + l - i and i from
1 to tn+l—j). The same equations are also obtained if one derives the
maximum likelihood equations in the Poisson case.

Because of the triangular structure, the above equations can here be solved
recursively: We start with the general observation that the solution of this type
of problem is only unique up to a multiplicative constant c # 0 because if x,, yj
is a solution, XjC,yj/c is a solution as well. Therefore, without loss of generality
we can put yx+ ... +ym = 1. Then using equation (Hx) we have x{ = sl + .
From equation (VJ we get ym = sXmlxl. Then (H2) yields x2, (Km_,) yields
ym-\ etc.

But it is also possible to derive a direct formula for the unknown mean
claims amount E(Stj) = xtyj. For h > m+ 1 — i it can be shown (see KREMER

1985, p. 133-136, or Appendix A where a shorter proof is given) that

fm + 2-i'fm + 3-i' ' 'fh-l ' (fh~

m+l-j j-\

where

X,j

m+l-j

y

7=1

jz

1

1

Ski I
+i-j j-i i

Z Z Skl > j=2,...,m.

If one realizes that 2^ su is the accumulated claims amount of accident
/=i

year k known at the end of development year j , one sees that we have just
obtained the well-known chain ladder method which is thus shown to be the
same as the marginal totals method for «,-, = 1. Furthermore, from the
marginal totals conditions (//,), (Vj) one easily sees that an incorporation
(analogously to (la) and (lb)) of the known exposure «, into the estimation of
the IBNR claims reserve can be dispensed with, as «, can be amalgamated with
the marginal parameter x, (in the multiplicative approach only), whereas the
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application of the chain ladder method to the claims ratios ,$,•,•/«,• assumes a
different model.

It is interesting to note that the analogue of the BAILEY-SIMON method
seems to have never been published as a method for estimating the IBNR
claims reserve.

Another interesting point is the fact that in the context of IBNR claims
estimation only the multiplicative approach seems to have been used, although
several applications to automobile rating indicate that there the additive
approach might give a better fit (see e.g. CHANG/FAIRLEY 1979). A special
feature of the additive approach is that it may lead to negative values
E(Sjj) = Xj+yj. This would make no sense in the ratemaking situation but in
the case of claims reserving it can be very realistic (settlement gains).

Clearly, also in the context of claims reserving the least squares method and
the marginal totals method (and, of course, the BAILEY-SIMON method) could
be carried through with the additive approach, too, both producing an
identical set of equations for x,-, y>j as has already been mentioned in the section
on automobile rating.

There is a natural connection between the multiplicative and the additive
approaches because, through the log-transformation,

Sy/Ky X Xtfj
becomes

log (Sjj/riij) x log (x,) + log (yj).
This means that an estimate for Is (S,-,-/«,-,) can be established by applying an
additive approach to the log-transformed data log (•?,•,/«,•,) and by transforming
back the obtained solution log (x,), log {yj) using the exponential function. This
was done by CHANG/FAIRLEY (1979) for automobile rating and by KREMER
(1982) (see also ZEHNWIRTH 1989) for claims reserving (with «,-, = 1). For the
solution of the transformed (additive) problem, both used the method of
(weighted) least squares (here giving the same result as the marginal totals
method) in order to estimate the marginal parameters log (x,), log (yj).

As ZEHNWIRTH (1989) points out, this procedure contains an implicit
distributional assumption: In order to fulfill the conditions of normality and
homoscedasticity for the least squares estimation of the parameters log (x() and
log (yj), it has to be assumed that log (51,-,/«,-,) has a normal distribution with
mean value log (x,) + log (yj) and a variance which is proportional to 1 /«,-,-. This
implies that .S,y/«y is assumed to have a lognormal distribution. CHANG/FAIR-
LEY and KREMER did not take this implicit distributional assumption into
account. Therefore, they systematically underestimated £T(5r,-//«,-,) as they used
xtfj = exp (log (x,) + log (jy)), which is the median of the lognormal distribu-
tion whereas the expected value is x, j , exp (ajf/2) with CT| = Var (log (Sy/«/,•))•
As stated above, we have homoscedasticity if we assume that afj = a1\nij,
where a1 can be estimated by

n'J 0°g (sij lnij) ~ lo8 (xiyj))2/(c -m-n+l),
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which is just the expression to be minimized by the least squares method. Here
c denotes the number of cells where Sy is known.

Unfortunately, we have lost the multiplicative structure, as generally
E(Sy/riy) = Xj^exp (o-,̂ /2) cannot be cast into the form E(Sy/«,y) = Jc,-j7,-
anymore.

Whereas all the models discussed before have been shown to be only of a
heuristic nature both in automobile rating and in claims reserving, the
lognormal model relies on a parametric assumption for Sy, and the instruments
of regression analysis can be used to check this assumption against the data. In
the next section another method is given which relies on a reasonable
distributional model and therefore also allows the application of various
important and useful statistical tools. This model has two advantages over the
lognormal model. First, it is not just any model for Sy but can be traced back
to a micro-model for the total claims amount of each single insured unit and
can therefore be expected to be realistic. Second, we can choose either the
multiplicative or the additive structure for E(Sjj/ny), whereas the lognormal
model yields neither of these structures.

3. A PARAMETRIC MODEL FOR RATING AUTOMOBILE INSURANCE OR
ESTIMATING IBNR CLAIMS RESERVES

We use the same notations as before, i.e. we have mn cells labelled (i,j), each
with known measure of exposure «,-, (possibly independent of j in the case of
claims reserving) and with total claims amount variable Sy (realization sv). In
the case of claims reserving we know the realizations Sy in the run-off triangle
only. We now assume, following TER BERG (1980), that the total claims
amount Rijk of each unit &= 1,...,«,-,- of cell (i,j) has a Gamma distribution
with mean value my (independent of k) and shape parameter a (independent of
i,j,k), i.e. with probability density function

fu(z) = exp(-az/m(7)z°!-1(a/m^7r(a)

(here the usual representation of the Gamma density has been reparametrized
in order to implement the mean value my directly as a parameter). Because in
practice many units k will have a realization ri]k = 0 of RiJk, the shape
parameter a has to be conceived of as smaller than 1 in order to attribute a
high probability to the neighbourhood of z = 0 (for instance, we have
prob (RiJk < my/M)) = 0.79 for a = 0.05). Assuming that all «,-,- units of cell
(i,j) are independent, our distributional assumption implies that
Sy — Ry} + Rjj2+ • • • also has a Gamma distribution but with mean value riymy
and shape parameter nyOL. And this is the distribution we shall work with in the
following, because we usually know only the realizations Sy of Sy and not those
of Ryk. The assumption that the shape parameter a is the same for the units of
all cells may seem questionable in some cases. But this should be detected by
testing the goodness-of-fit (see next Section).
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In the multiplicative approach we assume furthermore that my can be
displayed in the form my = x,-yj with unknown parameters x,, yt, which we
shall estimate with the maximum likelihood method.

Assuming that all Sy are independent, the likelihood function on the basis of
the realizations Sy > 0 is given by

L = [ [ exp
•j

Therefore the loglikelihood function is

(where the summation is for all i,j where stj is known). The maximum
likelihood estimator are those values x, ,ys, a which maximize L or equiva-
lently log (L). They are given by the equations

0 = 8 log (L)/dxt = a £ {syl{xfy)-riylx^, i= 1,..., m,

0 = 6 l o g ( L ) / d y j = a X ( s v • / ( • x < ' > > / ) ~ " i / A 7 / ) ' J = l > • • • > " >
i

which show that the last condition 9 log (L)/9a = 0 is not needed for the
calculation of the likelihood estimator for x^yj, which can immediately be
seen to be given by

(2)

1 V so'22 , — ' i= \,...,
ni+ j yj

L ^ = 1

n+j i Xi
These equations have a high intuitive appeal. For, considering the goal of
approximating Sy by nyX^j, we see that this amounts to approximating
sij/(nijyj) by Xj and therefore the n,-,-weighted mean of Sy/inyyj), j = 1,..., n,
should be a reasonable estimator for x{.

Also, equations (2) are not new. They have already been used by VAN
EEGHEN/NIJSSEN/RUYGT (1982). They call them the "direct method" and
write (on page 111):

" This set of equations are a direct translation of the intuitive calculations
presented ... by F. K. GREGORIUS. In fact, a solution is found when iteratively
calculating the values xt and j , by means of the formulae given in (2) by letting
y.i = 1 (./ = !,•••,«) be the starting value. The procedure converges rapidly.
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We may rewrite (2) as

Z nvx< = Z siilyj> i = !> • • • > m '
j i

Z "ijyj = Z SijlXi' J = l> • • • ' " '

which is similar but not equivalent to (la) and (lb).
As yet, we have not been able to find an argument why a 'satisfactory'
solution should (approximately) satisfy (2)...
The method was more or less developed as a first try and we were surprised to
see, that, once formalized, it produced practically the same results as the
method of marginal totals."

So much for the quotation from VAN EEGHEN/NIJSSEN/RUYGT (1982).
One year later the Dutch actuaries found an argument for their method

because the booklet of VAN EEGHEN, GREUP and NIJSSEN (1983) contains on
page 109 a small hint saying that the assumption of a Gamma distribution for
RiJk would lead to the "direct method". But there, as in TER BERG (1980), a
much more general regression model is considered, of which our simple
cross-classified situation is just a special case. Moreover, these authors have
concentrated on ratemaking, whereas we want to emphasize the applicability to
claims reserving, too.

Finally, it is interesting to note that the likelihoood equations for the
additive approach

f j)) = 0, i = 1,..., m,

Z (*<//(*/+yf -na/(*/+yj)) = o>

must be solved with the help of, for example, the NEWTON-RAPHSON numerical
method. Moreover, these equations are different from those suggested by the
"direct method":

xt = Z (sij~nijyj)lni+ ' i= \,...,m,
j

yj = Z (su~nvxi)ln+j' j = \,-..,n.

i

4 . STATISTICAL ANALYSIS OF THE MODEL

This parametric approach with a realistic distributional assumption enables us
to use many tools for the statistical analysis, as has been clearly set out by
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ALBRECHT (1983), who describes the case a = 1 in considerable detail but
again as a general regression model. Besides the consistent and (asymptotically)
efficient estimation of the model parameters, we have the possibility of testing
the significance of the tariff variables with the likelihood ratio test (see
ALBRECHT (1983) for details), we can calculate the error variances of the
parameter estimators and we can check the goodness-of-fit. We first consider
the goodness-of-fit: According to our model, Sy has a Gamma distribution
with E(Sy) = nymy and Var (Sy) = rtym^/a. The higher the shape parameter
itijO, of this distribution, the closer it is to the normal distribution. If all Sy are
approximately normally distributed the statistic

= a
•J "y

1

is, under the hypothesis of our model, approximately at chi-square with
c-m-n degrees of freedom, where c is the number of cells where Sy is
known.

The special form of this statistic allows its application without having
estimated a. For this purpose we fix a in such a way that the value of the
statistic is just below the (say) 0.95-fractile of the chi-square distribution. If
using this value of a a normality condition like "«,y<* > 10" is fulfilled for
nearly all cells, we may be satisfied with the goodness-of-fit of the model. But
we have to realize that this goodness-of-fit test only checks the fit of aggregated
figures and cannot test the distributional assumptions within the cells.

Applying this procedure to SANT'S (1980) collision data (126 cells) we get
a (<) = 0.021 and the three lowest values of ny<x turn out to be 6.8, 9.4 and
11.5, so we may accept the multiplicative Gamma model. Using CHANG/FAIR-
LEY'S (1979) combined compulsory data (105 cells), we get a (<) = 0.0094 and
have 9 cells were the resulting value of «,y<x is lower than 10, the lowest being
4.5, so the fit is less satisfactory.

A simple formula for an estimator of a is given by the method of moments,
i.e. by equating the variances

This yields a = 0.014 for Sant's data and a = 0.0093 for Chang/Fairley's
data.

Strictly speaking we should use the likelihood estimator for a. We then must
solve the likelihood equation

0 = 81og(L)/8a =
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Here equations (2) have been used to obtain 2 «,-,- = Ls,-,-/(.*,• _fy). y/{z) =
r'(z)/r(z) denotes the digamma function, for which the asymptotic approxi-
mation

exists which even for arguments as low as z > 4 is exact to 4 decimal places.
This approximation yields as the solution of the likelihood equation

with

a =

1 „ \ - l

c = 2 J 1 = number of cells where stj is known.

Applied to Sant's data this yields a x 0.0202. For Chang/Fairley's data we get
a x 0.0097. If we have some small exposures «,-, such that n^a. < 4, we should
refine the approximation of the digamma function by using the recursion
y/{z) = y/(z+l)—\/z and by including more terms of the approximation
series. Then a direct formula for a cannot be given anymore. We must
therefore solve the likelihood equation iteratively with the NEWTON-RAPHSON

method.
Having estimated a, we are also in the position to calculate the estimation

error of the estimators for x, and _y,. This is done in Appendix B.
According to the experience of the Dutch actuaries, the results of applying

the "direct method" to automobile insurance data are rather close to the
results obtained by the marginal totals method. Translated to the IBNR claims
reserving problem this means that the " direct method " results will be similar
to the chain ladder results. But with the " direct method " we can additionally
make use of the aforementioned advantages. Moreover, the formulae provide
the possibility of taking the exposure n, of accident year / into account (which
is different from the situation with the chain ladder). And perhaps the
goodness-of-fit statistic or the size of the likelihood function gives an indication
to answering the question "additive or multiplicative?" Because of these
advantages of the parametric method we believe that before using a rather
heuristic method like BAILEY/SIMON or chain ladder one should examine
whether the parametric method fits the data.

5. IMPROVEMENT OF THE MODEL IN THE CASE OF

KNOWN CLAIMS NUMBERS

Especially in the claims reserving situation we will often have difficulties in
finding an adequate measure «,-, of exposure.
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Therefore mostly nu- = «, or even nv- = 1 is taken. However, this is not
satisfactory because the exposure to further payments or changes in valuation
varies in fact rather strongly over the development years. Therefore, a more
meaningful measure of exposure will be the number ty of those claims of
accident year i where there is a change in amount during development year j .
These data ty, i+j < m+l, are often available in practice.

Rating in property insurance presents a similar problem. There, even the
risks of the same cell vary greatly with respect to their size, which is usually
measured by the sum insured. Therefore, the number of risks is not a good
measure for the exposure of a cell (i,j), and the sum insured is taken instead.
But then an assumption of our micro-model is not fulfilled anymore because
the " units" of sum insured are not independent, as a single risk consists of
several such units. We therefore must abandon our micro-model and try
directly whether the Gamma model for Sy with mean value E(SV) = nyX^j
and shape parameter «,•,<* fits the data if «,-, is the sum insured. The parameter a
then does not have a specific interpretation anymore. But if we know
additionally the total number ty of claims of cell (i,j) we can apply the
following stepwise approach which assumes a Gamma distribution (with shape
parameter a) not for the total claims amount per risk unit but for the amount
of each single claim. Of course, this procedure can also be applied in
automobile ratemaking if the number ty of claims is available.

In these situations we should use ty—the corresponding random variable is
denoted by Ty—as an additional measure of exposure and adopt the following
three-steps-approach, which follows the ideas of ALBRECHT (1983): In the first
step we take the observed number ty of claims of cell (i,j) as the measure of
exposure and assume that the size of each corresponding amount has a Gamma
distribution with mean value my = xtyj and shape parameter a. Then we are in
our original model (with nv replaced with ti}) leading to the direct method. This
yields smoothed average claims amounts x^j. In the second step we smooth
the ty by assuming that all Ty are independent of each other and that each Ty
has a Poisson distribution with parameter tiyV^Wj (here using the 'old' measure
of exposure). Then the maximum likelihood estimator of v,, Wj on basis of the
realizations ty is given by the equations (la) and (lb) with xt, yJt Sy replaced
with v;, Wj, ty respectively. This yields smoothed numbers riy v, Wj of claims. In
the last step, E(Sy) is estimated by nyVjWjXjyj implying that in each cell the
number of claims is independent of the average claims amount.

6. FINAL REMARK

In the context of this paper we should point out the following further
connection between rating methods and claims reserving methods. Another
important rating method which smoothes the claims experience of several tariff
classes is the Buhlmann-Straub credibility model. It also uses a cross-classifying
approach by the two dimensions 'tariff classes' and 'observation years'.
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Therefore, one will presume that it could also be translated into a method
for estimating IBNR claims reserves. But there is a difficulty because the
Buhlmann-Straub model assumes that the average claims amount Sy/rty of
tariff class / has the same expected value over all years;, whereas in the run-off
triangle the expected value of the average claims amount S,y/n,- of accident year
i and development year j varies in a certain but unknown pattern over the
development years. However, this difficulty can be overcome in such a way
that the Buhlmann-Straub model can directly be used for claims reserving, too
(see MACK 1990).

APPENDIX A
PROOF THAT THE CHAIN LADDER METHOD CAN BE DERIVED FROM THE

MARGINAL TOTALS CONDITIONS (AND THEREFORE IS MAXIMUM LIKELIHOOD
IN THE POISSON CASE)

We show that the chain ladder method
m + 1 — /

+ l j j , , , m+lj j l i

Z Z ski / Z Z ski ' j = 2 , . . . , m ,
H \ /

7 = 1

with
m+l-j j \ 11 m+l-j j-l

fj =
k=l 1=1

can be deduced from the marginal conditions
m+l-i m+l-i

x>yj= L S>J> i = i-..,m,

m+l-j m+l-j

^_j <^7 ^_j y> j > >

i= 1 i= 1

7 7

Let c,-, = Z xi>'/ a nd ^i, = Z ^ (*+J — m+ ^ denote the expected and

the observed accumulated claims amount of accident year / at the end of
development year j respectively. Then conditions (H,) can be written shortly as
c,-m+i-(- = bUm+l-t. For h > m+l-i we have

^ i, m + 2 — i WA
^j/i ^ j } m + 1 — / — — — .

Therefore
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~~ c i , m + 1 - 1 '
i, h-

i, m+l-i ci,h-2

- 1
Ci,h-\

m+l-i
Cih

Z SV
7=1 / ci, m+l-i ci,h-2 \ci,h-l

and we have only to show that cij/cij-l = f}. Because of

Cy _ / - I

J

m+l-j
V V

7

la Xk 1
4=1 1

Z yi
i=i

m+l-j

k=\

m+l-j

Z Ct i- 1

and of
m+l-j

Z
k=l

m+l-j

Z
j j

Z *V Z ^,7-1
k=l

it is enough to show that

(AJ)

and
k=l

kj = L
4=1

m + 1 — jm+l—j

Z C*.7-l = Z **.i"l
/ c = l / f c = l

hold for j = 2,..., m. We show this by recursion from j = m to j = 2:
04m), i.e. clm = 6lm, holds because of (Hi).

(BJ) follows from (Aj) and (Vj) as
m + 1 — j m+l—j m+l—j m+\—j

Z cKj-i= Z (ckj-xky)= Z c*7 ~ Z
k=l k=\ k=\

m+l—j m+l—j m+l—j m+l—j

= Z **/~ Z % = Z (bkj-*kj)=
4=1 4=1 4=1 4=1

Finally, 04,_i) follows from (Bj) and (Hm+2-j) as
m + 2—j m+l—j

m + 2-j

2-7,7-1 LJ 4,7-1 •
4=1

4 =1 4=1

m+l-j

~ Z bkj
4=1

This completes the proof.
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APPENDIX B

ESTIMATION OF THE (ASYMPTOTIC) ERROR VARIANCES

We have estimated the marginal parameters x,, yj with

either x,yy = £(51,-,/«y) (multiplicative approach)

or Xj+yj = E(Sjj/nij) (additive approach).

by the maximum likelihood method and now want to know how precise these
estimates are, i.e. we want to calculate Var (X,), Var(l}), Var(A",ly) or
Var (Xj+ Yj) where Xt and Yj denote the random variables corresponding to the
estimators for x, and yj respectively. A standard result of maximum likelihood
theory states that under certain regularity conditions which are fulfilled here,
the following holds true: If a parameter vector 0 = (0X,..., 0r) is estimated
by the maximum likelihood method, the obtained estimator 0 has asymptoti-
cally a normal distribution with mean value 0 and with a covariance matrix
which is equal to the inverse of the information matrix

where L = L(0) is the likelihood function.
In our case we have 0 = (x2,..., xm, yx,..., yn) where we have omitted xx

without loss of generality in order to obtain a unique solution of the likelihood
equations and have considered a as being known. (For the case of a being
included in 0, TER BERG (1980) has shown that this does not change the
calculation of Var (A",), Var (Yj) and Cov (Xh Yj)). We now have

Cov(X2,...,Xm,Yx,...,Yn)xI(x2,...,xm,yx,...,yn)-
l=:rl

« I(x2,...,xm,yx,...,yny
l =:Il

where x2,..., yn denote the estimated values of the true parameters x2,..., yn.
From 7"1 we directly obtain asymptotic approximative values for Var (A",),
Var(iy) and Cov (A",, Yj). This also gives immediately an approximation for

Var (Xt + Yj) = Var (A",) + 2 Cov (X,, Yj) + Var (Yj)

which we want to know in the additive approach. In order to obtain Var (A", Yj)
for the multiplicative approach, we make use of a general theorem on the
higher moments of normally distributed variables (see e.g. RICHTER 1966,
p. 369) to get

Var (A", Yj) « Var (A",) Var (Yj) + (Cov (X,, Yj)f + Var (X,) (E (Yj))2 +

Cov (Xh Yj) E(Yj) + (E(Xl))
1 Var (Yj)

(which holds exactly if Xt and Yj are normally distributed). This can be
calculated from / " ' and from E(X^) « xt, E(Yj) K yj.
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Therefore, the only thing left to do is the calculation of / and / ' Con-
centrating again on the multiplicative approach, the loglikelihood function is

log (L) = - l(x,yj) + <xny log (xtyfr + g(a, ntj, Sv))

and yields (using E(Sjj) = n^x^] and the Kronecker symbol Sy with Sy = 1 for
' = j , $ij = 0 otherwise)

Aik: = E -
32log(L)

C,r. =E\-
32 log (L)

2 < i,k< m,

2 < i < m, \ < j < n,

(where n+j includes n1;). With the matrices A = (A!k), B - (Btj), C = (Ctj) the
information matrix / can be represented as partitioned matrix

j

B'

B

C

where A and C are diagnoal matrices.
Unfortunately, an explicit formula for the inverse matrix 7"1 is not available.

One therefore must apply a numerical inversion method. But the dimension of
the inversion problem can be reduced with the help of the following result for
the inverse of a partitioned matrix (which can be verified by calculating I~l I
and/ / " 1 ) :

7-1 = Dl

A~l+A~lBF-lB'A~l

-F~xB'A~l

with

D = A-BC~lB',

F == C-B'A~lB.

A straightforward calculation yields for the elements of D and F

Dik = «(<5ft;««+ -Pik)l(XiXk), 2 < i , k < m ,

1 < l,j < n,
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with
n m

nijnkjZ nijnkj V nUnij

-J—L ' 99 = L — - •
j=\ n+j i=2 «,-+Therefore, only the smaller matrices D and F must be inverted in order to

obtain / " ' and also / " ' .
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