CANONICALLY ISOMORPHIC SPACES OF BOUNDED SOLUTIONS OF $\Delta u = Pu$

MOSES GLASNER

Let *R* be a hyperbolic Riemann surface and *P*, *Q* nonnegative C^1 2-forms on *R*. The space of bounded solutions of $\Delta u = Pu$ ($\Delta u = Qu$, respectively) on *R* is denoted by PB(R) (QB(R), respectively). A vector space isomorphism *S* between PB(R) and QB(R) is called *canonical* if for each $u \in PB(R)$, there is a potential p_u on *R* with $|u - Su| \leq p_u$. The canonical isomorphism theme in the study of the equation $\Delta u = Pu$ was introduced in H. Royden's paper [9] on the order comparison condition. A variety of work giving sufficient conditions for the canonical isomorphism followed (see [6; 3; 4; 5; 2; and 7], among others). The first necessary and sufficient condition for the existence of the canonical isomorphism was given by M. Nakai [8] and the author [1]. This condition is expressed as follows. Let R^* be the Wiener compactification of *R* and δ the harmonic boundary. Define

$$\delta^{P} = \left\{ p \in \delta | p \text{ has a neighborhood } U^{*} \text{ in } R^{*} \text{ with } \int_{U^{*} \cap R} G_{R}(\cdot, z) P \\ < +\infty \text{ for some } z \in R \right\}.$$

Here $G_R(\cdot, z)$ is the harmonic Green's function of R with pole at z. Then $\delta^P = \delta^Q$ if and only if PB(R) and QB(R) are canonically isomorphic.

The purpose of this note is to give a necessary and sufficient condition for the existence of the canonical isomorphism which can be expressed without the Wiener compactification theory. However, in order to give a simple proof we use the compactification theory in our arguments. We shall use the notations and results of [1] here as well as the result of [8, Theorem 9] that δ^P is compact and open in δ .

We shall call a subset $K \subset R$ *PB-negligible* if there is a continuous superharmonic function s on R such that s|K = 1, $0 \leq s \leq 1$ and $u \leq s$ for $u \in PB(R)$ only if $u \leq 0$. This is a refinement of a notion of negligibility introduced in [7].

THEOREM. The spaces PB(R), QB(R) are canonically isomorphic if and only if there is a subset K of R which is both PB- and QB-negligible such that

(*)
$$\int_{R\setminus K} G_R(\cdot, z) |P - Q| < +\infty,$$

for some $z \in R$.

Received July 21, 1975.

Assume that K is PB- and QB-negligible and that (*) holds. Let s be the function in the definition of PB-negligibility. We claim that $s|\delta^P$ must be 0. In fact if s(p) > 0 for some $p \in \delta^P$, then there is a neighborhood U^* of p in R^* with $U^* \cap \delta^P \subset \delta^P$ and $s|U^* \ge \epsilon$ for some constant $\epsilon > 0$. Consequently, there is a function f in the Wiener algebra such that $0 \le f \le 1$, $\operatorname{supp} f \subset U^*$ and f(p) = 1. Therefore there is a function $u \in PB(R)$ with $u|\delta = f|\delta$ (cf. [1, Theorem 4]). Since s - u is bounded and superharmonic on R and $s - u|\delta \ge 0$, we conclude that $s - u \ge 0$. The fact that u > 0 is a contradiction and the claim is established. The continuity of s on R^* implies that $\overline{K} \cap \delta^P = \emptyset$. This means that $R^* \setminus \overline{K}$ is a neighborhood of δ^P . Similarly $R^* \setminus \overline{K}$ is a neighborhood of δ^Q . From the definition and (*) it now follows that $\delta^P = \delta^Q$ which is equivalent to the desired conclusion.

Conversely, assume $\delta^P = \delta^Q$. For each $p \in \delta^P$ we choose U_p^* an open neighborhood of p with

$$\int_{U_p^*\cap R} G_R(\cdot, z_p) P < +\infty,$$

for some $z_p \in R$. By the Harnack inequality the finiteness of the integrals does not depend on the choice of z_p . Therefore take $z_p = z$ for some fixed $z \in R$. By the compactness of δ^P there is a finite collection $U_{p_1}^*, \ldots, U_{p_n}^*$ such that $\delta^P \subset U^* = \bigcup_{i=1}^n U_{p_i}^*$. Also $\int_{U^* \cap R} G_R(\cdot, z)P < +\infty$. Similarly there is an open neighborhood V^* of δ^Q with $\int_{V^* \cap R} G_R(\cdot, z)P < +\infty$. Set $W^* =$ $U^* \cap V^*$. Then

$$(**) \quad \int_{W^* \cap R} G_R(\cdot, z) (P+Q) < +\infty.$$

The desired subset K of R is $R \setminus W^*$. Trivially (**) implies (*). The *PB*and *QB*-negligibility of K follows from the fact that $\overline{K} \cap \delta^P = \emptyset$. Take a function f in the Wiener algebra with $f|\overline{K} = 1, f|\delta^P = 0, 0 \leq f \leq 1$. Let s be the function in the Wiener algebra with $s|\overline{K} \cup \delta = f|\overline{K} \cup \delta$ and s harmonic on $R \setminus \overline{K}$. Then s is continuous and superharmonic on R with $0 \leq s \leq 1$. If $u \in PB(R)$ and $u \leq s$ then $u|\delta^P \leq s|\delta^P = 0$. This implies that $u \leq 0$ (cf. [1, Corollary 3]).

An interesting consequence of the theorem is that the order comparison condition, $cP \leq Q \leq c^{-1}P$, for some c > 0, implies the integral comparison condition: there is a *PB*- and *QB*-negligible set *K* such that (*) holds. Actually, it is sufficient that $cP \leq Q \leq c^{-1}P$ hold outside a set *K* which is *PB*- and *QB*-negligible. This sort of observation has been made by A. Lahtinen [**2**].

References

- 1. M. Glasner, Comparison theorems for bounded solutions of $\Delta u = Pu$, Trans. Amer. Math. Soc. 202 (1975), 173–179.
- 2. A. Lahtinen, On the equation $\Delta u = Pu$ and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI533 (1972).

- 3. P. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208.
- 4. P. Loeb and B. Walsh, A maximal regular boundary for solutions of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 18 (1968), 283-308.
- 5. F.-Y. Maeda, Boundary value problems for the equation $\Delta u qu = 0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ. 32 (1968), 85–146.
- 6. M. Nakai, The space of bounded solutions of $\Delta u = Pu$ on a Riemann surface, Proc. Japan Acad. 36 (1960), 267–272.
- 7. ——— Order comparisons on canonical isomorphisms, Nagoya Math. J. 50 (1973), 67-87.
- 8. Banach spaces of bounded solutions of $\Delta u = Pu$ on hyperbolic Riemann surfaces, Nagoya Math. J. 53 (1974), 141–155.
- **9.** H. Royden, The equation $\Delta u = Pu$ and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI27 (1959).

The Pennsylvania State University, University Park, Pennsylvania