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APPLICATIONS OF A MINIMAX INEQUALITY ON F-SPACES

XIE PING DING, WON KYU KIM AND KOK-KEONG TAN

By applying a minimax inequality on 17-spaces from our earlier work, new general-
isations of well-known intersection theorems concerning sets with convex sections
and minimax inequalities of von Neumann type are obtained. Our results gen-
eralise the corresponding results of Ben-El-Mechaiekh, Deguire and Gran as, Fan,
Liu, Shih-Tan, Sion and Tarafdar.

1. INTRODUCTION

In [5], we obtained a new generalisation of the Ky Fan minimax inequality [11] to
non-compact H-spaces and gave some applications to fixed point theorems and system
of inequalities which generalise the corresponding results of Browder [3, 4], Ding-Tan
[6], Fan [7], Granas-Liu [12], Kneser [13], Shih-Tan [16, 17], Tarafdar [19] and Yen
[21].

In this paper, we shall continue our earlier work to further apply our minimax
inequality [5, Theorem 2] to obtain some new generalisations of well-known intersec-
tion theorems concerning sets with convex sections and minimax inequalities of von
Neumann type. Our results generalise the corresponding results of Ben-El-Mechaiekh,
Deguire and Granas [2], Fan [8, 9, 10, 11], Liu [14], Shih-Tan [16], Sion [18] and
Tarafdar [20].

Let X be a non-empty set. We shall denote by T(X) the family of all non-empty
finite subsets of X. A pair (X, {FA}) is said to be an JJ-space [1] if X is a topological
space (which need not be Hausdorff) and {FA} is a family of non-empty contractible
subsets of X indexed by A G T{X) such that FA C FAi whenever A C A'. Let

n

X\,.. .,Xn be n (^2) topological spaces and X — fl-^»- Let i £ { l , . . . , n} be
i=i

arbitrarily fixed. Let Xt = H Xj and let P<: X -> X, and P,: X -> Xi be the

projections. If x € X, we write Pi(x) — x< and P<(x) = z;. Moreover, if Xi 6 X% and
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*i 6 J f i , [xi, Xi] denotes the point y € X such that Pi{y) = xt' and Pi(y) = Xi. If
Ai C Xi and Ai C Xi, Ai® Ai denotes the set {[a;,-, Zj] : z; G Ai and z\ G .A^}.

We shall need the following minimax inequality which was obtained in our earlier
paper [5, Theorem 2] and was a generalisation of Theorem 1 of Shih-Tan in [17] to
.ff-spaces and hence also Theorem 1 of Fan in [11]:

THEOREM A. Let (X, {FA}) be an H-space and </>, ij>: X x X -» R U {-co, oo}
be such that

(a) <j>{x,y) ^ i/>(x,y) for each (x,y) G X x X and if)(x,x) < 0 for each
xeX;

(b) for each fixed x G X, (f>(x,y) is a lower semicontinuous function of y on
X;

(c) for each A G F{X) and for each y G FA, minV'(a!,y) ^ 0;

(d) there exist a non-empty closed and compact subset K of X and XQ G X
such that ij){xQ,y) > 0 for all y eX\K.

Then there exists yeX such that <j>(x,y) < 0 for all x G X.

2. SETS WITH fT-coNVEX SECTIONS

In this section, we shall apply our minimax inequality to obtain some new gener-
alisations of well-known intersection theorems concerning sets with convex sections.

n

THEOREM 1 . Let X\,..., Xn be n ( ^ 2) topological spaces and X = J"[ Xi. If

(X, { F A } ) is an H-space and M\,..., Mn, Ni,..., Nn are 2n subsets of X such that
(1) Mi C Nf for each i = 1 , . . . , n ;

(2) for each i = 1 , . . . ,n and for each Xi £ Xi, the section

Mi(xi) = {it G Xi : [xi,Xi] G M J

is open in Xi and for each Xi G Xi, the section

Mi(xi) = {xi G Xi : [xi,xi\ G Mi}

is non-empty;

(3) for each A G J~(X) and for each y G FA, there exists x G A and i G
{l,...,n} such that [zi.ft] £ Nt;

(4) there exist a non-empty closed and compact subset K of X and x° G X
such that X \ K C H Xi ® Ni(x°i).
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Then f\ N<; ^ 0.

PROOF: Define <f>,il>: X x X -* R by

1, if x G ft il

0, if x £ f] A

o, if x ^ n i

V i = l

Then we have

(a) ^(x,y) < il>(x,y) for each (x,y) G X x X by (1);
(b) for each fixed x E X and for each A G R, the set

X, if A < 0,

{y G X: 4>{x,y) > A} = { {y G X: x G J l * * ( » ) } = D * i ® M,(x;), if 0 < A < 1,
i = l t=l

I i f A ^ l ,

is open in X by (2);

(c) by (3), for each A G F(X) and for each y G FA, there exist x e A

and i G {1, . . , « } such that [x,-,y{] 0 Ni\ thus x< ^ JVi(Si) s o ^ a *
n

x ^ Y\ Nj(yj)> i* follows that i/>(x,y) — 0 and hence minip(x,y) = 0;

(d) by (4), there exist a non-empty closed and compact subset K of X and

x° G X such that X \ K C f| X,- ® JV<(x?) ; it follows that for each

y € X\K, yi E JV<(xJ) for each t = 1 , . . . , n so that x? G JVi(Si) for each

i = 1 , . . . , n and hence x° G Yi. -^»(y»)i ^ follows that ^(xo , j / ) = 1 > 0.
t=i

Suppose ^ ( ^ i x ) ^ 0 f° r each x E X\ then all hypotheses of Theorem A are satisfied
n

so that there exists to G X such that <j>(x,w) < 0 for all x G X. Thus x £ J~[ Af.-(tOj)
n

for all x G X and hence f] •M»(u'«) = 0» which contradicts (2). Therefore there exists
t=i

n
z G A" such that rj)(z,z) > 0 which implies that z G I I NiV*i) s o that •?« G iVi(zi) for

t=i
n

each t = 1 , . . . , n and hence z = [zj, zi] G JV,- for each * = 1 , . . . , n . Thus H Ni ^ 0. u

https://doi.org/10.1017/S0004972700018359 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018359


478 X. P. Ding, W. K. Kim and K-K Tan [4]

n

COROLLARY 1 . Let Xi,..., Xn be n (^ 2) topological spaces and X = J~[ Xi.

If (X, {FA}) is an H-space and Mi,... ,Mn, Ni,.. .,Nn are In subsets of X such

that

(1) for each i — 1 , . . . , n, Mi C N{;

(2) for each i = 1,...,n and for each Xi £ Xi, the section

Mi(xi) = {xi G Xi : [xi, Xi] G M{}

is open in Xi and for each x,- G Xi, the section

Mi(xi) = {*,• e Xi : [xi, xi} e Mi}

is non-empty;

(3)' for each i = 1 , . . . , n and for each z,- £ Xi, the section

Ni(xi) = {xieXi: [xi, xi] G N{}

has the following property: for each A G F(X), if Pi(A) C Ni(i~i), then

Pi(FA)cNi(xi);

(4) there exist a non-empty closed and compact subset K of X and x° G X

such that X \ K C f| X{ ® JVi(z?).

TAen f| Ni^Q.

PROOF: Suppose the condition (3) of Theorem 1 does not hold. Then there exist
A G F(X), y £ FA such that [a;,-, yi] G Ni for all x G A and for all t = l , . . . , n ;
it follows that Pi(x) = n G Ni(yi) for all x G A and for all i — l , . . . , n so that
Pi{A) C JV,(r/0 for all i = l , . . . , n . By (3) ' , Pi(FA) C JV<(gi) for all i - l , . . . , n .
Thus Vi = Pi(y) G Pi{FA) C JVi(yi) for all t = 1 , . . . ,n so that y = [yi,yi] G Nt for all

n

i = 1 , . . . , n and hence f] Ni ^ 0. On the other hand, if the condition (3) of Theorem
t=i

n

1 also holds, then the conclusion that f| Ni ^ 0 follows from Theorem 1. U
i=i

If X is a non-empty convex subset of a topological vector space, by taking FA —

co(A), the convex hull of A for each A G ̂ (X), we see that Corollary 1 (and hence
also Theorem 1) are generalisations of Theorem 1 of Fan in [8] (see also Theorem 1 in
[9, 10] and Theorem 8 in [11]), Theorem 7 of Shih-Tan in [16] and Theorem 4.1 of
Tarafdar in [20].

The following result is an analytic formulation of Theorem 1.
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THEOREM 2 . Let Xx,..., Xn be n (> 2) topological spaces and X = U X{. If
t=i

{X, {FA}) -is *n H-space, / i , . • •, / n > 9i,---i9n Are 2n real-valued functions on X and
< i , . . . , i n G R such that

(a) for each i = l,...,n, f{ ^ g{;
(b) for each i — 1 , . . . , n and for each fixed Xj G Xi, the m a p x,- —> /,[x<, SB;]

is lower semicontinuous on X{;
(c) for each A G /"(-^O and for each y £ FA there exist x G A and i G

{ 1 , . . . ,n} such that 0,[ZJ, ft] < U;

(d) there exist a non-empty closed and compact subset K of X and x° G X
such that gi[x°, ft] > U for all y G X \K and for all i = 1 , . . . , n ;

(e) for each i = 1 , . . . ,n and for each Xi G -X",-, there exists x; G Jfj such that
fi[xi,xi}>ti.

Then there exists z G X such that gi{z) > U for all i = 1, . . . , n.

PROOF OF "THEOREM 1 => THEOREM 2": For each i = 1, . . . ,n , let Mj and Ni
be subsets of X defined by

Ni = {u G X : 9i(u) > U}.

Apply Theorem 1; the result follows. D

P R O O F OF "THEOREM 2 =» THEOREM 1": For each t = l,...,n, let U and
gi be the characteristic functions of Mi and Ni respectively. Apply Theorem 2 with
<j = . . . = tn = 0, the result follows. U

An argument similar to that of proving Corollary 1 can be used to prove the
following and is omitted.

COROLLARY 2 . Let Xx,..., Xn be n (^ 2) topological spaces and X = ]J X,;.

If (X, {FA}) is an H-space, / i , . . . , / n , gi,.. .,gn are 2n real-valued functions on X
and i i , . . . , tn G R such that

(a) for each i = l,...,n, ft ^ g{;
(b) for each i = 1 , . . . ,n and for each fixed x,- G Xi, the map Xj —• / , - [ZJ , a:,]

is lower semicontinuous on Xi;
(c) ' for each t = 1 , . . . , n for each Xi G Xi and for each A G T(X), if Pi(A) C

{x{ G Xi : gi[xi,Xi] > U}, then Pi(FA) C {x{ G Xi : gi[xi,Xi] > U};
(d) there exist a non-empty closed and compact subset K of X and x° G X

such that j i j i j , yi] > U for all y G X \ K and for all i — 1 , . . . , n ;
(e) for each i = 1 , . . . ,n and for each Xi £ Xi, there exists Xj G Xi such that
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Then there exists z £ X such that gi(z) > U for ail i = 1, . . . ,n .

Corollary 2 ( and hence also Theorem 2) generalises Theorem 2 of Fan in [8] (see
also Theorem 3 in [9], Theorem 2 in [10] and Theorem 7 in [11]), Theorem 6 of Shih-Tan
in [16] and Theorem 4.3 of Tarafdar in [20].

Since the case n = 2 of Theorem 1 and Corollary 1 is most useful, we shall state
that case explicitly as follows:

THEOREM 3 . Let (X x Y, {FA}) be an H-space and Mx, M2, Nly N2 be sub-

sets of X xY. Suppose that

(1) for each i = 1, 2, Af< C Ni;

(2) for each fixed x £ X, M^x) = {y £ Y : (x,y) £ Mx} is open in Y and

M3{x) = {yeY:(x,y)eM2}t<l>;
(3) for each Axed y £ Y, M2(y) = {x £ X : (x,y) £ M2} is open in X and

(4) for each A G T{X x Y) and for each (x,y) G FA, there exists (w, z) £ A

such that (w,y) 0 Ni or (x,z) £ N2;

(5) tiere exist a non-empty closed and compact subset K of X X Y and

(*o,yo) e X x Y such that X x Y \ K C {x G X : (x,y0) G N2} x {y G

r:(*0,y)€JVi}.

Then J^ D N2 £$.

COROLLARY 3 . Let (X xY, {FA}) be an H-space and Mi, M2, Nlt N2 be

subsets of X X Y. Suppose that

(1) for each i = 1,2, M,- C N{;

(2) for each fixed x G X, M\{x) = {y G Y : (x,y) G Mi} is open in Y and

M2(x) = {yeY:(x,y)£M2}±%;

(3) for each fixed y € Y, M2(y) — {x G X : (x,y) G M2} is open in X and

M1(y) = {xeX;(x,y)eM1}^<l>;

(4) for eaci y £ Y, the section JVi(y) = {x £ X : (x,y) £ Ni} has the

property: for each A £ T{X X Y), if Pi(A) C N^y), then Pi(FA) C

(5) for each x £ X, the section N2(x) — {y £ Y : (x,y) £ N2} has the

property: for each A £ T{X x Y), if P2(A) C N2(x), then P2(FA) C
N2(x);

(6) there exist a non-empty closed and compact subset K of X X Y and

(zo.yo) £ XxY such that X x Y \ K C {x £ X : (x,y0) £ N2} x {y £

Y:(xo,y)£N1}.

Then NiHNi ^ 0 .
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3. MINIMAX INEQUALITIES OF VON NEUMANN T Y P E

Minimax inequalities treated in this section evolve from the von Neumann minimax
principle [15]. We shall show that such inequalities are consequences of Theorem 3 or
Corollary 3.

THEOREM 4 . Let (X x Y, {FA}) bean H-space, f,s,t,g: XxY -> R and7 G R
such that

(a) f^s^t^gonXxY;
(b) for each fixed x G X, y —» f(x,y) is lower semicontinuous on Y;
(c) for each fixed y E.Y, x —> g(x,y) is upper semicontinuous on X;
(d) for each A G T(X x Y) and for each (x,y) G FA, there exists (w,z) G A

such that a(w,y) ^ 7 or t(x,z) ^ 7;
(e) there exist a non-empty closed and compact subset K of X x Y and

(*o>yo) £ X x Y such that s(xo,y) > 7 and t(x,y0) < 7 for all (x,y) G
XxY\K.

Then either there exists y G Y such that f(x,y) ^ 7 for all x G X or there exists
x G X such that g(x, y) ^ 7 for all y EY.

PROOF: Suppose that the conclusion were not true. Let

M , = {(x,y) e X x Y : f(x,y) > 7}, M 2 = {(x,y) e X x Y : g(x,y) < 7},

^1 = {(*,y) e X x Y : s(x,y) > 7}, N2 = {(x,y) e X x Y : t(x,y) < 7}.

Then for each y G Y, Mx(y) = {x G X : f{x,y) > 7} ^ 0 and for each x G X,

M2(x) — {y £Y : g{x,y) < 7} ^ 0. Moreover,

(i) for each i = 1,2, M; C iV,- by (a);

(ii) for each fixed x G X, M ^ x ) = {y G V : («,!/) G Mx} is open in Y by

(b);
(iii) for each fixed y G Y, M2(y) = {x G X : (x,i/) G M2} is open in Jf by

(c);

(iv) by (d), for each A G T{X x Y) and for each (x,y) G FA, there exists
(u>,z) G A such that (w,j/) ^ i^x or (x,z) ^ N2;

(v) by (e), there exist a non-empty closed and compact subset K of X x Y

and (soiVo) 6 - ^ x 7 such that (xo,y) G iVi and (x,y0) G iV2 for all
(x,y) e X x Y \ K so that XxY\Kc{xeX: (x,y0) G iV2} x{y£
Y : (xo,y) G -ATi}. Thus all hypotheses of Theorem 3 are satisfied and
hence Ni 0 N2 ^ 0. Take any (x,y) G iVi D N2, then a(x,y) > 7 and
<(x,j/) < 7 , which contradicts (a). Therefore the conclusion must hold.

D

https://doi.org/10.1017/S0004972700018359 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018359


482 X. P. Ding, W. K. Kim and K-K Tan [8]

COROLLARY 4 . Let (X x Y, {FA}) be an H-space, f,s,t,g: X x Y -» R and
7 G R such that

(i) f^s^t^gonXxY;

(ii) for each fixed x G X, y —* f(x,y) is lower semicontinuous on Y;

(iii) for each fixed y G Y, x —> g(x,y) is upper semicontinuous on X;

(iv) for each fixed y G Y and for each A G T(X x Y), if P^A) C {x e X :

*{*,V) > 7>, then P x ^ ) C {x G X : s(x,y) > 7 } ;
(v) for each fixed x G X and for each A G ?(X x Y), if P2(A) C {y G Y :

<(*,!/) < 7>, **en P2(FA) C {y £ Y : t(x,y) < 7 } ;
(vi) there exist a non-empty closed and compact subset K of X x Y and

(zo,yo) G X x y such tAai a(a;0)y) > 7 and t(x,y0) < y for all (x,y) G
X xY\K.

Then either there exists y £ Y such that f(x,y) ^ 7 for all x G X or there exists
x G X such that g{x,y) ^ 7 for all y £K.

PROOF: Suppose the condition (d) of Theorem 4 does not hold. Then there exist
A G ̂ (X X y ) and (xo,!/o) € î A such that a(u;,j/o) > 7 and <(zo,z) < 7 for all
(tu, z) G A. It follows that Pi(A) C {x e X : s(x,y0) > 7} and P2(A) C {y G
y : t(xo,y) < 7} so that by (iv) and (v), Pi(FA) C {x G X;s(x,y0) > 7} and

C {y G y : <(xo,I/) < 7 } . As {xo,yo) G FA, we must have s(xo,I/o) > 7 and
) < 7 which contradicts (i). Hence the condition (d) of Theorem 4 must hold.

The conclusion follows from Theorem 4. D

When X and Y are compact, the condition (vi) of Corollary 4 (respectively, con-
dition (e) of Theorem 4) is satisfied by setting K — X x Y. Thus Corollary 4 (and
hence also Theorem 4) is a generalisation of Theorem 5.4 of Ben-El-Mechaiekh, Deguire
and Granas in [2] to //-spaces in non-compact setting.

THEOREM 5 . Let (X x Y, {FA}) bean H-space, f,s,t,g:XxY->R such that

(1) f^a^t^gonXxY;

(2) for each fixed x G X , y —* f(x,y) is lower semicontinuous on Y;

(3) for each fixed y G Y, x —»g(x,y) is upper semicontinuous on X;

(4) for each A G 7{X x Y), for each (x,y) G FA and for each A G R, there
exists (iv,z) G A such that s(w,y) ^ A or t(x,z) ^ A;

(5) there exist non-empty closed and compact subsets M of X and N of Y

such that

(I) inf sup f(x,y) ^ sup inf a(x,y);
v£Yxex zexv€Y\N

(II) inf sup t{x,y) ^ sup inf g(x,y).
v£Yx\M xv£Y
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Tien

a = inf sup f(x,y) < sup inf g(x,y) = (3.
v^Yx xv£Y

PROOF: Without loss of generality, we may assume that a ^ —oo and /3 ^ +oo.
Assume to the contrary that a > 0. Choose a real number 7 such that a > 7 > j3.
By (I) and (II),

j < a — inf sup f(x,y) ^ sup inf s(x,y),
v£Y x€X iex*ey\iv

7 > 0 = sup inf g(x,y) > inf sup t(x,y),
exvtY V 6 V X \

so that there exists (so.yo) € X xY such that

s(xo,y) > 7 and <(z,y0) < 7 for all (x,y) G X x Y \M x N.

Let K = M x N\ then .ft" is a non-empty closed and compact subset of X x Y.
By Theorem 4, either there exists y G Y such that f(x,y) ^ 7 for all x G X or there
exists x E X such that g(x,y) ^ 7 for all y G y ; it follows that either sup f(x,y) < 7

or inf s(x,y) ^ 7 which contradicts the assumption that a > 7 > /?. Therefore the

conclusion must hold. U

COROLLARY 5 . Let (X x Y, {FA}) be an H-space, f,s,t,g: X xY -> R such
that

(i) f^s^t^gonXxY;
(ii) for each fixed x G X, y —> f(x,y) is lower semicontinuous on Y;

(iii) for each fixed y G Y, x —> (j(a:, y) is upper semicontinuous on X;
(iv) /or each fixed y E Y, for each A G ^ ( X x Y) and for each A 6 R, if

Pi(A) C{xEX: s(x,y) > A}, then P1(FA) C {x £ X : s(x,y) > A};
(v) for each fixed x E X, for each A G F(X x Y) and for each A £ R, if

P2(A) C {y G y : t{x,y) < A}, then P2{FA) C {y £ Y : t{x,y) < A};
(vi) there exist non-empty closed and compact subsets M of X and N of Y

such that

(I) inf sup f(x,y) ^ sup inf s(x,y);

(II) inf sup t{x,y) < sup inf g(x,y).

Then
inf sup f{x,y) < sup inf g(x,y).

PROOF: Suppose the condition (4) of Theorem 5 does not hold. Then there exist

A G 7{X x Y), (xo,yo) G FA and A G R such that a(w,y0) > A and t(xo,z) < X
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for all (w,z) e A; it follows that Pi(A) C {x G X : a(x,y0) > A} and P2{A) C {y £
y : t(xo,y) < A} so that by (iv) and (v), Pi(FA) C {x e X : a(x,y0) > A} and
PI(FA) C {y G y : <(zo,l/) < A}. As [xo,yo) £ fU, we must have s(xo,yo) > A and
*(3o>yo) < A which contradicts (i). Hence the condition (4) of Theorem 5 must hold.
The conclusion follows from Theorem 5. 0

When / = a = t = g, the conclusion of Corollary 5 (respectively Theorem 5)
implies the following mini max equality, which generalises the minimax principle of the
von Neumann type due to Sion [18]:

inf sup f(x,y) = sup inf f(x,y).
VtY X XV£Y

When / = a and t = g, Corollary 5 (and hence also Theorem 5) contains a minimax

inequality of Liu [14].
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