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1. Introduction. If we express ezk, qua function of A, in terms of Ae*
by Langrange's theorem we find, for |A| sufficiently small,

e* = S 2 -^=^lV)» . (1.1)

If we now regard A as a parameter and z as the independent variable then
(1.1) can be written

z\ V V / I ^ ,1

o n!

Supposing, therefore, that a function is of the form/(z) = \ezX<f>(\)d\, then

where it is assumed that (1.1) holds along the path of integration and
that differentiation under the integral sign is permissible. This result
was the basis of Abel's discovery of the series which now bears his name [1].
It would appear from his brief note that he believed (1. 2) to hold for a wider
class of functions than is actually the case, including [z-\-x)~l and
log (z+x).

Conditions for the validity of (1.2) were first given by Halphen [2],
who also noted that the Abel series for (z+a;)"1 represents an integral
function, G(z, x) say, which has several properties in common with
(z+a;)"1. In this paper we find the asymptotic development of 6(z, 1)
in the whole plane and show that in a certain region G(z, 1) is asymptotically
equivalent to (z+l)"1. The asymptotic equivalence of an Abel series and
its generating function holds, in a suitable domain, for a much wider class
of functions than simple equivalence, and this part of the paper is a special
case of a more general result recently given by Drs. A. J. and S. S.
Macintyre [4].

2. Notation. KSs used to denote a positive number, not always the
same at each occurrence, independent of the variable z, but possibly
depending on other constants and parameters.
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ON A CERTAIN SERIES OF ABEL 133

The notation "</»(z) = O(x(z))" indicates a relation of the type
" | ^ | < .KJxl f°r | z | > K "> unless the contrary is stated.

The Abel series of (z+1)-1 is

and ,z(z—n)n

r-JoA

(2.

The inversion of summation and integration is easily justified by uniform
convergence. Consider now the Lagrange expansion of erzX in terms of
Ae-\ This is

e-z\ _ £ / _ l\n Z{z—n)n-x ,^X)n (2.2)

and the ratio of two successive coefficients, for fixed z, gives

z(z—n— l)w Iz
! /(71+1)! n!

n n

71+1
exp Jn log ( l - ^ - ) - (n-1) log ( l - ~

as n->oo. Hence, by Raabe's test, the expansion (2.2) is valid in the
region containing the origin and bounded by |Ae~x| = l/e. This region
will be denoted by D. The equation | Ae~x | ^ 1/e has been studied in
detail by Hayes [3]. He has shown that if £ = Ae~x then | £ | = 1/e in the
£-plane corresponds to a curve having a node at A = 1 in the A-plane.
The loop of this curve bounds a region which we have called D. To
| £ | < 1/e correspond several domains in the A-plane; one of these is D
and another includes the real axis from 1 to oo. If A lies between 1 and oo
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134 J. CLTJNXB

then (2. 2) converges to p, where /x is the unique correspondent of A that is
contained in D and lies on the real axis between 0 and 1, i.e. Ae~x = /Lte~"
with l ^ A < o o , 0 < / A ^ 1 . As A goes from 1 to oo then fi goes from 1 to 0.

From the integral (2.1) we get

G(z) =

and when the variable in the second integral is changed from A to fj, where
Ae~x = /tie"*1, the result is

2+1

1~^<*+1), 2 ^ - 1 . (2.3)

rh , 1 V / \\~s

The integral Ilog2 — I (log — I e~Zlidp,
Jo V A*' \ t^'

where h is small and fixed, is denoted by Ir>s{z).

3. Statement of results. The complete expansion is included in the
following:

THEOREM 1.

(3.1)

in the region \z\>K and | a rgz | ^377/2—rj, where rj is a fixed positive
number less than IT/4.

The functions J(z) and H(z) are defined to be

where the cr are constants whose exact form will be given later, and

WM 1 log2z 1^+1 (log2z)2 (3+2Z/J
2 log Z Z (log 2)2 2 (log 2)2 2 (log 2)3 2 (log 2)3

(log2 2)3

2(l0g2)3
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ON A CERTAIN SERIES OF ABEL 135

where log z is assumed to be real on the real positive axis, and

Lk=Ce->(logt)*dt.
Jo

Theorem 1 follows from the three subsidiary theorems that follow, I(z)
being the integral denned by (2.3).

THEOREM 2. I{z) = H{z) (3.2)

for — |7r+»?<argz<!T7—rj, 0<T)<%TT.

THEOREM 3. I(z) = J(z) (3.3)

for — \TT-\-I] <arg(— z) ^.\-n—r), 0 < I J < ^ T T .

THEOREM 4. I(z) = J(z)+H(z) (3.4)

for —i'f+7? =5s argz ^ \TT—rj

and for — \TT-\-T) ^a rg(—z) ^^77—-q,

In the region considered in Theorem 3, H(z) is negligible in relation
to the remainder of J(z), which is exponentially large so that in this region
Theorem 1 follows from Theorem 3. Similar considerations show that
Theorem 1 follows from Theorem 2 when the conditions of the latter
theorem are satisfied. In the barrier region to which Theorem 4 applies,
both J(z) and H(z) are relevant.

H(z) is unlike the asymptotically small expansions usually found in
asymptotic developments. It exhibits irregularity of structure and
the decrease in order of successive terms is much smaller than normal.

4. Proof of Theorem 2. For the proof of Theorem 2 we require a series
of lemmas.

LEMMA 1. A is an analytic function of /x in the region bounded by

•n = <f>—psm<p, <p ^=TT J

except at the origin, where Ae~x = /Ae"**, A ^ /x. and A = 1 when /x = 1.

Consider the equation

£ = se~s, s = re'9.
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136 J. CLUNIE

Since d£/ds= (1— s)e~s, the possible singularities of s as a function of
£ are £ = 1/e with s = 1 and £ = 0 with s = oo. Suppose that £ encircles
the origin w times in the positive direction in the £-plane and that s = r̂ e1'*!
and s = r2 e

w» are the initial and final values of s. Then

#x—r1 sin0x = 02—7*2 sin#2—2JMT.

Hence for each integer n, positive or negative, we get a different value of s,
i.e. £ = 0 is a logarithmic winding point of s. Near s = 1 we have

£e = l - | ( s - l ) 2 { l + 0 ( 5 - l ) }

as s->l, and so at s= 1 £ takes the value 1/e with multiplicity 2.
Consider two £-sheets each cut along the negative real axis and along

the positive real axis from 1 to oo. We take — 7r=^arg£ ^TT in both,
—7r ̂  arg(£— 1/e) ^ TT in the first and v ^ arg(£— 1/e) ^ 3TT in the second.
Denote by £x and £2 points on the first and second of these sheets respectively.
These two sheets are mapped on to the region in the s-plane bounded by

—!T = e—rsinO, 6 #—77]
[, | 0 | < T , (4.1)

in a 1-1 manner. Let f i b e a value of s in the region defined by (4.1),
other than s = 0. If /x corresponds to £x, take A to be the point corres-
ponding to £2 = l/e+ (£x—1/e) e2ir1', and if \i corresponds to £2, take A to be
the point corresponding to £ x = l/e+(£a— l/e)e~2wi. This defines A as a
function of /x in the region considered in the lemma. Also if fi =£ 0 and
/j, ^ 1 then £ = fie~'1 and £' = £e±2ir1' = Ae~\ and since

it follows that

dp 1-A

exists, and so A is a differentiable function of /x. Hence A is an analytic
function of ju in the region bounded by — -n = <f>—p sin<f> and n = </>—p sin <f>,
apart, possibly, from the points /A = 0 and p=l. Since A->co as p-*-0
it follows that yx = 0 is a singular point of A. A is bounded in the neighbour-
hood of /x = 1 and since fx = 1 is not a branch point of A, as can be seen from
the above, we see that A is analytic at yx = 1. From the construction of A
and /x we have Ae~A = per*, A f̂ /x and A = 1 when p=\. This completes
the proof of the lemma.
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LEMMA 2. For A and \L real we have

lA - l "

Ooftd//*)} . ^ f O o f t d / / * ) } ^ ^ . ,

A is found in terms of y. by successive approximation as follows. Since
Ae~x = (ue~" it follows that

A = log(l//x)+logA+/i

as /^->0. By continuing this process we finally get

l o g 2

and a simple application of the binomial theorem gives (4.4).

LEMMA 3. When |argz| <TT/2—IJ, 0 < rj < TT/2, then for \z\ > k > 1

/ /,x _ (log2z)' i 1

where log z ami log2 z are real for real positive z > 1 arcd a£s>" = (— 1)" ( ) b8^"

wi<fc 6J[" the coefficient of xn in the expansion of

(*+?+•••+?+•••) {'-(-1)«+-+<-'>"(-:)-+•••

t/i ascending powers of x.

Takez/x. = «. Then

/ , » = ij>g2f)r (log f
where the integration is along the line arg t = arg z. Now
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138 J. CLTTNIE

where

p ~ \logz) Jo { 1 - (log */log

where

Using these expression in Ir a(z), we have

2 (l0gz)
£ / i y

s
 v = 0\log2Z/

To obtain the above expression p and q have been taken sufficiently large
to ensure that the first n terms of the product of the bracketed expressions
coincide with the first n terms of the expression given in x, with

logz~X'

in the statement of the lemma. Hence it follows that Sn is a sum of terms
of the type

with A, B, C and D constants. The following conditions are satisfied
by A, B, C and D:

(i) B, C and D are non-negative integers;

(ii) n^min(p, q);

(iii) B+C^l when D
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ON A CERTAIN SEBIES OF ABEL 139

The first of these conditions is obvious, the second can be satisfied by
taking p and q large enough and the third is true since if B-\-C = 0 and
D < 7i then the corresponding term contributes to the sum of the first
n terms.

To complete the proof of Lemma 3 we require Lemmas 4 and 5.

LEMMA 4. When |argz| ^TT/2—77,

e
o

LEMMA 5. When |argz| ^TT/2—-q and log 2 is real for real positive z
then

Proofs of Lemmas 4 and 5. By an application of Cauchy's theorem
we find, noting that |arg z\ ^ TT/2—7],

Czh flzIA
e - ' ( ] o g ^ = e-'(logt)kdt+0{e-'^)

Jo Jo

= ( e
Jo

which is Lemma 4.
To prove Lemma 5 we have to show that

r [ (4.6)
when B+C ^ 1 if D ̂ n. If B+G = 0 then (4. 6) is obvious, and so we
assume that B+C ^ 1. For 111 < | z |1/2 we have

1Ki+e, 0 < e < \,

for I z I sufficiently large. Hence

lost
logz

If1 (1— %

J0(l->-
u\p
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140 J. CLUNIE

Similarly, for \t\ ^\z\l<2

In the range | z |V2 <T

'^'i-^niogw
\z\h

(4.8)

logj
log z logz

Hence
logz flog z |

lost

Similarly, for | z p'2 < 11 \ < | z \ h

l ^ ' l = 0{(logO"+1}. (4.10)

We now consider the integral of (4.6) with the range of integration
divided into the two sub-ranges considered above, and use (4.7) and
(4. 8) in the first part and (4.9) and (4.10) in the second part. We get

VJo Jzizi-W P

+ 0 (rjL-1
l \ l ogz / J|z|,,o

= 0

LEMMA 6. Ŵe have for |argz| ^^77—t], 0 <»7

Let Z/JL = t, giving

by Lemma 3, since a factor t in the integrand leaves the order of the integral
unaffected. The functions logz and log2z are assumed to be real for z
real and greater than 1.
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ON A CERTAIN SERIES OF ABEL 141

We now proceed to the proof of Theorem 2 itself. We have

1-/*From the proof of Lemma 1 it is seen that .
A— 1

and so
f1 -znY~iLA

By Lemmas 2 and 6

is bounded for h ̂  /x ^ 1,

Hence

When Lemma 3 is applied to the integrals in (4.12), Theorem 2 follows.

5. Proof of Theorem 3.
00

LEMMA 7. For I/A—ll < 1, A—1 = 26m(/x— l)n, where the bn are con-
I

slants which can be calculated.
This is an immediate consequence of Lemma 1 and the fact that A = 1

when /x= 1. It can be shown that b1= —1.
In the circle | /x—1|<1, A—1 has only one simple zero, which is at

[i=l. Hence for |/x—1| < 1 it follows that

= Scn(/Li-l)») (5.1)

where the cn can be calculated in terms of the bn. Since bx = — 1 it is seen
that c o = 1.

Assume now that the conditions of Theorem 3 hold. Set —z = y
and we get
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From Lemma 2, -r—^ is bounded in (0, 1—h), and so
A—1

1-A I a

ew^—~du.= 0(e(1-''l«'l)) 0 < e < l . (5-3)
o A—1

Putting 1 —jj, = a in the second integral in (5.2) and using (5.1) we have

Jo i I

The range (0, h) may be replaced by (0, oo) since the error introduced is

( Jo J
Hence Theorem 3 follows.

6. Proof of Theorem 4. In the following we assume z = £e}l7' where
—7] ^ arg £ ^rj with 0 < 17 < \TT, SO that z is confined to a sector enclosing
the positive imaginary axis. The proof for z in a sector enclosing the
negative imaginary axis is similar and is omitted. The proof depends on

the integration of e~zlt -r—~ round the contour F indicated in the diagram1

A— 1
where 1 > kx > tan f]. The following preliminary lemmas are required.

LEMMA 8. -r—^ is regular in and on Y.
A— 1

This follows immediately from Lemma 1.

LEMMA 9. Provided 1 > k± > tan 77,

L-*i< 1 — M,
e~efl ~x— r̂d/A = O(e~'lzl), e > 0. (6.1)

Let /j.-\-k1i = u. Then

J-i,» A—1 Jo A(W — Kxt) — 1

" 1 exp(— \z\ (kt cos77—

and the last expression is O(e~^z]) provided kx COS77—sinr7 > 0

1 See p. 144.
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ON A CERTAIN SERIES OF ABEL 143

LEMMA 10. For\n—1\ ^ a rg2 ^ £77+17, 0 <.rj < In and 1 > kx > tanij

Set /x = —ui and

A—1 ^ i Jo A(—m)—1

If (A(—wi)—lj is expressed in terms of u in a similar manner to that
of Lemma 2 we find that

w) 1; Iog(l/U)1L
Iog(l/U)1L log(l/«) log ( l /« ) + {log

{log,

Replacing 2 by ^eiiri and integrating, we have

PV^l-f*, If 1 log2^ L ^ l - l T r i (logag)«
*

' 3 )

When the right-hand side of (6.3) is expressed in terms of 2 it is seen to
be H{z).

LEMMA 11. For \TT—t]<Carg2^^-TT+I;, 0 < I J < | 7 T and

Setting u= —i{\—JJ.) gives, with 2 = £e**1,

r i 1 .. I 1 7z^

)i.-kj A—1 H'~l)Q
e X(l—ui)—l

i
du (6.4)

from Lemma 7. The right-hand side of (6.4) becomes J(z) when expressed
in terms of 2.
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144 J. CLTJNIE

LEMMA 12. If y is the arc |/-t| = k, —\-n <arg/j, <0 , then

\ e - z / i ^ [ ^ - > 0 (6.5)

1-/*
A - l

is bounded on y as k->0, whence

as k-+0.

From Lemma 1 we see that

follows (6.5).

If we now integrate e~zlt T—~, where z satisfies the conditions of

Theorem 4, round F, we get

( + + + + V * H ^ = O ,
where it assumed that 1 > kx > tan 77. Letting &->0 and using Lemma 12
we have

-t,;

Theorem 4 follows by using Lemmas 9, 10 and 11.

-ki

ne

l-Kti
r

In conclusion I should like to thank Dr. A. J. Macintyre for suggesting
to me the topic of this paper and for his guidance throughout its preparation.
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