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ON THE LAVRENTIEV PHENOMENON 

BY 
PHILIP D. LOEWEN 

ABSTRACT. A new look at Mania's classical example of the Lavrentiev 
Phenomenon leads to several pertinent observations. 

The tension between existence theory and the development of necessary conditions 
has long been a spur to research in the calculus of variations. The conflict concerns 
which class of functions X to use when studying the basic problem 

inf{A[jc]:= J L(f, x(t), x'(t)) dt:x(a) = A, x(b) = B, x E X}. (P) 
a 

For the derivation of necessary conditions, a class of (at least piecewise) smooth 
functions is the usual choice, whereas existence theorems routinely require the much 
larger class of absolutely continuous functions. 

M. Lavrentiev [10] focused attention on the conflict by constructing an example of (P) 
in which the minimum value over the absolutely continuous functions was strictly less 
than the infimum over the smooth functions. Thus he showed that the passage from 
smooth to absolutely continuous functions was no small step: some problems have 
solutions in the latter class for which no smooth function — in fact, no x(t) with 
x' E Lx[a, b]— can accurately approximate both the optimal arc and its value. 
Problems where 

inf AU) < inf AU] 
xEAC\a,b\ xeAC*\a,b\ 

are now said to exhibit the Lavrentiev phenomenon (LP). (We write ACp[a,b] = 
{x E AC[a, b]:x' E Lp[a, b]}, so AC1 = AC and AC is the class of functions 
Lipschitz on [a, b\.) 

The possibility of LP prompts the question, "Just how bad can a minimizer in 
problem (P) be?" Ball and Mizel ([2], [3]) have studied several examples bearing 
directly on this question. Taking a more positive approach, Clarke and Vinter ([7], [8], 
[9]) have recently made significant progress in proving certain regularity properties of 
solutions under minimal hypotheses. Angell [1] and Cesari [4], [5] are also working in 
this field. 
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Several years after Lavrentiev's example appeared, B. Mania found a much simpler 
problem displaying LP; his work is reported in [4], Section 18.5. The current paper 
presents a new analysis of Mania's example which is both simpler and more illumin­
ating than its predecessors. It also discusses modifications of the problem which show 
LP's tenacity. 

1. An Auxiliary Problem. Before turning to Mania's example, let us consider the 
following version of (P): 

min [J t2[x'(t)]6 dt:x(j) = 0, x(T) = a r , / 3 J , 

where 0 < T < T and a > 0 are given. Since L(t, JC, v) = t2v6 is jointly convex in 
(JC, v), any extremal arc actually provides the problem's unique solution. The Euler-
Lagrange equation gives x(t) = 5/3ct3/5 + d, where the constants c, d are determined 
by the end conditions. The result is 

x(t) = aP/3(T3/5 - T 3 / 5 r V / 5 - T3 / 5). 

Consequently the problem's minimum value is 

T t2[x'(t)f at = (3/5)5a6T2/(T3/5 - T3/5)5. (1) 

Note that for fixed a, the right side tends to +o° as 7 - T —» 0. This observation is 
central to the developments below. 

2. Mania's Example. Let us now consider the basic problem 

min |A[JC] := J L(t, x(t), x'(t)) dt:x(-\) = - 1 , JC(1) = l ] 

with L(t, x, v) = (x3 - t)2v6. This Lagrangian, which was introduced by Mania [11], 
is clearly nonnegative, so the absolutely continuous function x(t) = t]/3 minimizes A 
by giving A[x] — 0. We will show that A carries AC°°[-1, 1] into a set of positive 
numbers bounded away from zero, and thus verify LP. 

Note first that A[*] is symmetric, in the sense that if an arc *(•) satisfies the end 
conditions and A[x] < +°° then the same is true of the reflected arc y(t) := —x(—t). 
In fact, A[y] = A[x]. So we lose no generality in studying only the objective values 
of those arcs JC(-) with x(Q) ^ 0. 

Now for each a G (0, 1), define the set Ra := {(t, x) : t G [0, 1], 0 < JC < at]/3}. 
In Ra, one has L(t, x, v) > ((a^,/3)3 - t)2v6 = (1 - a3)Vv6. For any fixed a, any 
admissible arc JC G AC00 with x(0) < 0 must spend some time in Ra. More precisely, 
one has 1 > T > T > 0, where 

T = sup{t > 0:x(t) = 0} and T = inf {t > 0:JC(0 = at"3}. 
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It follows from the analysis of the auxiliary problem above that 

A[JC] > (1 - a3)2 [ t2[x'(t)]6 dt 

> (3/5)5(l - a3)2a6T2/(TV5 - T3 /5)5 (2) 

> (3/5)5(l - a 3 ) V . 

(The last inequality holds because T = 1 gives the previous expression its minimum 
over TE (T, 1), and then 1 — T3/5 ^ 1.) The maximum value of the right side occurs 
when a = 2_1/3: we deduce that for every admissible x E ACX, A[x] > (l/2)4(3/5)5. 
This confirms LP. 

Note that the key observation above is that any x(-) EACX spends time in Ra. Hence 
the same lower bound on A[x] remains valid for any arc x spending time in Ra — in 
particular, A[x] > (l/2)4(3/5)5 for any x E A C P [ - 1 , 1] for/? > 3/2. One could say 
that the singularity displayed by A is much worse than that defining LP, since the latter 
requires such a property only for/? = + °°. The computations of this section are the basis 
for all the developments to follow, which can therefore be refined to replace AC00 by 
ACP for/? > 3/2. In this general discussion, however, we consider the results in AC* 
sufficiently compelling to leave their refinement implicit. 

3. Lipschitz Approximation. It is well known tht any absolutely continuous func­
tion is uniformly approximable by Lipschitz functions, in the following sense. 

THEOREM 1. Let any x E AC[a, b] be given. The there is a sequence {xk} E ACX 

such that 

(i) xk(a) = x(a) \/k, xk(b) = x(b) V/c, and \\xk — x \\x —» 0 as k —> oo? 

(ii) ||xJ||w<=*V*, 

(iii) Ve > 0 3M > 0 s.t. \x'k(t) \ dt < € \/k. (i.e., the derivative sequence is 
{t:\x'k(t)\>M} 

"uniformly integrable".) 

The presence of LP in the example discussed above makes it clear that no matter how 
well a sequence of Lipschitz arcs xk approximates x(t) := fl/3, the values A[xk] cannot 
approach A[x] = 0. So what happens to this sequence of values? Surprisingly, any 
sequence {xk} of admissible Lipschitz arcs obeying \\xk — x ||oo —» 0 also has 
M*k] —> +°°ï To see this, note that for any admissible x E ACX obeying || JC — Jc \\x 

< e (and JC(0) < 0), the interval [T, T] defined above cannot be very large. Indeed, one 
must have 0 < T < T < (e/(l - a))3. So instead of the lower bound computed in (2), 
we have 

A[JC] > (3/5)5(l - a3)2a672/(r3/5 - T3 /5)5 > (3/5)5(l - a3)2a6(l - a)3/e3. 
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In short, there is a constant c > 0 such that 

||JC - ;t Ik < e, x E ACX =̂> A[JC] > ce'3 . (3) 

This confirms the surprisingly bad behaviour of A[-] asserted above. In fact, the last 
paragraph of Section 2 explains why, in (3), ACX may be replaced by ACP for any 
P ^ 3/2. 

4. LP Persists. Although the formulation of the example in Section 2 may seem 
contrived, the Lavrentiev Phenomenon is also observed in many related examples. For 
example, certain changes to the Lagrangian and modifications of the end conditions fail 
to eliminate LP. 

To see how the Lagrangian can be modified, suppose that LP is observed in some 
problem of the form (P). More specifically, suppose that A[x] = 0 for some JC E 
AC[a, b], while A[x] > r\ > 0 Vx E AC°°[a, b]. Then consider any functional 
M:AC[a, b] —> [0, +o°) obeying M[x] < +°°. Upon choosing any 0 < e < 
T\/(2M[X]), we find that 

(A + eM)[x] < 0 + V 2 

(A + eM)[x] > TI + 0 VxE AC*[a, b]. 

Thus LP persists for the modified functional A + eM. A significant application of this 
simple observation to the example of Section 2 involves the functional 

M[x] := I |jc'(f)|5/4df. 

For x(t) = r1/3, one has M [Je] < +00, so it follows that for all e > 0 sufficiently small, 
LP is observed in the problem 

min j j ((JC3 - tfx'6 + e \x' |5/4) dt : JC( -1 ) = - 1 , JC(1) = l j . 

This is significant because the Lagrangian in this problem is strictly convex in the 
velocity variable, in which it moreover displays uniform superlinear growth. Thus the 
modified problem satisfies the hypotheses under which Tonelli showed the existence of 
a minimum over the class AC[—l, 1]. Ball and Mizel [3] were the first to produce 
examples showing that these conditions do not exclude LP, but their examples are 
considerably more complicated than ours. (On the other hand, their examples have | x' p 
instead of |JC'|5 /4 .) 

Let us now consider endpoint variations, denoting by P(x-X, JCI) the problem 

min [J (JC3 - tfx'6 àt : Jt(-l) = JC_,,JC(1) = JC.J. 

We have shown that P(—1, l) displays LP. In fact, LP clearly persists for any x-x E 
[—1, 0) and JC] E (0, 1]. For then the optimal arc is 
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pc_, if - 1 < t]/3 <x-u 

x(t) = \t]/3 if JC_, < r,/3 < JC,, 

U, if JC, < f1/3 < 1. 

(Note that A[Jc] = 0.) However, by choosing a > 0 so small that a < min {JC_I , JCJ, 
the arguments of Section 2 show that A[x] > (3/5)5(l — or3)2a6 > 0 for all admissible 
x E ACX. Similarly, it is evident that for some 8 > 0, LP persists even for x-{ E 
( - 1 - 8 , - 1 ] and X] E [1, 1 + 8). To see this, one must only modify the solution 
x(t) = t]/3 of P ( - l , 1) near its endpoints to obtain an admissible arc x with A[x] < 
l/2(3/5)5(l — a3)2a6. Since all admissible Lipschitz functions x must still obey 
A[x] > (3/5)5(l - a 3 ) V , LP persists. 

Since there is a well-defined neighbourhood of (JC_I, JCI) = (—1, 1) in which 
P(x-\, JCI) exhibits LP, one can actually choose K > 0 so large that LP occurs in the 
following free-endpoint Bolza problem: 

min jA'[jc] := K\ (JC(-1), JC(1)) - ( - 1 , 1)|2 + J (JC3 - t)2x'6 drj. 

The arguments of the previous paragraph give the same conclusion even if a term 
e \x' |5/4 is added to the integrand. In that case we obtain a free-endpoint Bolza problem 
whose smooth Lagrangian exhibits strict convexity and superlinear growth in the 
velocity variable, but which still displays LP. This shows that LP can occur even in 
"calm" problems — see Clarke [6] for the definition and application of this constraint 
qualification. 

5. Excluding LP. The striking singularity of problems displaying LP is cause not 
only for interest, but for concern. For example, numerical procedures for solving 
variational problems approximately are virtually guaranteed to fail when LP is present, 
because they use approximating trajectories in AC™. Thus one of the most important 
aspects of research into LP is the search for conditions excluding it. T. S. Angell has 
given the following result, much in the spirit of the classical theory. (Notation: 
T(X;J\) = {(t,y):\y - x(t)\ < itf.) 

THEOREM 2. ([]], see [4, Ch. 18]). Consider the functional A:AC\a, b] —» R 
defined by A[x] = faL(t, x(t), x'(t)) dt. Suppose x E AC [a, b] is an arc for which 
A[x] < +oo. Under the following hypotheses, the standard sequence {xk} ofThm. 1 
obeys A[xk] -> A[Jc]. 

(HI) There exists r\ > 0 such that for all 8 > 0, there is a closed set K Ç [a, b] with 
m([a, b]\K) < 8 for which L is continuous on {(t, y, v):t E K, \y — x(t)\ 
< r\} and locally bounded on T(x; r\) X R. (This hypothesis is automatic if L is 
continuous on T(x; r\) X R for some r| > 0J 

(H2) A^ := J \L(t,xk, x'k) - L(t9 Jc, x'k)\ dt-> 0ask-+ «>. 
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Angell's theorem is widely applicable because (H2) isolates and eliminates the key 
technical problem in proving approximation results. However, the same hypothesis that 
gives the theorem its generality also limits its usefulness, since one must know x 
a priori to apply it. Thus we seek verifiable conditions implying (H2). Let us reconsider 
Mania's example with this in mind. Along the solution x(t) — r1/3, the Lagrangian is 
identically zero while the Lipschitz rank of Lit, -, x'(t)) is unbounded. The following 
(new) result indicates that if the Lipschitz rank of L(t, -, v) is limited by the growth of 
L in a reasonable way, then LP cannot occur. Here d denotes Clarke's generalized 
gradient. 

THEOREM 3. Consider A as in Thm. 2, but assume that L is nonnegative, continuous 
in (t, x, v) and locally Lipschitz in x for each (t, v). Given x E AC [a, b] such that 
A[x] < +°°, the following hypotheses assure that A[xk] —» A[x] (with {xk} as in 
Thm. I). 

(a) {AfxJ} is a bounded set of real numbers. 

(b) For some r\ > 0, there are constants k0, k]y and a function f0(t) E L'[a, b] such 
that 

sup | a,L(f, y, v)| < k0L(t, y, v) + ki\y\ 4- f(){t) V(f, v, v) E T(x\ i\) x R. 

PROOF. For all k sufficiently large, we have \\xk — x\\ < r\. It follows from [6, 
Lemma 1, p. 181] that 

\L(t,xk,x'k) - L(t, i , 4 ) | ^K^koLitiXktX'k) + f0(t) 

+ k\ max {\xk\, \x |}) \xk — x \ Vt E [a7 b] 

for K^ = (exp (k0r\) - \)/(k0j]). Hence 

| A f | = f \L(t, xk, xl) - L(t, x, xl)\ dt < K^x, - x\\(k0A[xk] 

+ *, max {|U*||, ||;r||}+ \ fo(t)dt). 

By assumption (a), the quantity in parentheses is bounded. Consequently A(/° —» 0 as 
k —•> + oo and (H2) of Thm. 2 is verified. The result follows. //// 

Theorems 2 and 3 take a classical approach to LP. In their formidable work on the 
regularity of solutions to problems in the calculus of variations, Clarke and Vinter use 
completely different methods to identify (among other things) situations in which the 
infimum of A[-] over AC is actually attained by an arc in ACX. Of course, these 
situations are free of LP. The hypotheses used by Clarke and Vinter are very mild 
indeed: for example, after assuming only the convexity and coercivity conditions of 
Tonelli's existence theorem, they prove that whenever L is independent of t, all 
solutions of(P) lie in AC*. For a precise formulation of this result, along with many 
other conditions giving the same conclusion, see [7], [8], [9]. 
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