QUASI-PERMUTATION REPRESENTATIONS OF $\operatorname{SL}(2, q)$ AND $\operatorname{PSL}(2, q)$
 HOUSHANG BEHRAVESH
 Department of Mathematics, University of Urmia, Urmia, Iran

(Received 22 December, 1997)

1. Introduction. By a quasi-permutation matrix we mean a square matrix over the complex field \mathbb{C} with non-negative integral trace. Thus every permutation matrix over \mathbb{C} is a quasi-permutation matrix. For a given finite group G, let $p(G)$ denote the minimal degree of a faithful permutation representation of G (or a faithful representation of G by permutation matrices), let $q(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field \mathbb{Q}, and let $c(G)$ be the minimal degree of a faithful representation of G by complex quasi-permutation matrices. See [1].

By a rational valued character we mean a character χ corresponding to a complex representation of G such that $\chi(g) \in \mathbb{Q}$ for all $g \in G$. As the values of the character of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module. We will call a homomorphism from G to $G L(n, \mathbb{Q})$ a rational representation of G and its corresponding character will be called a rational character of G. Let $r(G)$ denote the minimal degree of a faithful rational valued character of G. It is easy to see that

$$
r(G) \leq c(G) \leq q(G) \leq p(G)
$$

where G is a finite group.
Let $S L(m, q)$ denote the group of all $m \times m$ matrices with determinant 1 over the field of q elements where q is a power of a prime p and $\operatorname{PSL}(m, q) \cong G / Z(G)$ where $G=S L(m, q)$. We will apply the algorithms we developed in [1] to the groups $S L(2, q)$ and $\operatorname{PSL}(2, q)$. We will show that $\lim _{q \rightarrow \infty} \frac{c(G)}{r(G)}=1$, where $G=\operatorname{PSL}(2, q)$. The quantities $p(G)$ for the finite simple groups are known and can be found in [5].

2. Algorithm for $p(G), c(G)$ and $q(G)$.

Lemma 2.1. Let G be a finite group with a unique minimal normal subgroup. Then $p(G)$ is the smallest index of a subgroup with trivial core (that is, containing no nontrivial normal subgroup).

Proof. See [1, Corollary 2.4].
Definition 2.2. Let χ be a character of G such that, for all $g \in G, \chi(g) \in \mathbb{Q}$ and $\chi(g) \geq 0$. Then we say that χ is a non-negative rational valued character.

Notation. Let $\Gamma(\chi)$ be the Galois group of $\mathbb{Q}(\chi)$ over \mathbb{Q}.

Definition 2.3 Let G be a finite group. Let χ be an irreducible complex character of G. Then define
(1) $d(\chi)=|\Gamma(\chi)| \chi(1)$,
(2) $m(\chi)= \begin{cases}0 & \text { if } \chi=1_{G} \\ \left|\min \left\{\Sigma_{\alpha \in \Gamma(\chi)} \chi^{\alpha}(g): g \in G\right\}\right| & \text { otherwise, }\end{cases}$
(3) $c(\chi)=\Sigma_{\alpha \in \Gamma(\chi)} \chi^{\alpha}+m(\chi) 1_{G}$.

Corollary 2.4. Let $\chi \in \operatorname{Irr}(G)$. Then $\Sigma_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi)(1)=$ $d(\chi)+m(\chi)$.

Proof. See [1, Corollary 3.7].
Now we will give algorithms for calculating $c(G)$ and $q(G)$ where G is a finite group with a unique minimal normal subgroup.

Lemma 2.5. Let G be a finite group with a unique minimal normal subgroup. Then
(1) $c(G)=\min \{c(\chi)(1): \chi$ is a faithful irreducible complex character of $G\}$;
(2) $q(G)=\min \left\{m_{\mathbb{Q}}(\chi) c(\chi)(1): \chi\right.$ is a faithful irreducible complex character of $\left.G\right\}$.

Proof. See [1, Corollary 3.11].
Lemma 2.6. Let $\chi \in \operatorname{Irr}(G), \chi \neq 1_{G}$. Then $c(\chi)(1) \geq d(\chi)+1 \geq \chi(1)+1$.
Proof. From Definition 2.3 it follows that $c(\chi)(1)$ is a non-negative rational valued character of G so, by [1, Lemma 3.2], $m(\chi) \geq 1$. Now the result follows from Definition 2.3.

Lemma 2.7. Let $\chi \in \operatorname{Irr}(G)$. Then
(1) $c(\chi)(1) \geq d(\chi) \geq \chi(1)$;
(2) $c(\chi)(1) \leq 2 d(\chi)$.

Equality occurs if and only if $Z(\chi) / \operatorname{ker} \chi$ is of even order.
Proof. (1) follows from the definition of $c(\chi)(1)$ and $d(\chi)$.
(2) See [1, Lemma 3.13].

Lemma 2.8. Let G be a finite group. If the Schur index of each non-principal irreducible character is equal to m, then $q(G)=m c(G)$.

Proof. See [1, Corollary 3.15].

3. Permutation representations.

Theorem 3.1. Let $G=\operatorname{PSL}(2, q)$, where $q=p^{n}$. Then G contains only the following subgroups:
(1) elementary abelian p-groups of each order dividing q;
(2) cyclic groups of each order l with $l \left\lvert\, \frac{q \pm 1}{k}\right.$ where $k=(q-1,2)$;
(3) dihedral groups of each order $2 l$ with l as in (2);
(4) alternating group A_{4} for $p>2$ or $p=2$ and $n \equiv 0(\bmod 2)$;
(5) symmetric group S_{4} for $q^{2}-1 \equiv 0(\bmod 16)$;
(6) alternating group A_{5} for $p=5$ or $q^{2}-1 \equiv 0(\bmod 5)$;
(7) semidirect products of an elementary abelian group of order p^{m} and a cyclic group of order t for each $m, 1 \leq m \leq n$, and each t such that $t \mid p^{m}-1$ and $t \mid q-1$;
(8) the groups $\operatorname{PSL}\left(2, p^{m}\right)$ for any m such that $m \mid n$ and $\operatorname{PGL}\left(2, p^{m}\right)$ for any m such that $2 m \mid n$.

Proof. See [3, p. 213].
Lemma 3.2. Every proper normal subgroup of $G=S L(m, K)$ is in $Z(G)$ except when $m=2$ and $|K|=2$ or 3 .

Proof. Let $N \triangleleft G$, let $Z=Z(G)$ and let $N \nsubseteq Z$. Since $G / Z \cong P S L(n, K)$, so G / Z is a simple group by [3, p. 182].

Now consider $N Z$. It is a normal subgroup of G and $1 \neq N Z / Z \triangleleft G / Z$. Since G / Z is simple, $N Z=G$. And $G / N=N Z / N \cong Z / Z \cap N$, so G / N is abelian. Hence $N \geq G^{\prime}$ and by [3, p. 181] we have $G^{\prime}=G$ except when $m=2$ and $|K|=2$ or 3 . Therefore $N=G$. Hence the result follows.

Lemma 3.3. Let $G=S L(2, K)$ and $\operatorname{char}(K) \neq 2$. Then G has a unique involution.
Proof. The proof is easy.
Corollary 3.4. Let $G=S L(2, K)$ and $\operatorname{char}(K) \neq 2$. Then $Z(G)=\left\{ \pm I_{2}\right\}$ and $|Z(G)|=2$. Moreover $Z(G)$ is the unique minimal normal subgroup of G and the core of any subgroup of even order is non-trivial.

Proof. By [3, p. 181] we know that $Z(G)=\left\{ \pm I_{2}\right\}$. Since G has a unique involution so by Lemma 3.2 when $q \neq 3$ the unique minimal normal subgroup of G is $Z(G)$.

Now let $q=3$. Since in this case the order of G is 24 , any non-trivial subgroup of G has order 3 or even order. If its order is 3 , then in the notation of [2,38.1] we have two different classes in which the elements have order 3 (namely c and d). Since $\langle c\rangle=\langle d\rangle$ and also c and d are not conjugate, the subgroups of order 3 are not normal. When its order is even it contains an element of order two. Since G has a unique involution, $Z(G)$ is contained in such a subgroup. Therefore $Z(G)$ is the unique minimal normal subgroup of G.

Lemma 3.5. Let $G=S L(2, q)$ where $q=p^{n}$ is odd. Then the odd order subgroups of G are as follows:
(1) cyclic subgroups of each odd order dividing $q \pm 1$;
(2) subgroups of odd order of $T(2, q)=\left\{\left(\begin{array}{ll}a & b \\ 0 & a^{-1}\end{array}\right): a, b \in F_{q}, a \neq 0\right\}$, where F_{q} is the finite field of q elements (note that $|T(2, q)|=(q-1) q$).

Proof. Let $H \leq G$ and let $Z=Z(G)$. Let $|H|$ be odd. We know that $Z H / Z \cong H / Z \cap H$. Since $|H|$ is odd so $Z \cap H=\{1\}$. But $Z H / Z \leq G / Z$. So odd order subgroups of G are isomorphic to odd order subgroups of $\operatorname{PSL}(2, q)$, and by Theorem 3.1 the odd order subgroups are of type (1), (2) and (7). Since p is odd, in Theorem 3.1 part (2), we have $k=2$ and $l \left\lvert\, \frac{q \pm 1}{2}\right.$. Hence $l \mid q \pm 1$. So G has cyclic subgroups of each odd order dividing $q \pm 1$.

Now we want to prove that each odd order subgroup of type (7) in Theorem 3.1 is isomorphic to a subgroup of $T=T(2, q)$. In fact we will show that it is conjugate to a subgroup of T.

Let H be an odd order subgroup of $\operatorname{PSL}(2, q)$ of type (7). Then $H=L / Z$ where $L \leq G$. Since the order of H is odd so $(|L / Z|,|Z|)=1$. So by Schur-Zassenhaus [7, Theorem 10.30] we have $L=Z \rtimes H_{1}$ where $H_{1} \leq L$ and $L / Z \cong H_{1}$. So $H \cong H_{1}$. Hence $H_{1}=B \rtimes A$ where B is an elememtary abelian group p^{m} and A is a cyclic subgroup of order t such that $t \mid p^{m}-1$ and $t \mid p^{n}-1$.

Let $U=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in F_{q}\right\}$. Then U is a Sylow p-subgroup of G. By the Sylow Theorem [7, 5.9] there exists $g \in G$ such that $B^{g} \leq U$. So $H_{1}^{g}=B^{g} \rtimes A^{g}$. Now we have to show that $H_{1}^{g} \leq T$. Hence it is enough to prove that $A^{g}=A_{1} \leq T$. Let $\xi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in A_{1}$ and $\eta=\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right) \in B^{g}$ and $\lambda \neq 0$, Then $\xi \eta \xi^{-1} \in B^{g}$. But $\xi \eta \xi^{-1}=\left(\begin{array}{cc}1-c a \lambda & a^{2} \lambda \\ -c^{2} \lambda & 1+c a \lambda\end{array}\right)$. So $c^{2} \lambda=0$. Therefore $c=0$, and $\xi \in T$.

Case (1) is similar to (7).
Theorem 3.6. Let $G=S L(2, q)$ where q is odd. Then

$$
p(G)=(q-1)_{2}(q+1)
$$

Proof. By Lemma 2.1 we have to find a subgroup of G with maximal order and trivial core, say H. If $|H|$ be even then by Corollary 3.4 its core is not trivial. So $|H|$ is odd. Conversely by Corollary 3.4 every subgroup of odd order has trivial core.

We will use Lemma 3.5 frequently. Let $q \equiv 3(\bmod 4)$, that is, $\frac{q-1}{2} \equiv 1(\bmod 2)$. By Lemma 3.5 we have $|H|=q\left(\frac{q-1}{2}\right)$ and $p(G)=2(q+1)$.

Let $q \equiv 1(\bmod 4)$, that is, $\frac{q-1}{2} \equiv 0(\bmod 2)$ and $\frac{q+1}{2} \equiv 1(\bmod 2)$. But $q>\frac{q+1}{2}>\frac{q-1}{2}$ (as $q \geq 3$). Thus, the Sylow p-subgroup of G has order exceeding that of any odd order subgroup of type (1). On the other hand, if
$H=\left\{\left(\begin{array}{ll}a & b \\ 0 & a^{-1}\end{array}\right): a, b \in F_{q}, a^{l}=1\right\}$, where $q-1=(q-1)_{2} l$, then H is of type (2) and of order $q l$ which is maximal. Hence $p(G)=(q-1)_{2}(q+1)$.

Lemma 3.7. Let $G=S L(2, q)$ where $q=2^{n}$. Then $S L(2, q)$ is a simple group when $n \neq 1$, and when $n=1$ it has a unique minimal normal subgroup, which has order 3 .

Proof. See [3, p. 182].
Theorem 3.8. Let $G=S L(2, q)$ where $q=2^{n}$. Then $p(G)=q+1$.
Proof. We show that every proper subgroup H of G has order less than or equal to $q(q-1)$. Let $p^{m}=q$ and $t=q-1$. Then by Theorem 3.1 a subgroup of type (7) exists whose order is equal to $q(q-1)$.

Let $n=1$. Then $|G|=6$ and it has a subgroup of order 2 with trivial core and a normal subgroup of order 3. So $p(G)=\frac{6}{2}=3$.

Now let $n \neq 1$. Note that $|S L(2,4)|=60$ and $S L(2,4) \cong A_{5}$. So subgroups of type (6) cannot be considered when $n=2$. We will use Theorem 3.1 frequently.

Subgroups of type (1), (2), (3), (7). By Theorem 3.1 part (1), (2), (3), (7) the orders of such subgroups of G are less than or equal to $q, q \pm 1,2(q \pm 1)$ and $q(q-1)$ respectively. But $2(q+1)<q(q-1)$ because $q^{2}-3 q-2>0$ when $q \geq 4$. So among these subgroups of G the maximal order is $q(q-1)$.

Subgroup of type (4). Let $n=2 k$, that is, $q=4^{k}$. Then G has a subgroup of order 12 by Theorem 3.1 part (4). But $q(q-1) \geq 12$ (as $k \geq 1$ and $q \geq 4$).

Subgroup of type (5). As q is a power of $2,16 \nmid q^{2}-1$. So S_{4} is not a subgroup of G.

Subgroup of type (6). Let $2^{2 n} \equiv 1(\bmod 5)$. Then by an earlier remark, we may assume that $n \geq 3$. Further, if $n=3,2^{6}=64 \equiv-1(\bmod 5)$ so that we may assume that $n \geq 4$. Now $q \geq 2^{4}=16$ and $q(q-1) \geq 16 \times 15>\left|A_{5}\right|=60$.

Subgroup of type (8). We will consider two different cases.
Let $m \mid n$ and $2 m \nmid n$, that is, $n=m(2 k+1)$. Theorem 3.1 part (8) implies that $\operatorname{PSL}\left(2,2^{m}\right)$ is a subgroup of G, and $\left|\operatorname{PSL}\left(2,2^{m}\right)\right|=\left(2^{m}-1\right) 2^{m}\left(2^{m}+1\right)$. We have

$$
\left(2^{m}-1\right)\left(2^{m}+1\right) \leq\left(2^{m k}-1\right)\left(2^{m k}+1\right)=2^{2 m k}-1 \leq 2^{m(2 k+1)-1}
$$

so

$$
\left(2^{m}-1\right) 2^{m}\left(2^{m}+1\right) \leq 2^{m}\left(2^{m(2 k+1)}-1\right) \leq 2^{m(2 k+1)}\left(2^{m(2 k+1)}-1\right)=q(q-1) .
$$

Now let $2 m \mid n$. Then $n=2 m k$. We know that $\left|P G L\left(2,2^{m}\right)\right|=\left(2^{m}-1\right) 2^{m}\left(2^{m}+1\right)$ and $\left(2^{m}-1\right)\left(2^{m}+1\right) \leq 2^{2 m k}-1$ so

$$
\left(2^{m}-1\right) 2^{m}\left(2^{m}+1\right) \leq 2^{m}\left(2^{2 m k}-1\right) \leq 2^{2 m k}\left(2^{2 m k}-1\right)=q(q-1) .
$$

Therefore in both cases $\left(2^{m}-1\right) 2^{m}\left(2^{m}+1\right) \leq q(q-1)$. Hence $p(G)=q+1$.
Theorem 3.9. Let $G=\operatorname{PSL}(2, q)$ where q is odd. Then $p(G)=q+1$ except when $q=5,7,9,11$ and in these cases $p(G)=5,7,6,11$ respectively.

Proof. When $q \geq 5$, the result follows from [3, II.8.27 and II.8.28] because G is simple so that every non-trivial permutation representation is faithful.

When $q=3, G$ is isomorphic to the alternating group A_{4} of degree 4 in which a Sylow 3-subgroup is core-free and of minimal index among such subgroups.
4. Quasi-permutation representations. We begin with a brief summary of facts relevant to our treatment of the special linear and projective special linear groups.

Theorem 4.1. Let F be the finite field of $q=p^{n}$ elements, p an odd prime, and let v be a generator of the cyclic group of $F^{*}=F-\{0\}$. Let

$$
1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), z=\left(\begin{array}{ll}
-1 & 0 \\
0 & -1
\end{array}\right), c=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), d=\left(\begin{array}{ll}
1 & 0 \\
v & 1
\end{array}\right), a=\left(\begin{array}{ll}
v & 0 \\
0 & v^{-1}
\end{array}\right)
$$

in $G=S L(2, F) . G$ contains an element b of order $q+1$.
For any $x \in G$, let (x) denote the conjugacy class of G containing x. Then G has exactly $q+4$ conjugacy classes $(1),(z),(c),(d),(z c),(z d),(a),\left(a^{2}\right), \ldots,\left(a^{q-3} 2\right)$, (b), ($\left.b^{2}\right), \ldots,\left(b^{\frac{q-1}{2}}\right)$, satisfying

Table of Conjugacy Classes of $\operatorname{SL}\left(2, p^{n}\right)$

x	1	z	c	d	$z c$	$z d$	a^{l}	b^{m}
$\|(x)\|$	1	1	$\frac{1}{2}\left(q^{2}-1\right)$	$\frac{1}{2}\left(q^{2}-1\right)$	$\frac{1}{2}\left(q^{2}-1\right)$	$\frac{1}{2}\left(q^{2}-1\right)$	$q(q+1)$	$q(q-1)$

for $1 \leq l \leq(q-3) / 2,1 \leq m \leq(q-1) / 2$.
Put $\varepsilon=(-1)^{(q-1) / 2}$. Let $\rho \in \mathbb{C}$ be a primitive $(q-1)$-th root of $1, \sigma \in \mathbb{C}$ a primitive $(q+1)$-th root of 1 . Then the complex character table of G is

Character Table of $\operatorname{SL}\left(2, p^{n}\right)$

	1	z	c	d	a^{l}	b^{m}
1_{G}	1	1	1	1	1	1
ψ	q	q	0	0	1	-1
χ_{i}	$q+1$	$(-1)^{i}(q+1)$	1	1	$\rho^{i l}+\rho^{-i l}$	0
θ_{j}	$q-1$	$(-1)^{j}(q-1)$	-1	-1	0	$-\left(\sigma^{j m}+\sigma^{-j m}\right)$
ξ_{1}	$\frac{1}{2}(q+1)$	$\frac{1}{2} \varepsilon(q+1)$	$\frac{1}{2}(1+\sqrt{\varepsilon q})$	$\frac{1}{2}(1-\sqrt{\varepsilon q})$	$(-1)^{l}$	0
ξ_{2}	$\frac{1}{2}(q+1)$	$\frac{1}{2} \varepsilon(q+1)$	$\frac{1}{2}(1-\sqrt{\varepsilon q})$	$\frac{1}{2}(1+\sqrt{\varepsilon q})$	$(-1)^{l}$	0
η_{1}	$\frac{1}{2}(q-1)$	$-\frac{1}{2} \varepsilon(q-1)$	$\frac{1}{2}(-1+\sqrt{\varepsilon q})$	$\frac{1}{2}(-1-\sqrt{\varepsilon q})$	0	$(-1)^{m+1}$
η_{2}	$\frac{1}{2}(q-1)$	$-\frac{1}{2} \varepsilon(q-1)$	$\frac{1}{2}(-1-\sqrt{\varepsilon q})$	$\frac{1}{2}(-1+\sqrt{\varepsilon q})$	0	$(-1)^{m+1}$

for $1 \leq i \leq(q-3) / 2,1 \leq j \leq(q-1) / 2,1 \leq l \leq(q-3) / 2,1 \leq m \leq(q-1) / 2$. (The columns for the classes $(z c)$ and $(z d)$ are missing in this table. These values are obtained from the relations

$$
\chi(z c)=\frac{\chi(z)}{\chi(1)} \chi(c), \chi(z d)=\frac{\chi(z)}{\chi(1)} \chi(d),
$$

for all irreducible characters χ of G.)
Proof. See [2, 38.1].
Theorem 4.2. Let F be the finite field of $q=2^{n}$ elements, and let v be a generator of the cyclic group $F^{*}=F-\{0\}$. Let

$$
1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), c=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), a=\left(\begin{array}{ll}
v & 0 \\
0 & v^{-1}
\end{array}\right)
$$

in $G=S L(2, F) . G$ contains an element b of order $q+1$.
For any $x \in G$, let (x) denote the conjugacy class of G containing x. Then G has exactly $q+1$ conjugacy classes $(1),(c),(a),\left(a^{2}\right), \ldots,\left(a^{(q-2) / 2}\right),(b),\left(b^{2}\right), \ldots,\left(b^{q / 2}\right)$, where

Table of Conjugacy Classes of $\operatorname{SL}\left(2,2^{n}\right)$

x	1	c	a^{l}	b^{m}
$\|(x)\|$	1	$\left(q^{2}-1\right)$	$q(q+1)$	$q(q-1)$

for $1 \leq l \leq(q-2) / 2,1 \leq m \leq q / 2$.
Let $\rho \in \mathbb{C}$ be a primitive $(q-1)$-th root of 1 . The table of G over \mathbb{C} is

Character Table of $\operatorname{SL}\left(2,2^{n}\right)$

	1	c	a^{l}	b^{m}
1_{G}	1	1	1	1
ψ	q	0	1	-1
χ_{i}	$q+1$	1	$\rho^{i l}+\rho^{-i l}$	0
θ_{j}	$q-1$	-1	0	$-\left(\sigma^{j m}+\sigma^{-j m}\right)$

for $1 \leq i \leq(q-2) / 2,1 \leq j \leq q / 2,1 \leq l \leq(q-2) / 2,1 \leq m \leq q / 2$.
Proof. See [2, 38.2].
Theorem 4.3. Let $G=S L(2, q)$. If q is a power of 2 , then the Schur index of any irreducible character of G over the rational numbers \mathbb{Q} is 1 . If q is a power of an odd prime p, then the Schur indices of the irreducible characters of G over the rational numbers \mathbb{Q} are as follows:

Table of Schur Indices

	$q \equiv 1(\bmod 4)$	$q \equiv 3(\bmod 4)$
1_{G}	1	1
ψ	1	1
χ_{i}	$2(i$ odd $)$	$2(i$ odd $)$
	$1(i$ even $)$	$1(i$ even $)$
θ_{j}	$2(j$ odd $)$	$2(j$ odd $)$
	$1(j$ even $)$	$1(j$ even $)$
ξ_{1}	1	1
ξ_{2}	1	1
η_{1}	2	1
η_{2}	2	1

Proof. See [8].
Lemma 4.4. Let G be a finite group and let $N \triangleleft G$.
(1) Let χ be a character of G. Define $\hat{\chi}(N g)=\chi(g)$. Then $\hat{\chi}$ is a character of G / N.
(2) $\chi \in \operatorname{Irr}(G / N)$ if and only if $\hat{\chi} \in \operatorname{Irr}(G / N)$.

Proof. See [4, 2.22].
Let χ be a character of G and N a normal subgroup of G. As $\hat{\chi}(N g)=\chi(g)$ for all $g \in G$, it is convenient to use the notation χ in place of $\hat{\chi}$ for this character of G / N.

Theorem 4.5. All irreducible characters of $\operatorname{PSL}(2, q)$ have Schur index 1 over \mathbb{Q} The irreducible characters of $\operatorname{PSL}(2, q)$ where q is odd are:
(1) $1, \psi, \chi_{2}, \chi_{4}, \ldots, \chi_{\frac{q-5}{2}}, \theta_{2}, \theta_{4}, \ldots \theta_{\frac{q-1}{2}}, \xi_{1}, \xi_{2}$ if $q \equiv 1(\bmod 4)$;
(2) $1, \psi, \chi_{2}, \chi_{4}, \ldots, \chi_{\frac{q-3}{2}}, \theta_{2}, \theta_{4}, \ldots, \theta_{\frac{q-3}{2}}, \eta_{1}, \eta_{2}$ if $q \equiv 3(\bmod 4)$.

Proof. Since $\operatorname{PSL}(2, q) \cong S L(2, q) / Z(S L(2, q))$, we can find the irreducible characters of $\operatorname{PSL}(2, q)$ from the non-faithful irreducible characters of $\operatorname{SL}(2, q)$ by using Lemma 4.4.

Lemma 4.6. If $G=S L(2, q)$ where q is odd, and if χ is a faithful irreducible character of G, then $m(\chi)=2 d(\chi)$. It follows that

$$
\begin{gathered}
c(G)=2 \min \{d(\chi): \chi \in \operatorname{Irr}(G), \chi \text { faithful }\} \\
q(G)=2 \min \left\{m_{\mathbb{Q}}(\chi) d(\chi): \chi \in \operatorname{Irr}(G), \chi \text { faithful }\right\} .
\end{gathered}
$$

Proof. As χ is faithful and $z^{2}=1, \chi(z)=-\chi(1)$. Thus $z \in Z(\chi) / \operatorname{ker} \chi$. Therefore $Z(\chi) / \operatorname{ker} \chi$ is of even order. Hence by Lemma 2.7, $m(\chi)=2 d(\chi)$.

As G has a unique minimal normal subgroup by Corollary 2.5 , the result follows from Corollary 3.4.

Lemma 4.7. Let ξ be a primitive nth root of unity. Then $\xi+\xi^{-1}$ is rational if and only if $n=1,2,3,4,6$. The values which occur are as follows:

n	1	2	3	4	6
$\xi+\xi^{-1}$	2	-2	-1	0	1

Proof. The result is clear for $n=1$ or $n=2$ so that we may assume that $n \geq 3$.
As $x^{2}-\left(\xi+\xi^{-1}\right) x+1=(x-\xi)\left(x-\xi^{-1}\right)$, the index $\left(\mathbb{Q}(\xi): \mathbb{Q}\left(\xi+\xi^{-1}\right)\right)=2$ unless $\xi \in \mathbb{Q}$, that is, unless $n=1$ or 2 . It follows that $\xi+\xi^{-1} \in \mathbb{Q}$ if and only if $\phi(n)=(\mathbb{Q}(\xi): \mathbb{Q})=2$. Examination of the possibilities shows that $\phi(n)=2$ if and only if $n=3,4$ or 6 .

Corollary 4.8. Let ξ be a primitive nth root of unity and $m \in \mathbb{Z}$. If $\xi+\xi^{-1} \in \mathbb{Q}$, then so is $\xi^{m}+\xi^{-m}$.

Proof. This follows from Lemma 4.7.
Corollary 4.9. Let $n=2 k$ and ξ be a primitive nth root of unity. Then $\xi+\xi^{-1}$ is rational if and only if $k=1,2,3$.

Proof. $2 k=1,2,3,4,6$ by Lemma 4.7. So $k=1,2,3$.
Corollary 4.10. Let ξ be a primitive nth root of unity. Let $1 \leq j \leq n$. Then $\xi^{j}+\xi^{-j}$ is rational if and only if $n=j, 2 j, 3 j, 4 j, 6 j, \frac{3}{2} j, \frac{4}{3} j, \frac{6}{5} j$.

Proof. Let (j, n) denote the greatest common divisor of j and n. Write $j=a(j, n)$ and $n=b(j, n)$ so that a and b are coprime and $0<\frac{a}{b} \leq 1$.

As ξ^{j} is a primitive bth root of unity, Lemma 4.7 shows that $\xi^{j}+\xi^{-j}$ is rational if and only if $b=1,2,3,4$ or 6 . For these values of b, the corresponding possibilities for $\frac{a}{b}$ are $1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{6}$ and $\frac{5}{6}$. As $j=\frac{a}{b} n$, the result follows.

Lemma 4.11. Let σ be a primitive $(q+1)$ th root of unity and let $q=p^{n}$ where p is an odd prime. Suppose that $q \equiv 7(\bmod 8)$ and that $j=1,3, \ldots, \frac{q-1}{2}$. Then $\sigma^{j}+\sigma^{-j}$ is not rational.

Proof. Suppose that $\sigma^{j}+\sigma^{-j} \in \mathbb{Q}$. As $1 \leq j \leq \frac{q-1}{2}$, Corollary 4.10 implies that $j=\frac{q+1}{d}$ for $d=3,4$ or 6 . By hypothesis, $8 \mid q+1$ so that $\frac{q+1}{d}$ is even for $d=3,4$ or 6 . This contradicts the assumption that j is odd.

Lemma 4.12. Let q be a power of an odd prime. Let ξ be a primitive $(q+1)$ th root of unity. If $q \equiv 3(\bmod 8)$ and l is a positive integer, then $\xi^{\frac{q+1}{4} l}+\xi^{-\frac{q+1}{4} l}$ is rational.

Proof. This follows from Corollary 4.10 and Corollary 4.8.
Corollary 4.13. Let $G=\operatorname{SL}(2, q)$ where q is odd. If $q \equiv 3(\bmod 8)$ then $\theta_{\frac{q+1}{4}}$ is a faithful irreducible rational valued character.

Proof. This follows from Lemma 4.12 and the character table of G.
Theorem 4.14. Let $G=S L(2, q)$ where $q=p^{n}$ is odd. If $q \equiv 1(\bmod 4)$ then

$$
q(G)=2 c(G)= \begin{cases}2(q-1) & \text { if } n \text { is even } \\ 4(q-1) & \text { otherwise } .\end{cases}
$$

If $q \equiv 3(\bmod 4)$ then

$$
c(G)= \begin{cases}2(q+1) & \text { if } q \equiv 7(\bmod 8) \\ 2(q-1) & \text { if } q \equiv 3(\bmod 8)\end{cases}
$$

and

$$
q(G)=2(q+1)
$$

Proof. By Lemma 4.6 we need to look at each faithful irreducible character χ, say, and calculate $d(\chi)$.

By Lemma 2.7(1) we have

$$
d\left(\chi_{i}\right) \geq q+1
$$

$d\left(\theta_{j}\right)=\left|\Gamma_{j}\right|(q-1) \geq q-1$ where $\Gamma_{j}=\Gamma\left(\mathbb{Q}\left(\theta_{j}\right): \mathbb{Q}\right)$. Hence $d\left(\theta_{j}\right) \geq q-1$. But by Lemma 4.11 we can sharpen this inequality when $q \equiv 7(\bmod 8)$ and $j=1,3, \ldots, \frac{q-1}{2}$ as $\left|\Gamma_{j}\right| \geq 2$. So in this case $d\left(\theta_{j}\right) \geq 2(q-1)$. Also, when $q \equiv 3(\bmod 8)$, then $\frac{q+1}{4}$ is odd and $1 \leq \frac{q+1}{4} \leq \frac{q-1}{2}$ so by Corollary 4.13 the character $\theta_{\frac{q+1}{4}}$ is an irreducible rational valued character. Therefore $\left|\Gamma_{\frac{q+1}{4}}\right|=1$ and $d\left(\theta_{\frac{q+1}{4}}\right)=q-1$.

$$
\begin{aligned}
& d\left(\xi_{1}\right)=d\left(\xi_{2}\right)=\frac{1}{2}\left|\Gamma_{\xi}\right|(q+1) \text { where } \Gamma_{\xi}=\Gamma\left(\mathbb{Q}\left(\xi_{1}\right): \mathbb{Q}\right)=\Gamma\left(\mathbb{Q}\left(\xi_{2}\right): \mathbb{Q}\right) . \\
& d\left(\eta_{1}\right)=d\left(\eta_{2}\right)=\frac{1}{2}\left|\Gamma_{\eta}\right|(q-1) \text { where } \Gamma_{\eta}=\Gamma\left(\mathbb{Q}\left(\eta_{1}\right): \mathbb{Q}\right)=\Gamma\left(\mathbb{Q}\left(\eta_{2}\right): \mathbb{Q}\right) .
\end{aligned}
$$

Moreover

$$
\left|\Gamma_{\xi}\right|=\left|\Gamma_{\eta}\right|= \begin{cases}1 & \text { if } n \text { is even and } \varepsilon=1 \\ 2 & \text { otherwise } .\end{cases}
$$

First let $q \equiv 1 \bmod 4$. Then by $[\mathbf{2}, 38.1]$ we have $\varepsilon=1$. Hence the faithful irreducible characters are $\eta_{1}, \eta_{2}, \chi_{1}, \chi_{3}, \ldots, \chi_{\frac{q-3}{2}}, \theta_{1}, \theta_{3}, \ldots, \theta_{\frac{q-3}{2}}$. Also by $[\mathbf{8}]$ the Schur index for each faithful irreducible character is equal to 2 so by Lemma 2.8 we have $q(G)=2 c(G)$.

For n even we have $d\left(\eta_{1}\right)=d\left(\eta_{2}\right)=\frac{1}{2}(q-1)$ and this is the minimal value.
For n odd we have $d\left(\eta_{1}\right)=d\left(\eta_{2}\right)=q-1$.
Next let $q \equiv 3(\bmod 4)$. Then by $[2,38.1]$ we have $\varepsilon=-1$. Hence the faithful irreducible characters are $\xi_{1}, \xi_{2}, \chi_{1}, \chi_{3}, \ldots, \chi_{\frac{q-5}{2}}, \theta_{1}, \theta_{3}, \ldots, \theta_{\frac{q-1}{2}}$.

In this case $d\left(\xi_{1}\right)=d\left(\xi_{2}\right)=q+1$ and $m_{\mathbb{Q}}\left(\xi_{1}\right)=m_{\mathbb{Q}}\left(\xi_{2}\right)=1$.
Finally, note that, when $q \equiv 3(\bmod 8), \theta_{\frac{q+1}{4}}$ is rational valued and $d\left(\theta_{\frac{q+1}{4}}\right)=$ $q-1$, the minimal value. When $q \equiv 7(\bmod 8)$, then by Lemma 4.11 , the minimal value is achieved by ξ_{1} as $2(q-1) \geq q+1$.

An overall picture is provided by the tables, compiled using Lemma 4.6, [2, 38.1] for the Schur indices and the preceding arguments.

q	$\equiv 1(\bmod 4)$		$\equiv 3(\bmod 4)$	
n	$\begin{gathered} n \text { even } \\ \geq q+1 \\ \geq q-1 \end{gathered}$ not faithful $\begin{gathered} \frac{1}{2}(q-1) \\ q-1 \end{gathered}$	$\begin{gathered} n \text { odd } \\ \geq q+1 \\ \geq q-1 \end{gathered}$ not faithful $\begin{gathered} q-1 \\ 2(q-1) \end{gathered}$	$\equiv 3(\bmod 8)$	$\equiv 7(\bmod 8)$
$d\left(\chi_{i}\right) \quad \geq$			$\geq q+1$	$\geq q+1$
$d\left(\theta_{j}\right) \quad \geq$			$\geq q-1$	$\geq 2(q-1)$
$d\left(\xi_{1}\right) \quad$ not			$q+1$	$q+1$
$d\left(\eta_{1}\right) \quad \frac{1}{2}($			not faithful	not faithful
$c(G) \quad q$			$2(q-1)$	$2(q+1)$
q		d 4)	$\equiv 3$	od 4)
(n even	n odd	$\equiv 3(\bmod 8)$	$\equiv 7(\bmod 8)$
$m_{\mathbb{Q}}\left(\chi_{i}\right) d\left(\chi_{i}\right)$	$\geq 2(q+1)$	$\geq 2(q+1)$	$\geq 2(q+1)$	$\geq 2(q+1)$
$m_{\mathbb{Q}}\left(\theta_{j}\right) d\left(\theta_{j}\right)$	$\geq 2(q-1)$	$\geq 2(q-1)$	$\geq 2(q-1)$	$\geq 4(q-1)$
$m_{\mathbb{Q}}\left(\xi_{1}\right) d\left(\xi_{1}\right)$	not faithful	not faithful	$q+1$	$q+1$
$m_{\mathbb{Q}}\left(\eta_{1}\right) d\left(\eta_{1}\right)$	$(q-1)$	$2(q-1)$	not faithful	not faithful
$q(G)$	$2(q-1)$	$4(q-1)$	$2(q+1)$	$2(q+1)$

Lemma 4.15. Let $G=\operatorname{SL}(2,2)$. Then

$$
\begin{gathered}
d(\psi)=2 \\
c(\psi)(1)=3 \\
q(G)=c(G)=3 .
\end{gathered}
$$

Proof. From [8] the Schur index of each irreducible character is 1 . So by Lemma 2.8 we have $c(G)=q(G)$.

Since the only faithful irreducible character of G is ψ, the result follows.

Lemma 4.16. Let $G=S L(2, q)$ where $q=2^{n}$ and $n \geq 2$. Then for each $j, 1 \leq j \leq \frac{q}{2}$
(1) θ_{j} is rational if and only if $q \equiv-1(\bmod 3)$ and $j=\frac{q+1}{3}$;
(2) $d\left(\theta_{j}\right) \geq q-1$, and equality holds if θ_{j} is rational;
(3) $c\left(\theta_{j}\right)(1) \geq q+1$, and equality holds if θ_{j} is rational.

Proof. As $1 \leq j \leq \frac{q}{2}<\frac{q+1}{2}$ and as σ is a primitive $(q+1)$ th root of unity, Corollaries 4.10 and 4.8 imply that θ_{j} is rational if and only if $j=\frac{q+1}{6}, \frac{q+1}{4}, \frac{q+1}{3}$. Since $q+1$ is odd, $\frac{q+1}{6}$ and $\frac{q+1}{4}$ are not integers. Thus, $\sigma^{j}+\sigma^{-j} \in \mathbb{Q}$ if and only if $3 \mid(q+1)$ and $j=\frac{q+1}{3}$. This proves (1).

If θ_{j} is not rational, then $|\Gamma| \geq 2$ where $\Gamma=\Gamma\left(\mathbb{Q}\left(\theta_{j}\right): \mathbb{Q}\right)$ so that $c\left(\theta_{j}\right)(1) \geq$ $d\left(\theta_{j}\right) \geq 2(q-1)>q+1$ by Lemma 2.7. On the other hand if $3 \mid(q+1)$, then $8 \leq q$ so that $3 \leq \frac{q}{2}$; but $\theta_{\frac{q+1}{3}}\left(b^{3}\right)=-2 \leq \theta_{\frac{q+1}{3}}(g)$ for all $g \in G$ so that $m\left(\theta_{\frac{q+1}{3}}\right)=2$. Thus $d\left(\theta_{\frac{q+1}{3}}\right)=q-1$ and $c\left(\frac{\theta_{\frac{q+1}{3}}}{}\right)(1)=q+1$. This completes the proofs of (2) and (3).

Since $\operatorname{PSL}\left(2,2^{n}\right) \cong S L\left(2,2^{n}\right)$, we will calculate $c(G)$ and $q(G)$ for $S L\left(2,2^{n}\right)$.
Theorem 4.17. Let $G=S L(2, q)$ where $q=2^{n}$. Then

$$
c(G)=q(G)=q+1
$$

Proof. From [8] the Schur index of each irreducible character is 1 . So by Lemma 2.8 we have $c(G)=q(G)$.
(a) Let $q=2$. Then by Lemma 4.15, $c(G)=q(G)=3$.
(b) Lemma 2.7(1) shows that $d\left(\chi_{i}\right) \geq q+1$, while Lemma 4.16 has dealt with θ_{j}.

The values are set out in the following tables.

Table (1)

q	2	$\equiv-1(\bmod 3)$	otherwise
$d(\psi)$	2	q	q
$d\left(\chi_{i}\right)$	no χ_{i} exists	$\geq q+1$	$\geq q+1$
$d\left(\theta_{j}\right)(1)$	not faithful	$\geq q-1$	$>q-1$

q	2	$\equiv-1(\bmod 3)$	otherwise
$c(\psi)(1)$	3	$q+1$	$q+1$
$c\left(\chi_{i}\right)(1)$	no χ_{i} exists	$\geq q+1$	$\geq q+1$
$c\left(\theta_{j}\right)(1)$	not faithful	$\geq q+1$	$>q+1$
$c(G)$	3	$q+1$	$q+1$

The next result concerns the groups $\operatorname{PSL}(2, q)$ for q odd. Aside from the case $q=3$, these groups are simple so that their non-trivial irreducible characters are faithful. As explained in Lemma 4.4, the characters of $\operatorname{PSL}(2, q)$ are obtained from those of $S L(2, q)$ and we will use the names of its characters as given in [2, 38.1] in what follows.

Lemma 4.18. Let $G=\operatorname{PSL}(2, q)$ where $q=p^{n}$ and q is odd. Let n be odd and $q \notin C=\{3,5,7,11\}$. Then $c\left(\theta_{j}\right)(1) \geq q+1$ for $j, 0 \leq j \leq \frac{q-1}{2}$.

Proof. If θ_{j} is not rational valued, then $|\Gamma| \geq 2, \Gamma=\Gamma\left(\mathbb{Q}\left(\theta_{j}\right): \mathbb{Q}\right)$, so that $c\left(\theta_{j}\right)(1) \geq d\left(\theta_{j}\right)=|\Gamma| \theta_{j}(1) \geq 2(q-1) \geq q+1$.

If it is rational valued, then, by Lemma $4.10, j=\frac{q+1}{d}$ for $d=3,4$ or 6 and $\theta_{j}\left(\bar{b}^{d}\right)=-2$ where \bar{b} denotes the image of b in $\operatorname{PSL}(2, q)$. As $q>11, b^{d} \neq z$ so that $m\left(\theta_{j}\right)=2$ and $c\left(\theta_{j}\right)(1)=q-1+2=q+1$.

Theorem 4.19. Let $G=\operatorname{PSL}(2, q)$ where $q=p^{n}$ is odd. Then
(1) $c(G)=q(G)= \begin{cases}\frac{1}{2}(q+\sqrt{q}) & \text { if } n \text { is even, } \\ q+1 & \text { otherwise, }\end{cases}$
if $q \notin\{5,7,11\}$;
(2) $c(G)=q(G)=5,7,11$ if $q=5,7,11, \quad$ respectively.

Proof. From [8] the Schur index of each irreducible character is 1 . So by Lemma 2.8 we have $c(G)=q(G)$.

By [8], ψ is an irreducible rational valued character of G. So

$$
c(\psi)(1)=q+1
$$

From Lemma 2.7(1), for all i,

$$
c\left(\chi_{i}\right)(1) \geq q+1
$$

That $c\left(\theta_{j}\right)(1) \geq q+1$ for all j was shown in Lemma 4.18.
Let $q \notin\{3,5,7,11\}$. If $q \equiv 1(\bmod 4)$ then, by $[8]$,

$$
c\left(\xi_{1}\right)(1)=c\left(\xi_{2}\right)(1)= \begin{cases}\frac{q+1}{2}+\frac{\sqrt{q}-1}{2}=\frac{q+\sqrt{q}}{2} & \text { if } n \text { even } \\ q+3 & \text { otherwise }\end{cases}
$$

If $q \equiv 3 \bmod 4$ then $\varepsilon=-1$ and, by $[8]$,

$$
c\left(\eta_{1}\right)(1)=c\left(\eta_{2}\right)(1)=q+1 .
$$

As $q+2 \geq \sqrt{q}, q+1 \geq \frac{q+\sqrt{q}}{2}$. This establishes (1) as can be seen in the summary tables which follow.

Table (2)

$q \notin\{3,5,7,11\}$				
q	$\equiv 1(\bmod 4)$		$\equiv 3(\bmod 4)$	
q	n even	n odd	$\equiv 3(\bmod 8)$	$\equiv 7(\bmod 8)$
$d(\psi)$	q	q	q	q
$d\left(\chi_{i}\right)$	$\geq q+1$	$\geq q+1$	$\geq q+1$	$>q+1$
$d\left(\theta_{j}\right)$	$\geq q-1$	$\geq q-1$	$\geq q-1$	$\geq q-1$
$d\left(\xi_{1}\right)$	$\frac{1}{2}(q+1)$	$q+1$	no ξ_{1} exsists	no ξ_{1} exists
$d\left(\eta_{1}\right)$	no η_{1} exists	no η_{1} exists	$q-1$	$q-1$
$q \notin\{3,5,7,11\}$				
q	$\equiv 1(\bmod 4)$		$\equiv 3(\bmod 4)$	
q	n even	n odd	$\equiv 3(\bmod 8)$	$\equiv 7(\bmod 8)$
$c(\psi)(1)$) $q+1$	$q+1$	$q+1$	$q+1$
$c\left(\chi_{i}\right)(1)$) $\geq q+1$	$\geq q+1$	$\geq q+1$	$\geq q+1$
$c\left(\theta_{j}\right)(1)$) $\geq q+1$	$\geq q+1$	$\geq q+1$	$\geq q+1$
$c\left(\xi_{1}\right)(1)$	(1) $\frac{q+\sqrt{q}}{2}$	$q+3$	no ξ_{1} exists	no ξ_{1} exists
$c\left(\eta_{1}\right)(1)$) no η_{1} exists	no η_{1} exists	$q+1$	$q+1$
$c(G)$	$\frac{q+\sqrt{q}}{2}$	$q+1$	$q+1$	$q+1$

Now let $q \in\{3,5,7,11\}$. We will show that when $q \in\{5,7,11\}$ then $c\left(\theta_{j}\right)(1)=q$ and this value is minimal. From Lemma 2.7(1) we have

Table (3)

q	3	5	7	11
$d(\psi)$	3	5	7	11
$d\left(\chi_{i}\right)$	no χ_{i} exists	no χ_{i} exists	≥ 8	≥ 12
$d\left(\theta_{j}\right)$	no θ_{j} exists	4	6	10
$d\left(\xi_{1}\right)$	no ξ_{1} exists	6	no ξ_{1} exists	no ξ_{1} exists
$d\left(\eta_{1}\right)$	2	no η_{1} exists	6	10

Let $q=3$. Then ψ, η_{1} and η_{2} are the faithful irreducible characters of G. Note that $d\left(\eta_{1}\right)=d\left(\eta_{2}\right)=2$ and $m\left(\eta_{1}\right)=m\left(\eta_{2}\right)=2$. Therefore $c(G)=4$.

Let $q=5$. Then the irreducible characters of G are $\psi, \theta_{2}, \xi_{1}$ and ξ_{2}. Here θ_{2} is rational valued. Also $m\left(\theta_{2}\right)=1$ so $c\left(\theta_{2}\right)(1)=5$. Therefore $c(G)=5$.

Let $q=7$. Then the irreducible characters of G are $\psi, \chi_{2}, \theta_{2}, \eta_{1}$ and η_{2}. But $m\left(\theta_{2}\right)=1$ so $c\left(\theta_{2}\right)(1)=7$. Also by Lemma 2.6 we have $c\left(\eta_{1}\right)(1)=c\left(\eta_{2}\right)(1) \geq 7$. Therefore $c(G)=7$.

Let $q=11$. Then the irreducible characters of G are $\psi, \chi_{1}, \chi_{4}, \theta_{2}, \theta_{4}, \eta_{1}$ and η_{2}. But $m\left(\theta_{2}\right)=1$ so $c\left(\theta_{2}\right)(1)=11$. Also by Lemma 2.6 we have $c\left(\theta_{4}\right)(1) \geq 11$ and $c\left(\eta_{1}\right)(1)=c\left(\eta_{2}\right)(1) \geq 11$. Therefore $c(G)=11$.

5. Rational valued characters.

Lemma 5.1. Let G be a finite group. Let G have a unique minimal normal subgroup. Then

$$
r(G)=\min \{d(\chi): \chi \text { is a faithful irreducible character of } G\} .
$$

Proof. Let $\chi \in \operatorname{Irr}(G)$. Then $\Sigma_{\alpha \in \Gamma} \chi^{\alpha}$, where $\Gamma=\Gamma(\mathbb{Q}(\chi): \mathbb{Q})$ is an irreducible rational valued character by [4. Corollary 10.2].

Let ϕ be a faithful rational valued character such that $r(G)=\phi(1)$. Since G has a unique minimal normal subgroup, there exists a faithful irreducible character, say χ, such that $[\phi, \chi] \neq 0$. So $\phi=\Sigma_{\alpha \in \Gamma} \chi^{\alpha}+\psi$, for some rational valued character ψ. Hence $\phi(1) \geq \Sigma_{\alpha \in \Gamma} \chi^{\alpha}(1)=d(\chi)$. So $r(G)=d(\chi)$.

Lemma 5.2. Let $G=S L(2, q)$ where q is odd. Then $\frac{c(G)}{r(G)}=2$.
Proof. This follows from Corollary 4.6.
Lemma 5.3. Let $G=\operatorname{SL}(2, q) \cong \operatorname{PSL}(2, q)$ where $q=2^{n}$. Then

$$
r(G)= \begin{cases}q-1 & \text { if } q \equiv-1(\bmod 3) \text { and } n>1, \\ q & \text { otherwise. }\end{cases}
$$

Proof. This follows from Table (1) and Lemma 4.16.
Lemma 5.4. Let $G=\operatorname{PSL}(2, q)$ where q is odd, $q=p^{n}$.
(1) If $q \equiv 3(\bmod 4)$, then $r(G)=q-1$.
(2) If $q \equiv 1(\bmod 4)$, then

$$
r(G)= \begin{cases}\frac{1}{2}(q+1) & \text { if } n \text { is even }, \\ q-1 & \text { if } n \text { is odd and } q \equiv-1(\bmod 3), \\ q & \text { otherwise } .\end{cases}
$$

Proof. This follows from Tables (2) and (3) except for the case $q \equiv 1(\bmod 4)$ and n odd. In this case, $d\left(\theta_{j}\right) \geq q-1$ for $1 \leq j \leq \frac{q-1}{2}, j$ even. Thus, using Corollaries 4.10 and 4.8, we see that $r(G)=q-1$ precisely when one of $\frac{q+1}{d}, d=3,4$ or 6 , is an even integer. As $q \equiv 1(\bmod 4)$ neither $d=4$ nor $d=6$ is possible. But $\frac{q+1}{3}$ is an even integer if and only if $q \equiv-1(\bmod 3)$.

Theorem 5.5. Let $G=\operatorname{PSL}(2, q)$. Then

$$
\lim _{q \rightarrow \infty} \frac{c(G)}{r(G)}=1
$$

Proof. Let $G=\operatorname{PSL}(2, q)$ where $q=2^{n}$. Then $G \cong S L(2, q)$. By Lemma 5.3 we have $q-1 \leq r(G) \leq q$. Also by Theorem 4.17 we have $c(G)=q+1$ for $q \neq 2$. Hence $\frac{q+1}{q} \leq \frac{c(G)}{r(G)} \leq \frac{q+1}{q-1}$.

Let $G=\operatorname{PSL}(2, q)$ where q is odd. By Lemma 5.4 we have $r(G)=\frac{1}{2}(q-1)$ if n is even; otherwise $q-1 \leq r(G) \leq q$. By Theorem 4.19 we have $\frac{c(G)}{r(G)}=\frac{q+\sqrt{q}}{q-1}$ if n is even; otherwise $\frac{q+1}{q} \leq \frac{c(G)}{r(G)} \leq \frac{q+1}{q-1}$. Hence in all cases $\frac{q+1}{q} \leq \frac{c(\xi)}{r(\xi)} \leq \frac{q+\sqrt{q}}{q-1}$ and so $\lim _{q \rightarrow \infty} \frac{c(G)}{r(G)}=1$.

Acknowledgements. This paper is part of a Ph.D thesis submitted to the University of Manchester. The work was done under the supervision of Professor Brian Hartley (1992-94). Also I would like to express my sincere gratitude to Dr. Robert Sandling for help in preparing this paper.

REFERENCES

1. H. Behravesh, Quasi-permutation representations of p-groups of class 2, J. London Math. Soc. (2) 55 (1997), 251-260.
2. L. Dornhoff, Group representation theory. Part A: Ordinary representation theory (Marcel Dekker, 1971).
3. B. Huppert, Endliche Gruppen I (Springer-Verlag, 1967).
4. I. M. Isaacs, Character theory of finite groups (Academic Press, 1976).
5. P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Series No. 129 (Cambridge University Press, 1990).
6. D. J. S. Robinson, A course in the theory of groups (Springer-Verlag, 1982).
7. J. S. Rose, A course on group theory (Cambridge University Press, 1978).
8. M. A. Shahabi Shojaei, Schur indices of irreducible characters of $\operatorname{SL}(2, q)$, Arch. Math. (Basel) 40 (1983), 221-231.
