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Although poroelastic clusters in nature, such as bristled wings and plumed seeds, exhibit
remarkable flight performances by virtue of their porous structure, the effects of another
key feature, elasticity, on aerodynamic loading remain elusive. For a poroelastic cluster,
we investigate the aerodynamic effects of elastic deformation that occurs through the
collective rearrangement of many elastic components and the fluid-dynamic interactions
between them. As a simple two-dimensional model, an array of multiple cylinders which
are individually and elastically mounted is employed with diverse values of porosity and
elasticity. Under a uniform free stream, the poroelastic cluster enlarges its frontal area and
augments the total drag force in the quasi-steady state; this is in contrast to the general
reconfiguration of fixed elastic structures, which tends to reduce the frontal area and drag.
The rearrangement of the poroelastic cluster is dominated by the virtual fluid barrier
that develops in a gap between the elastic components, interrupting the flow penetrating
between them. The effects of this hydrodynamic blockage on changes in the frontal area
and drag force are analysed in terms of porosity and elasticity, revealing the fluid-dynamic
mechanism underlying the appearance of peak drag at an intermediate porosity. Moreover,
to represent the coupled effects of porosity and elasticity on the rearrangement, a scaled
elastic energy is derived through a consideration of the energy balance.

Key words: flow-structure interactions

1. Introduction

In response to fluid flows, elastic structures observed in nature adjust their shapes to
control the fluid loadings exerted on them. For example, leaves streamline, tree branches
bend and grasses lump to reduce their frontal areas and mitigate the drag forces (Vogel
1984, 1989). Such adaptive deformation for the purpose of altering the fluid force, referred
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to as reconfiguration, has received considerable attention in the field of fluid–structure
interactions. Since the pioneering investigations of Vogel (1984, 1989), who elucidated
the effectiveness of reconfiguration, the aerodynamic and hydrodynamic mechanisms
responsible for the change in drag force induced by elastic deformation have been widely
investigated. For instance, the effects of reconfiguration on the drag imposed on plants
were examined experimentally using diverse species, and it has been revealed that the
flow-induced deformation of vegetation reduces the drag force significantly in aquatic
and land plants (Harder et al. 2004; de Langre, Gutierrez & Cossé 2012; Nepf 2012;
Whittaker et al. 2013). Moreover, by adopting simplified models such as flexible fibres and
thin elastic plates, theoretical relationships between drag reduction and the deformation of
elastic structures have been modelled for various flow conditions, including uniform flow
(Alben, Shelley & Zhang 2002; Gosselin, de Langre & Machado-Almeida 2010; Luhar &
Nepf 2011; Hassani, Mureithi & Gosselin 2016) and unsteady flow (Leclercq & de Langre
2016; Luhar & Nepf 2016; Leclercq & de Langre 2018; Zhang & Nepf 2021).

Elastic leaves and branches form a porous tree and bend collectively in the wind
(de Langre 2008; Gosselin 2019). Like trees and grass canopies, poroelastic structures
passively adapt their configurations when subjected to external flow, thereby changing
the fluid forces. The reconfigured state and change in drag force of poroelastic structures
were investigated experimentally over wide ranges of the porosity and Reynolds number
for perforated strips (Guttag et al. 2018; Jin et al. 2020; Pezzulla et al. 2020) and
for a three-dimensional poroelastic model in which a number of flexible filaments are
radially attached to a rigid sphere (Gosselin & de Langre 2011). Poroelastic structures
generally streamline and reduce the drag. However, the drag can increase under particular
circumstances. For example, Gosselin & de Langre (2011) showed that the drag of a
poroelastic model increases when the Cauchy number (the ratio between the fluid force
on the undeformed shape of the structure and the structure rigidity) is not sufficiently high
to fully streamline the model. In addition, Jin et al. (2020) reported that an elastic strip
perforated with many holes could increase the drag force, despite its streamlined shape,
when the porosity of the strip was sufficiently high. Because the flows penetrating the
holes produce small recirculating regions immediately behind the bent strip, the region of
maximum velocity deficit is located closer to the porous strip than to a non-porous strip,
generating a larger drag.

Based on previous studies on the reconfiguration of poroelastic structures, this study
investigates a poroelastic cluster, which is a single porous system composed of numerous
elastic individuals with distinct spacing. The overall behaviour of this poroelastic cluster is
determined by the individual actions of its constituents and the fluid-dynamic interaction
between them. This collective behaviour is different from the behaviour of a perforated
structure or a poroelastic medium, which is basically a continuum containing voids or
pores. In nature, poroelastic clusters often exhibit extraordinary flight performances, and
underlying aerodynamic mechanisms have been investigated with regard to their porous
structure. For instance, by virtue of porosity in a low-Reynolds-number regime, bristled
wings of several tiny insects could generate the aerodynamic forces comparable to those
of common non-porous wings, even with almost one-tenth the mass (Sunada et al. 2002;
Davidi & Weihs 2012). Plumed seeds, another example of aerodynamic poroelastic clusters
in nature, can fly a distance of several kilometres with centimetre sizes (Greene & Johnson
1990; Nathan et al. 2002; Tackenberg, Poschlod & Kahmen 2003; Greene 2005). Recently,
Cummins et al. (2018) revealed that the porous structure of the seeds enables a steady flight
by generating a stable separated vortex ring. Furthermore, by means of high porosity,
a three-dimensional poroelastic structure effectively traces unsteady flows better than
spherical objects of the same size (Galler & Rival 2021).
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Despite many studies on the effects of porosity, the effects of deformation on the
aerodynamic performance of poroelastic clusters remain unexplored. Because the drag
force contributes enhancing the flight performance of freely flying poroelastic clusters
in terms of long-distance flight (Tackenberg et al. 2003), it could be hypothesised
that the free poroelastic cluster would deform to augment the drag force, in contrast
to fixed elastic structures that reconfigure to mitigate fluid loadings. As a preliminary
study, we numerically investigate the rearrangement of poroelastic clusters by adopting
simplified two-dimensional models that contain the notable features of general poroelastic
clusters. The term rearrangement is used throughout this study to emphasise the collective
movement of individual elastic constituents that produces the overall deformation of the
poroelastic cluster. The changes in constituent distribution and drag force are examined by
varying porosity and elasticity in the quasi-steady state, which is more closely related
to long-distance flight than the initial transient state. In § 2, our simplified model for
the poroelastic cluster and numerical method are described. In § 3.1, we discuss a
characteristic flow phenomenon around the cluster, which dominates its rearrangement
process. The effects of the flow phenomenon on the changes in cylinder arrangement
and drag with respect to porosity and elasticity are explained by examining the force
components of the cluster in § 3.2. A new variable that incorporates the effects of elasticity
and porosity is introduced to characterise the rearrangement in § 3.3. Finally, concluding
remarks are presented in § 4.

2. Problem description

2.1. Model and parameters
For the investigation of porous structures composed of multiple entities, two-dimensional
simplification has often been adopted. For instance, a dandelion seed was modelled as a
permeable disc (Casseau et al. 2015; Ledda et al. 2019), and a three-dimensional bristled
wing was represented by a linear array of two-dimensional circular cylinders with gaps
(Jones et al. 2016; Lee & Kim 2020, 2021; Wu, Liu & Sun 2021). Despite simplicity in the
configurations, the underlying fluid-dynamic mechanisms were elucidated effectively in
terms of identifying the flow behaviour around the porous structure or the fluid-dynamic
interaction between multiple constituents. Similarly, as a simplified two-dimensional
poroelastic cluster, we introduce a collection of circularly aligned cylinders where each
cylinder is elastically mounted at its own centre (figure 1a). Our simplified model captures
the salient features of general poroelastic clusters, where elastic individuals with distinct
spacings congregate to form a single porous system.

Each cylinder has a diameter of d and a mass of m, and the cluster is subjected to a
uniform fluid flow of velocity U and density ρf . To realise diverse porosities within the
cluster, the number of constituent cylinders, NC, is varied while the outermost diameter
of the cluster D is restricted to 21d (figure 1a). The clusters with NC = 7, 20, 39, 64
and 95 are denoted as A7, A20, A39, A64 and A95, respectively (figure 1c). For each
model, the cylinders are arranged in layers of concentric circles, with one cylinder at
the centre. The positions of the cylinders are determined such that they are located as
evenly as possible, following the approach of Nicolle & Eames (2011). The porosity of the
model is represented by the solid fraction φ = NCd2/D2, which indicates the portion of
the area occupied by the cylinders within the circular boundary of the cluster (Nicolle &
Eames 2011; Chang & Constantinescu 2015; Taddei, Manes & Ganapathisubramani 2016;
Kingora & Sadat 2022). By definition, φ increases with NC, and φ = 1 corresponds to
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Figure 1. (a) Simplified two-dimensional poroelastic cluster model with seven elastically mounted cylinders,
(b) computational domain and (c) five poroelastic clusters (A7, A20, A39, A64 and A95).

A7 A20 A39 A64 A95

Number of cylinders NC 7 20 39 64 95
Solid fraction φ 0.02 0.05 0.09 0.15 0.22

Table 1. Number of cylinders NC and solid fraction φ(=NCd2/D2) for five poroelastic clusters (A7, A20,
A39, A64 and A95).

an impervious cylinder of diameter D. The values of φ for our clusters are presented in
table 1.

To numerically simulate the flow-induced motion of cylinders, a mass–spring–damper
system is separately adopted for each cylinder, and each cylinder is elastically mounted
at its own initial centre. In the two-dimensional domain, only the x- and y-directional
translations of the cylinder are considered because actual long and thin hairs in
three-dimensional space mostly bend under the flow, but rarely twist. For each cylinder, the
springs for the x- and y-directional translations are decoupled (figure 1a). All springs are
assumed to have an identical stiffness of k. The motion of each cylinder is then governed
by the dimensionless equation

m∗Q̈∗
i + c∗Q̇∗

i + k∗Q∗
i = f ∗

i , (2.1)

where m∗ = m/(ρf d2), c∗ = c/(ρf Ud) and k∗ = k/(ρf U2) are dimensionless parameters
for the mass, damping coefficient and spring stiffness of a cylinder, respectively. Here Q∗

i
is the i-coordinate of the dimensionless position for the cylinder centre with respect to its
own initial location, and is normalised by the cylinder diameter d, where i denotes the
x- or y-component; Q̈∗

i and Q̇∗
i correspond to the dimensionless acceleration and velocity

of the cylinder, respectively; f ∗
i , which is normalised by ρf U2d, is the i-component of

the dimensionless fluid force vector exerted on the cylinder. Because the current study
is primarily aimed at understanding the effects of elasticity (spring stiffness k∗) on the
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rearrangement and drag force of the poroelastic cluster, m∗ is fixed to unity (m∗ = 1).
In addition, damping is not considered (c∗ = 0) because our interest is behaviours in the
quasi-steady state after the initial transient state passes; the damping does not affect the
steady solution of a mass–spring–damper system. Although our poroelastic cluster models
are composed of multiple cylinders, we confirmed that the results of the quasi-steady state
remained consistent, regardless of the c∗ value.

The spring stiffness k∗ of the individual cylinders ranges between 0.3 and 1.0 (k∗ = 0.3,
0.5, 0.7 and 1.0). Because a similar trend is observed as k∗ increases beyond 1.0, the
maximum value is limited to 1.0. As k∗ becomes greater, the cylinders behave more
stiffly. For example, an extreme case of k∗ = 10 shows aerodynamic behaviours very
similar to the rigid counterpart with k∗ = ∞. The minimum value of k∗ is limited to
0.3 because most poroelastic models produce unrealistic motions for smaller values of
k∗; a few cylinders revolve around adjacent cylinders, which is unlikely to occur in
poroelastic clusters in nature. Moreover, when k∗ < 0.3, the shape of the cluster becomes
excessively irregular, and collisions occur between the cylinders with large φ. As we aim
to reveal the general effects of the rearrangement, extreme circumstances with irregular
rearrangement are not addressed in the present study. The chosen range of k∗ is sufficient
to comprehensively understand the effects of k∗. In addition, a rigid cluster with k∗ = ∞,
in which the cylinders are stationary, is also considered for comparison. Here k∗ represents
the ratio between the elastic restoring force and the fluid loading, similar to the reciprocal
of the Cauchy number CY that is generally used to characterise the reconfiguration of
elastic or poroelastic structures (de Langre 2008; Gosselin et al. 2010; Gosselin & de
Langre 2011; Luhar & Nepf 2016; Guttag et al. 2018; Pezzulla et al. 2020). Because
the spring stiffness k is varied in this study, we employ k∗ instead of CY (=1.0–3.3) to
represent the force ratio in a straightforward manner.

The poroelastic cluster is subjected to a free stream of constant velocity U. The
rearrangement of the poroelastic cluster in the quasi-steady state remains unaffected even
if the free stream is unsteady in the initial transient phase, prior to attaining the constant
velocity. This consistency justifies the use of the constant velocity U for the velocity
profile to examine the quasi-steady state. In nature, poroelastic clusters usually reside in the
low-Reynolds-number regime of Re = O(10) or less, where Re is based on the diameter
of entities comprising the cluster (Greene & Johnson 1990; Santhanakrishnan et al. 2014).
In this Re regime, hydrodynamic interaction between multiple bodies within the cluster is
so strong that the flow hardly passes through spacings between the bodies (Nawroth et al.
2010; Lee & Kim 2017; Lee, Lee & Kim 2020). Through preliminary tests, we determined
the Reynolds number that sufficiently realised such flow phenomenon. The Reynolds
number Red for a single cylinder in our model is fixed to be 10: Red = Ud/ν = 10.
Accordingly, the Reynolds number ReD (=UD/ν) for the whole cluster is 210.

2.2. Numerical method
To compute the interaction between the flow and the multiple cylinders, an in-house code
is constructed by building a new OpenFOAM library that implements the direct-forcing
immersed boundary method (IBM) (Mahravan, Lahooti & Kim 2023). Our in-house code
numerically solves the governing equations for a two-dimensional incompressible laminar
flow, which are given as

∇ · u = 0, (2.2a)

∂u
∂t

+ (u · ∇)u = − 1
ρf

∇p + ν∇2u + fIB, (2.2b)
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where u is the flow velocity vector, p is the pressure and ν is the kinematic viscosity
of the fluid. The force fIB per unit mass in (2.2b) refers to a source term satisfying
the continuity condition across the immersed boundaries (Uhlmann 2005). Here fIB is
formulated by transferring variables between the Eulerian coordinate of the fluid domain
Ω and the Lagrangian coordinate Π that formulates the immersed boundary composed of
Lagrangian markers.

At the beginning of each time step, the momentum equation (2.2b) is first solved without
fIB to compute an intermediate Eulerian velocity ũ. Interpolating ũ through the discrete
Dirac delta function δ (Roma, Peskin & Berger 1999), the preliminary velocity at the
Lagrangian markers is obtained: Ũ(X ) = ∫

Ω
ũ(x)δ(x − X ) dV . The Lagrangian force F IB

is then determined using the Lagrangian velocity U from the previous time step as F IB =
d(U − Ũ)/dt. Finally, the Eulerian force fIB in (2.2b) is calculated by transferring F IB
from the surrounding Lagrangian markers to the Eulerian nodes:

fIB =
∫

Π

F IB(X )δ(X − x) ds. (2.3)

With fIB included, the governing equations (2.2a) and (2.2b) are solved using the PISO
algorithm modified by Constant et al. (2017). This modified algorithm allows stable and
accurate calculations when implemented with the IBM embedded in OpenFOAM. The
time is discretised using the first-order implicit Euler scheme. For spatial discretisation,
the second-order Gauss scheme is used for all terms except the convection term, for which
the second-order linear upwind scheme is applied.

After solving the flow field, the fluid forces exerted on Lagrangian markers are
calculated again at the same time step. The fluid forces are then summed for the markers
comprising the surface of a cylinder, yielding the total fluid force f exerted on the cylinder.
Therefore, the dimensionless force term f ∗

i on the right-hand side of (2.1) corresponds to
the dimensionless form of f : f ∗

i = fi/ρf U2d, where i = x or y. At the end of the time step,
the velocity of the cylinder is updated by discretising and solving (2.1) with regard to the
velocity, and the position of the cylinder is updated from the obtained velocity.

The rectangular fluid domain spans [−16D, 32D] × [−16D, 16D], and the origin of the
coordinate system coincides with the initial centre of the cylinder cluster (figure 1b). The
free stream enters the left boundary of the domain, and the pressure outlet condition of
p = 0 and a zero normal gradient of velocity is imposed at the right boundary downstream.
The top and bottom boundaries are set to have zero normal gradients for the pressure and
slip conditions for the velocity, i.e. slip-wall boundary conditions.

Figure 2 illustrates the grid sizes and layouts, in which the immersed boundaries of the
cylinders are marked with black and white circles in panels (b-ii) and (b-iii), respectively.
As shown in figure 2(a), the entire fluid domain is divided into nine regions having
different grid sizes 	x. Each region consists of uniform square grids, and the grid size
doubles in the neighbouring outer region, following the approach of Constant et al.
(2017); see figure 2(b-i) for the overall layout of the constructed grids. In our numerical
algorithm, all immersed boundaries move inside the fluid region with uniform grids of
the same size. However, enlarging the finest region to enclose the movements of all
cylinders increases the computational cost significantly. To resolve this issue, adaptive
mesh refinement (AMR) is applied to generate the finest grids of 	xf = 0.02d near the
poroelastic clusters by refining the surrounding grids of 	x = 0.04d. The refinement is
performed only when any cylinder inside the finest region approaches an interface with the
outer region of 	x = 0.04d; that is, only when any cylinder is about to escape the region
of 	xf = 0.02d. The finest region, which is indicated by the blue circle in figure 2(b-iii),
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∆x = 5.12d

∆x = 2.56d
∆x = 1.28d

0.64d

0.32d0.16d0.08d

0.04d

0.02d

(i)

(ii) (iii)

(a) (b)

Figure 2. (a) Grid size of nine fluid subdomains and (b) computational grid layouts. Panel (b-i) demonstrates
the overall layout of constructed grids, whereas panels (b-ii) and (b-iii) depict the grid layouts around two
cylinders and the whole cluster, respectively. The black circle in panel (a) corresponds to the blue circle in
panel (b-iii).

is large enough to fully encompass the cluster. The finest grids around two cylinders are
presented in figure 2(b-ii) to visualise that the size of the finest grid is much smaller than
the diameter of a single cylinder. The size of the discretised Lagrangian markers for the
immersed boundaries is identical to that of the finest grid in the fluid domain, 	s = 0.02d.

A series of tests are conducted to confirm the feasibility and accuracy of our numerical
set-up. As a first step to validate that our in-house code solves the flow-induced motion
of cylinders accurately, the vortex-induced vibration of two tandem circular cylinders
under a uniform flow is considered. To match the conditions with those of Bao et al.
(2012), the centre of the downstream cylinder is located 5d downstream from the
centre of the upstream cylinder. Both cylinders have the same diameter d and undergo
two-degree-of-freedom motion in which the cylinder oscillates on the xy-plane. The
Reynolds number Red = 150 and mass coefficient m∗ = 2 match those of Bao et al. (2012)
as well. Over a broad range of reduced velocity Ur = U/( fNd), where natural frequency
fN = 1/2π(k/m)1/2, the maximum amplitudes in the x-direction (Xmax/d) and y-direction
(Ymax/d) are compared in figures 3(a) and 3(b), respectively. For both cylinders, our results
are in good agreement with the previous results, ensuring that the flow-induced motion of
cylinders can be accurately simulated by our numerical set-up.

Moreover, the accuracy in solving the interaction between multiple bodies and a free
stream is evaluated. The drag forces exerted on the circular array of stationary cylinders
are compared with those reported by Nicolle & Eames (2011). Along with identical cluster
configurations, the Reynolds number based on the diameter of a cylinder matches as
Red = 100. The total drag force Fx acting on the cylinder array is represented as a sum of
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Figure 3. Comparison of maximum amplitudes (a) Xmax/d and (b) Ymax/d with respect to reduced velocity
Ur for two tandem cylinders (m∗ = 2, Red = 150) undergoing vortex-induced vibration. (c) Comparison of
time-averaged drag coefficient C̄D with respect to solid fraction φ for a stationary cluster at Red = 100.

x-directional forces exerted on all cylinders: Fx(t) = ∑NC
j=1 fx,j(t). Because Fx(t) fluctuates

periodically at this Red, the time-averaged drag coefficient of the cluster is defined as

C̄D = 1
T

∫ t0+T

t0

Fx(t)
1
2
ρf U2D

dt, (2.4)

where T is the period of Fx(t) and t0 is a reference time. Figure 3(c) shows that our results
match those of Nicolle & Eames (2011) with averaged difference less than 2 %, and our
numerical set-up reliably computes multi-body problems.

Convergence tests are also performed to ensure that our solutions are independent
of grid and time step sizes. The convergence is evaluated with the time history of F∗

x ,
which is the sum of the dimensionless forces exerted on every cylinder in the x-direction
(F∗

x = ∑NC
j=1 f ∗

x,j), for the A39 model with k∗ = 0.5. For grid convergence test, four cases
with different finest grid sizes of 	xf = 0.01d, 0.02d, 0.04d and 0.08d are compared.
Figure 4(a) indicates that the solution clearly converges for the case of 	xf = 0.02d, and
thus the finest grid size is chosen to be 	xf = 0.02d for all simulations. In addition, the
time step size is varied for the same cluster model: 	t = 0.001d/U, 0.002d/U, 0.004d/U
and 0.008d/U (figure 4b). The time histories of F∗

x show that the solution is hardly affected
when 	t � 0.004d/U. Accordingly, 	t = 0.004d/U is chosen for all simulations.
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Figure 4. Comparison of total x-directional force F∗
x of the A39 model (k∗ = 0.5) for (a) four different finest

grid sizes of 	xf = 0.01d, 0.02d, 0.04d and 0.08d and (b) four different time step sizes of 	t = 0.001d/U,
0.002d/U, 0.004d/U and 0.008d/U. The inset in panel (b) presents F∗

x for a short period of tU/d = 14–18 to
clearly demonstrate the convergence with respect to 	t.

FxFx

(a) (b)

Figure 5. Schematics of the overall configurations and flow patterns for (a) a rigid cluster and (b) a poroelastic
cluster in the quasi-steady state. The black and grey arrows indicate the drag force Fx imposed on the clusters
and streamlines, respectively. The red dashed line represents the boundary of the cluster.

3. Results and discussion

3.1. Rearrangement and hydrodynamic blockage
When the cylinders comprising the poroelastic cluster are continuously exposed to
a uniform free stream of constant velocity, they reach the quasi-steady state with
negligible motion after undergoing notable movements in the initial transient state. In the
quasi-steady state, the cylinders rearrange in such a way that the overall shape of the cluster
expands in the direction normal to the incoming flow. In other words, the rearrangement
of the poroelastic cluster enlarges its frontal area, causing the generation of a larger overall
drag force, compared with the rigid cluster of k∗ = ∞ in which the frontal area remains
unchanged. Figure 5 depicts this phenomenon in a simplified manner. Note that the degree
of rearrangement and the magnitude of the drag force in figure 5(b) are exaggerated to
some extent to more distinctly contrast the rigid and poroelastic clusters. In this section,
we examine the characteristic flow phenomenon that is mainly responsible for this unique
and counter-intuitive behaviour of the poroelastic cluster, where the frontal area expanded
under the flow augments the drag.

To quantify the amount of rearrangement in terms of the frontal area normal to the flow,
the frontal area is defined as a y-directional length Ly of the boundary encompassing the
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poroelastic cluster. Because the cylinders are not circularly positioned in the quasi-steady
state due to the rearrangement, the boundary is fitted to an ellipse (red dashed line in
figure 6a). The ellipse is first fitted using the centres of the outermost cylinders via direct
least-squares fitting (Fitzgibbon, Pilu & Fisher 1999), and then the two major ellipse axes
are expanded by d/2 with respect to the ellipse centre; d/2 is the radius of each cylinder.
The fitted ellipse accurately depicts the outer boundary of the rearranged cluster. The
frontal area Ly, which is the distance between the uppermost and lowermost points of the
ellipse, is made dimensionless using the initial cluster diameter D in figure 1(a) (L∗

y =
Ly/D); thus, L∗

y = 1 corresponds to the frontal area of a rigid cluster. The drag force of a
cluster is defined as the total sum of the x-directional fluid forces exerted on all cylinders;
the cluster drag F∗

x = ∑NC
j=1 f ∗

x,j, where f ∗
x is the x-component of the dimensionless force

imposed on a single cylinder (f ∗
x = fx/ρf U2d). The quasi-steady state is defined as the

state in which the values of L∗
y and F∗

x change less than 0.5 % over a dimensionless time
period of tU/d = 10. In all cases considered herein, the quasi-steady state satisfied such a
condition at tU/d = 200. Thus, the following results presented for L∗

y and F∗
x correspond

to this instant.
Regarding the A7 model, which has the smallest solid fraction of φ = 0.02 (table 1),

the frontal area L∗
y ≈ 1 for k∗ = 0.3–1.0 (figure 6b), and the cluster drag F∗

x is very similar
to that of the rigid counterpart (figure 6c). However, for φ > 0.02, L∗

y and F∗
x are distinctly

greater than those of the rigid counterparts, regardless of k∗. The frontal area and the
cluster drag exhibit the same trend. As φ increases, both L∗

y and F∗
x increase and then

decrease, having a peak at some intermediate value of φ, and are consistently greater for
smaller k∗. The maxima of both L∗

y and F∗
x for the poroelastic clusters occur at φ = 0.09

and k∗ = 0.3. In this condition, L∗
y and F∗

x are 8.6 % and 19.2 % greater than their values
in the rigid counterpart, respectively. On the other hand, when the drag coefficient CD is
calculated using the frontal area Ly as a characteristic length scale (CD = 2Fx/ρf U2Ly),
F∗

x and CD exhibit identical trends with respect to φ and k∗. Although the drag force
experienced by the cluster can be expressed by either F∗

x or CD, F∗
x is used in our analysis.

In contrast to F∗
x , CD includes Ly in its denominator, and thus the effect of the frontal area

change induced by the rearrangement on the drag, which is one of the main interests in
this study, cannot be captured directly by CD.

To clarify the relation between the frontal area and the drag augmentation, we define the
extent of drag increment as the ratio of the drag force experienced by a poroelastic cluster
to that of a rigid cluster, F∗

x /F∗
x,rigid. According to figure 6(d), F∗

x /F∗
x,rigid tends to increase

linearly with L∗
y , implying that the drag of the poroelastic cluster is strongly affected by the

frontal area; other poroelastic clusters with different sizes also follow this linear relation as
reported in figure 14(a) of the Appendix. The linear relation between the drag force and the
frontal area is general for non-porous structures isolated alone. In this sense, the results in
figure 6(d) suggest that the fluid-dynamic phenomenon, which is responsible for enlarging
the frontal area and, thus, augmenting the drag, makes multiple cylinders function as a
collective group in which entities interact cohesively, rather than as independent entities.

In the low-Reynolds-number regime of O(10) or less, strong viscous diffusion forms
shear layers around the separated bodies which are thick enough to create virtual fluid
barriers inside the gaps between the separated bodies. These barriers consequently
interrupt the flow penetrating the gaps (Nawroth et al. 2010; Lee & Kim 2017; Lee, Lahooti
& Kim 2018). This phenomenon, namely hydrodynamic blockage, is more effective when
Re is smaller or the bodies are located closer together (Davidi & Weihs 2012; Lee & Kim
2020; Lee et al. 2020). Similarly, for our clusters of Red = 10, the streamwise velocity
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k∗ = ∞ (rigid)

k∗ = 1.0

k∗ = 0.7

k∗ = 0.5

k∗ = 0.3

(d )

1.00 1.02 1.04 1.06 1.08 1.10

F
x∗ /

F
∗ x,

ri
gi

d

1.00

1.05

1.20

1.10

1.15

(b)

0 0.05 0.10 0.15 0.20 0.25

1.00

1.05

1.10

5

10

15

(c)

Fx
∗Ly

∗

φ

0 0.05 0.10 0.15 0.20 0.25

φ

Ly
∗

Figure 6. (a) Rearranged poroelastic clusters in the quasi-steady state for five models with k∗ = 0.3. The
ellipse (red dashed line) is fitted to represent the boundary of the cluster. (b) Frontal area L∗

y and (c) drag F∗
x of

the cluster in the quasi-steady state with respect to the solid fraction φ. (d) Ratio of the poroelastic cluster drag
over the rigid cluster drag, F∗

x /F∗
x,rigid , with respect to L∗

y .

inside the cluster indicates the emergence of hydrodynamic blockage, and the effect of the
blockage strengthens as the solid fraction increases (figure 7). For the smallest φ = 0.02
with the largest spacing between the cylinders, most of the incoming flow penetrates the
gaps within the cluster at almost the same speed. At intermediate values of φ = 0.05 and
0.09, the internal flow within the cluster diminishes gradually, as indicated by the reduced
streamwise velocity and the smaller number of streamlines, and the incoming flow starts
to detour around the cluster. Finally, at high solid fractions of φ = 0.15 and 0.22, the
hydrodynamic interaction between the cylinders is so dominant that the penetrating flow
almost disappears; the velocity is almost zero inside the cluster. Thus, the incoming flow
mostly curves around the outer edge of the cluster.

To elaborate the effects of hydrodynamic blockage on the fluid forces imposed on the
cylinders and the resultant rearrangement, a representative distribution of the fluid forces is
visualised in figure 8 for the poroelastic clusters with k∗ = 0.3. When most of the incoming
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1.4

0

ux/U

 A7, φ = 0.02 A20, φ = 0.05 A39, φ = 0.09

(a) (b) (c)

A64, φ = 0.15 A95, φ = 0.22

(d ) (e)

–0.8

Figure 7. Contours of streamwise velocity in the quasi-steady state for five cluster models with different solid
fractions φ (k∗ = 0.3). Streamwise velocity is normalised as ux/U. In each panel, streamlines of the incoming
flow are illustrated on velocity contours.

flow passes through the gaps between the cylinders (φ = 0.02), all cylinders are subjected
to similar magnitudes of the fluid force (figure 8a). However, even with the weakest
hydrodynamic blockage, the drag force f ∗

x of a cylinder in the cluster is notably smaller
than that of a single isolated cylinder, f ∗

x,single. For example, at k∗ = 0.3, f ∗
x averaged

over all the cylinders is equal to 0.71f ∗
x,single. In contrast, for the clusters with larger φ,

for which the flow is diverted by the development of virtual fluid barriers, the cylinders
experience different fluid forces depending on their positions, and clear spatial variations
in the fluid forces appear (figure 8b–e). At intermediate solid fractions (φ = 0.05, 0.09),
the fluid forces exerted on the cylinders at the rear of the cluster become smaller than
for those at the front compared with φ = 0.02. Accordingly, by the development of
hydrodynamic blockage, cylinders experience significantly reduced drag forces compared
with f ∗

x,single. For clusters with k∗ = 0.3, f ∗
x averaged over all the cylinders is half of f ∗

x,single
at φ = 0.05 and further decreases to 0.30f ∗

x,single at φ = 0.09. Moreover, for high solid
fractions (φ = 0.15, 0.22), the rear cylinders rarely experience any fluid force, whereas
the front cylinders are still subjected to noticeable fluid forces. In common, when the
hydrodynamic blockage is in effect, the outer cylinders that are directly exposed to the
detouring flow encounter stronger fluid forces than the inner cylinders.

Furthermore, whereas the flow passing through the cluster exerts a fluid force along
almost the entire x-direction for the sparsely distributed cluster (figure 8a), the flow that
detours under the hydrodynamic blockage effect induces remarkable y-directional fluid
forces for the more densely distributed clusters (figure 8b–e). The cylinders are rearranged
to be symmetric with respect to the x-axis because of the flow symmetry through and
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Flow-induced rearrangement of a poroelastic cluster

A7, φ = 0.02 A20, φ = 0.05 A39, φ = 0.09

(a) (b) (c)

(d ) (e)
A64, φ = 0.15 A95, φ = 0.22

| f ∗| = 1

Figure 8. Magnitude and direction of fluid force f ∗ exerted on each cylinder for five cluster models with
different solid fractions φ (k∗ = 0.3). The red solid line denotes the force vector of each cylinder, and the
horizontal red solid line at the bottom right of the figure indicates the magnitude of | f ∗| = 1.

around the cluster, as shown in figure 7. Thus, for a pair of cylinders symmetrically located
between the upper and lower sides of the cluster, the magnitudes of the force vectors are
equal, but their orientations are opposite in the y-direction. Although the distributions of
the rearranged cylinders and the fluid forces are not perfectly symmetric with respect to
the x-axis, the degree of asymmetry with respect to the x-axis is extremely small, and the
distributions can be regarded symmetric. Moreover, the angle between the force vector
and the x-axis is greater for the outer cylinders than for the inner cylinders on the front
side. Accordingly, the cylinders experience y-directional motions during the rearrangement
process, with greater movements of the outer cylinders. By virtue of the hydrodynamic
blockage of which the degree is determined by the solid fraction, the frontal area of the
rearranged poroelastic cluster becomes greater than that of the rigid cluster, eventually
leading to an increase in cluster drag, as reported in figure 6(b–d).

The rearrangement of the poroelastic cluster is noteworthy in that the drag force is
augmented through the enlargement of the frontal area under the flow. Although the drag
increment has been reported for the reconfigured poroelastic strip (Jin et al. 2020) and
poroelastic system composed of elastic filaments radially attached to a centre sphere in
spherical form (Gosselin & de Langre 2011), the underlying mechanisms differ from our
model. Although the drag of the poroelastic strip increases under certain conditions (Jin
et al. 2020), the drag increment is because of a specific flow pattern behind the strip rather
than the enlargement of the frontal area; the strip streamlines under a flow and its frontal
area decreases. The streamlined reconfiguration of the poroelastic system of Gosselin
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& de Langre (2011), which generally contributes to drag reduction, could increase the
drag when all the elastic filaments are not fully streamlined at a low Cauchy number.
However, the poroelastic system reconfigures primarily by the bending of independent
filaments, and the effects of porosity on drag augmentation appear to be rather minor. In
contrast, the rearrangement of our poroelastic clusters is achieved by the hydrodynamic
blockage between constituents, and they exhibit different behaviours with respect to the
solid fraction, yielding an optimal solid fraction for the cluster drag.

As a drag-based flier, the flight performance of a poroelastic cluster is mainly evaluated
with the flight distance that is crucially affected by aerodynamic drag. The horizontal
wind mainly induces a dispersion, and the updraft, which exerts the aerodynamic force
against the gravity, sustains the dispersion in the air (Tackenberg et al. 2003). Because the
poroelastic cluster can generate greater drag by enlarging its frontal area, it is expected to
prolong flight duration compared with the rigid cluster, thereby enabling to fly longer
distances. In addition, we suppose that the flight stability of the poroelastic cluster
would not significantly differ from that of the rigid cluster. In the high-Reynolds-number
(high-Re) regime, vortex shedding may occur behind the cluster, and the surrounding
flow responds more sensitively to structural modifications or flow disturbances than in the
low-Re regime. In such conditions, the expansion of the frontal area would further intensify
the flow instability, leading to unstable flight. However, in the low-Re regime where the
poroelastic cluster can take advantage of hydrodynamic blockage in enlarging the frontal
area, the flow around the cluster remains stable as shown in figure 7, and the enlargement
of the frontal area would not significantly affect the flight stability in comparison with the
rigid cluster.

3.2. Force components of the poroelastic cluster
In § 3.1, a characteristic flow behaviour that causes the rearrangement of the
poroelastic cluster was identified, namely hydrodynamic blockage. Here, we discuss how
hydrodynamic blockage affects the frontal area L∗

y and cluster drag F∗
x with respect to

porosity (solid fraction φ) and elasticity (spring stiffness k∗), using the force components
acting on the cylinders. First, as φ increases, the drag force of the rigid and poroelastic
clusters increases and then decreases for all k∗, exhibiting the maximum F∗

x at certain
values of φ (figure 6c). The rigid cluster presents a peak F∗

x of 12.01 at φ = 0.05, and
F∗

x attains a maximum for all poroelastic clusters at φ = 0.09, where F∗
x = 13.98, 13.36,

13.12 and 12.86 for k∗ = 0.3, 0.5, 0.7 and 1.0, respectively.
The increase and subsequent decrease in the cluster drag with respect to the solid

fraction has been generally observed for arrays of static cylinders over a wide range of
the Reynolds number (Chang & Constantinescu 2015; Taddei et al. 2016; Tang et al.
2019, 2020; Kingora & Sadat 2022). However, less is known about the fluid-dynamic
mechanism responsible for the presence of an optimal porosity that maximises the cluster
drag. For example, Chang & Constantinescu (2015) and Tang et al. (2020) reported that the
peak drag appeared between two solid-fraction regimes characterised by weak interaction
between cylinders (low φ) and strong interaction that induces global vortex shedding
behind the cylinder array (high φ), respectively. However, as illustrated in figure 7, the
periodic vortex shedding does not occur behind our poroelastic clusters at low Re. In
addition, Kingora & Sadat (2022) employed a physical concept known as sheltering effect,
which is similar to the effect of hydrodynamic blockage in our study, in order to analyse
the spatial variation of fluid forces depending on the cylinder locations. However, the
sheltering effect indicates a decrease in mean flow within the cylinder array, without
specifically addressing the hydrodynamic interaction between multiple bodies by strong

983 A34-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.157


Flow-induced rearrangement of a poroelastic cluster

k∗ = ∞ (rigid)

k∗ = 1.0

k∗ = 0.7

k∗ =  0.5

k∗ = 0.3

2

6

10

14

0 0.05 0.10 0.15 0.20 0.25

Fx
∗

F∗
x,p

F∗
x,v

Fx
∗

φ

Figure 9. Cluster drag F∗
x (solid lines) and drag components due to pressure F∗

x,p (dashed lines) and viscous
stress F∗

x,v (dotted-dashed lines) of clusters.

viscous diffusion, and it was not adopted to explain the drag experienced by the entire
cylinder array. In this study, the mechanism that accounts for the appearance of an optimal
φ is inferred by analysing the effects of hydrodynamic blockage on the cluster drag.

Whereas the degree of hydrodynamic blockage strengthens monotonically with an
increase in the solid fraction φ, the cluster drag F∗

x does not exhibit a monotonic change
over φ due to the hydrodynamic blockage effect. If the hydrodynamic blockage is absent,
the increase in φ produces an effect that is hydrodynamically equivalent to that of
simply increasing NC, which causes the cluster drag to increase. However, once the
virtual fluid barrier interrupts the penetration of the incoming flow, the rear cylinders
encounter little incoming flow, and thus increasing φ does not function equivalently as
increasing NC. As F∗

x decreases with increasing φ for φ � 0.09, where the flow behaviour
is predominated by the hydrodynamic blockage, it could be conjectured that the blockage
yields an effect equivalent to that of decreasing NC. To comprehensively understand how
the hydrodynamic blockage affects the cluster drag, drag components are analysed in terms
of the flow fields around the cluster.

We decompose the drag fx of a single cylinder into the drag fx,v due to viscous stress τ
and the drag fx,p due to pressure p as

fx = fx,v + fx,p =
∫

S
n · τ |x dS +

∫
S
−pn|x dS, (3.1)

where S is the surface of a cylinder and n is the unit normal vector out of S. Both
components of the cylinder drag are made dimensionless using ρf , U and d as f ∗

x,v =
fx,v/ρf U2d and f ∗

x,p = fx,p/ρf U2d. The viscous and pressure drag forces on a cluster are

defined in the same manner as the cluster drag F∗
x ; thus, F∗

x,v = ∑NC
j=1( f ∗

x,v)j and F∗
x,p =∑NC

j=1( f ∗
x,p)j, respectively, where F∗

x,v + F∗
x,p = F∗

x . Similar to F∗
x , F∗

x,v and F∗
x,p increase

and then decrease with respect to φ, reaching a maximum at the same value of φ = 0.09
(figure 9). The changes in F∗

x,v and F∗
x,p are analysed using vorticity fields (figure 10a,b)

and pressure fields (figure 10c,d), respectively, near to the clusters of φ = 0.02 (minimum),
0.09 (optimum) and 0.22 (maximum) with k∗ = 0.3 as representative cases. The vorticity
field is considered for F∗

x,v because the viscous stress tensor τ is linearly related to the
vorticity ω on the cylinder surface S according to n · τ = −μn × ω.
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p/ρf U2
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(c)
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Figure 10. (a,b) Vorticity and (c,d) pressure fields for clusters with solid fractions of (i) φ = 0.02,
(ii) φ = 0.09 and (iii) φ = 0.22 with k∗ = 0.3. Vorticity contours in panel (a) and pressure contours in panel
(c) correspond to magnified views of panels (b,d), respectively. Vorticity and pressure are normalised as ωzd/U
and p/ρf U2, respectively.

For the A7 model with the lowest φ = 0.02, flow structures around all cylinders appear
to behave individually because the effects of hydrodynamic blockage on the flow are
minor. The incoming flow passing through the cluster generates strong shear layers around
every cylinder, including the most rearward cylinder, and the shear layers do not interact
with each other (figure 10a-i,b-i). For each cylinder, two counter-rotating vortices are
clearly identified. Moreover, a local pressure field is generated around each cylinder;
high- and low-pressure regions form at the windward and leeward sides of each cylinder,
respectively (figure 10c-i). However, although each cylinder is subjected to strong f ∗

x,v and
f ∗
x,p, the cluster drag components F∗

x,v and F∗
x,p are small because of the low value of NC

(figure 9).
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Flow-induced rearrangement of a poroelastic cluster

At the larger solid fraction of φ = 0.09, hydrodynamic blockage evidently affects the
cluster behaviours. The shear layers developed outside the outermost cylinders at the front
side of the cluster overlap (figure 10a-ii), thereby generating two large counter-rotating
vortices behind the entire cluster (figure 10b-ii). That is, the cluster begins to perform as a
collective group, rather than multiple separated components acting individually. Whereas
a single impervious circular cylinder, which has the diameter equal to the initial diameter
D of the entire cluster, induces periodic vortex shedding at ReD = 210 (Williamson 1996),
our cluster models do not exhibit periodic vortex shedding despite the formation of the
large counter-rotating vortices in the wake. In addition to the global counter-rotating
vortices behind the entire cluster, substantial counter-rotating vortices are still formed
around each cylinder (figure 10a-ii), albeit weak at the rear side of the cluster, indicating
that the blockage is not yet too strong to prevent the flow reaching the cylinders at the
rear side. As a result, the viscous component F∗

x,v of the cluster drag becomes larger
with φ = 0.09 because the effect of increasing NC outweighs the effect of hydrodynamic
blockage (figure 9). Similarly, the hydrodynamic blockage forms regions of high and low
pressure in front of and behind the cluster, in addition to local pressure fields around the
individual cylinders (figure 10c-ii,d-ii). Therefore, despite the smaller pressure differences
experienced by each cylinder compared with those at the lower φ, the cluster is additionally
influenced by a global pressure field, thereby generating larger F∗

x,p (figure 9).
As the solid fraction increases beyond φ = 0.09, stronger shear layers are formed

outside the entire cluster (figure 10a-iii,b-iii). Strong counter-rotating vortices behind the
entire cluster are still stable, and periodic vortex shedding do not occur; the cylinders
maintain the quasi-static equilibrium state after the rearrangement. Because of dominant
hydrodynamic interaction between the cylinders, the increase in φ no longer performs
hydrodynamically as equivalent to increasing NC. Within the cluster, the vortices are very
weak and are barely apparent on the rear side because the penetrating flow diminishes
significantly (figure 10a-iii). Furthermore, due to the dense arrangement, the vortices
formed around one cylinder cancel out the counter-rotating vortices around nearby
cylinders. As a result, the vortices close to the cylinder surfaces have notably smaller
vorticity magnitudes, leading to a decrease in F∗

x,v (figure 9); note that n · τ = −μn × ω
on the cylinder surface S in (3.1). The local pressure fields around single cylinders also
vanish, and only the global pressure field remains (figure 10c-iii,d-iii). As φ increases from
0.09 to 0.22, the high-pressure region remains in front of the cluster, but the low-pressure
region shifts farther downstream from the cluster. Hence, when φ � 0.09, a cluster with
larger φ experiences a rather smaller F∗

x,p (figure 9).
An examination of the effects of the solid fraction on the drag components F∗

x,v and
F∗

x,p indicates that a proper degree of hydrodynamic blockage (i.e. an intermediate value
of solid fraction) is advantageous to increasing the cluster drag. Although the blockage
must be strong enough to generate a detour in the flow, and thus enlarge the frontal area,
it should not be so strong that the penetrating flow disappears. Accordingly, at the optimal
solid fraction for the peak F∗

x , the cluster takes advantage of the hydrodynamic blockage
by maximising the aerodynamic drag. The mechanism underlying the appearance of an
optimal φ, which has been ascribed different explanations in various investigations (Chang
& Constantinescu 2015; Tang et al. 2020; Kingora & Sadat 2022), can be integrated
into the principle of the optimal degree of hydrodynamic blockage. For example, the
decrease in the optimal φ accompanied by the reduction in Red, which was reported by
Tang et al. (2020) for a rectangular cluster of stationary cylinders, can be explained by
an intensification of the hydrodynamic blockage with decreasing Red. Given the same gap
size between constituents, the blockage strengthens for a lower Re (Lee & Kim 2017).
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Figure 11. (a) Ratios of drag forces on the front R∗
x,f (solid lines) and rear R∗

x,r (dashed lines) sides of the

cluster to cluster drag. R∗
x,f and R∗

x,r are defined in (3.2). (b) Averaged y-directional force f̂y exerted on cylinders
on the upper side of the cluster.

As the blockage intensifies, the range of φ for which the blockage is excessive shifts to
lower values, thereby decreasing the optimal φ with respect to Red. Despite the difference
in configurations, the same behaviour is expected for our circular poroelastic clusters,
considering that interaction between the flow and the group of cylinders is governed by
the same fluid-dynamic phenomenon: hydrodynamic blockage.

The gap width between cylinders is another key feature in determining the degree of
hydrodynamic blockage, and the poroelastic cluster is capable of altering its gap width
via rearrangement. Therefore, rearrangement contributes to the drag augmentation of
the poroelastic cluster both by enlarging the frontal area and by modifying the degree
of hydrodynamic blockage. First, to quantitatively evaluate the degree of hydrodynamic
blockage, the ratios of the drag forces on the front and rear sides of clusters to the cluster
drag F∗

x are assessed. The division of the front and rear sides is determined with respect to
the x-coordinate of the centre cylinder, x0, and the drag ratio R∗

x is defined for each side as

R∗
x,f =

∑
xj<x0

f ∗
x,j/F∗

x and R∗
x,r =

∑
xj>x0

f ∗
x,j/F∗

x , j = 1, . . . , NC, (3.2)

where the subscripts f and r refer to the front and rear sides, respectively. For all k∗
values, including k∗ = ∞, R∗

x,f increases monotonically, but R∗
x,r decreases as the cylinder

arrangement becomes more dense (figure 11a). The opposite trends between R∗
x,f and

R∗
x,r with respect to the solid fraction clearly indicate that hydrodynamic blockage, which

interrupts the penetration of the flow, is reinforced by an increase in the solid fraction. As
the rearrangement of the poroelastic cluster enlarges the gap sizes between the cylinders,
the degree of hydrodynamic blockage is mitigated compared with the rigid cylinder. In
figure 11(a), the differences between R∗

x,f and R∗
x,r for the poroelastic clusters are smaller

than for the rigid cluster, implying that the degree of hydrodynamic blockage is weakened
by decreasing k∗, i.e. by the higher elasticity of springs.

Although the principle for the presence of an optimal solid fraction is consistent, the
peak F∗

x values for the rigid and poroelastic clusters appear at different φ values. The
optimal φ for the rigid cluster is 0.05, but the poroelastic clusters have larger optimal
φ values of 0.09 for all k∗ considered in the present study (figure 9). By virtue of the
widened gaps and consequently weakened blockage effect, the cylinders on the rear side
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(a) (b)

–0.6 0.6ωzd/U 0

Figure 12. Vorticity contours near (a) rigid and (b) poroelastic (k∗ = 0.3) clusters with φ = 0.09.

of the poroelastic cluster experience a larger amount of the incoming flow than those of the
rigid cluster. For example, at the same solid fraction of φ = 0.09, weak vortices are formed
inside the rigid cluster (figure 12a), whereas relatively strong vortices are generated around
the cylinders inside the poroelastic cluster, especially on the rear side (figure 12b). By
reducing the degree of hydrodynamic blockage, the poroelastic cluster achieves a relatively
high optimal φ compared with the rigid cluster (figure 9). At the same time, the peak F∗

x
of the poroelastic cluster is greater than that of the rigid cluster because the hydrodynamic
effect of increasing NC persists at the higher φ.

For further analysis on the cylinder motions, we compare the y-directional fluid forces
exerted on the cylinders. The averaged y-directional force f̂y is obtained for the cylinders
positioned on the upper side of clusters (above the x-axis). Only the upper cylinders are
considered because, as mentioned in § 3.1, the distribution of cylinder forces is symmetric
with respect to the x-axis for every cluster, regardless of φ and k∗. Here f̂y is calculated by
summing f ∗

y for the cylinders in the upper region and dividing by the number of cylinders
in the upper region:

f̂y =
∑
yj>0

f ∗
y,j/Nyj>0, j = 1, . . . , NC. (3.3)

Because a larger f̂y induces a greater y-directional displacement in the cylinders, the
trends of f̂y vs φ and k∗ are similar to those of L∗

y , and their maximum values appear at the
same φ (compare figure 11b with figure 6b). Here f̂y is governed by the same mechanism
that controls the changes in F∗

x with respect to φ and k∗: hydrodynamic blockage. Initially
f̂y increases with φ because the hydrodynamic blockage alters the x-directional flow into
a detouring flow, which exerts y-directional forces on the cylinders. However, a further
increase in φ weakens f̂y as the internal flow diminishes due to the excessive degree of
blockage. At φ = 0.02 and 0.05, the averaged y-directional forces are similar for different
k∗ values. However, for larger values of φ, where the blockage strongly affects the flow, the
values of f̂y differ distinctly for different values of k∗. By virtue of the wider gaps between
the cylinders, smaller values of k∗ reduce the degree of hydrodynamic blockage at a given
φ. Accordingly, a larger amount of flow is allowed to pass through the cluster at smaller
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k∗, and the cylinders are subjected to greater f̂y, eventually resulting in an increase in L∗
y

and F∗
x (figures 6b and 9).

The rigid cluster presents the maximum f̂y at φ = 0.09 (figure 11b), whereas the
maximum of F∗

x occurs at φ = 0.05 (figure 9). If the fluid force exerted on the cluster is
assumed to be solely determined by the degree of hydrodynamic blockage, the poroelastic
cluster would also exhibit maximum F∗

x and f̂y at different φ values, as for the rigid cluster.
However, in contrast to the rigid cluster, the involvement of elasticity (rearrangement)
means that f̂y and F∗

x are maximised at the same φ (=0.09). In this sense, the increase in the
y-directional force f̂y and the consequent enlargement of the frontal area L∗

y can be regarded
as an important causal process for the augmentation of the cluster drag F∗

x , which supports
the linear relation between F∗

x and L∗
y (figure 6d). In summary, for poroelastic clusters,

the degree of hydrodynamic blockage is primarily determined by φ that represents the
porosity and is further adjusted by k∗ that indicates the elasticity. Then, the hydrodynamic
blockage governs the rearrangement of the poroelastic cluster by affecting the amount of
the fluid force exerted on elastic constituents, f̂y, which in turn expands the frontal area L∗

y
and, thus, augments the cluster drag F∗

x .

3.3. Scaled elastic energy for characterising rearrangement
The effects of porosity (solid fraction φ) and elasticity (spring stiffness k∗) on the
rearrangement of poroelastic clusters have been discussed separately in the preceding
sections. Here, we derive a new variable that represents the coupled effects of these
two parameters and characterises the rearrangement. Because the drag augmentation
of a poroelastic cluster is primarily achieved by increasing the frontal area Ly, the
relation between φ and k∗ is examined in terms of the change in Ly. The amount of
rearrangement is quantified as the change in the frontal area: 	Ly = Ly − D. As the
cluster shape changes, the elastic energy stored in the springs elastically mounted on the
cylinders varies. We define the total elastic energy of the poroelastic cluster as the sum
of the elastic energy stored in all springs: Ey = ∑NC

j=1 k(	yj)
2/2, where 	yj denotes the

y-directional displacement of the jth cylinder in the quasi-steady state. The amount of
rearrangement 	Ly with respect to the elastic energy Ey of the poroelastic cluster clarifies
the individual effects of φ and k∗ discussed in §§ 3.1 and 3.2 (figure 13a). At the same φ,
Ey increases markedly with decreasing k∗ because the cylinders move a greater distance,
except for the A7 model where little rearrangement occurs. At the same k∗, Ey does not
vary monotonically with 	Ly as φ increases. For increasing Ey, 	Ly increases and then
decreases, exhibiting the same trend as 	Ly over φ.

To yield the similar amount of 	Ly, a greater Ey is required for a higher φ because there
are more cylinders to move. In other words, the flow has to exert a larger amount of work
due to the greater number of cylinders. Likewise, the scaling relation between 	Ly and Ey
can be examined by balancing the elastic energy stored in the springs and the work done
by the flow along the y-direction. The work done by the flow to expand the cluster along
the y-direction scales as ρf U2D	Ly. However, as suggested by Greene & Johnson (1990),
the porosity should be taken account of when characterising the area of porous structures.
Therefore, instead of the plan area D, the planform area Dφ should be used to incorporate
the porosity, and thus the work is estimated to scale as ρf U2Dφ	Ly. The energy balance
for the cluster then becomes

Ey ∼ ρf U2Dφ	Ly. (3.4)
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Figure 13. (a) Amount of rearrangement along the y-direction, 	Ly, with respect to total elastic energy
stored in the cluster, Ey. (b) Plot of 	L∗

y (=	Ly/D) with respect to E∗
y /φ (E∗

y = Ey/ρf U2D2).

Using the elastic energy of the cluster E∗
y , which is normalised by ρf U2D2, and 	L∗

y =
	Ly/D, relation (3.4) is rewritten as

E∗
y

φ
∼ 	L∗

y . (3.5)

The dimensionless cluster elastic energy divided by the solid fraction, namely scaled
elastic energy E∗

y/φ, successfully characterises the combined effects of porosity and
elasticity on the rearrangement of the poroelastic cluster, 	L∗

y . In figure 13(b), 	L∗
y

exhibits a linear relation with E∗
y/φ for all poroelastic clusters, as predicted from (3.5).

Furthermore, we confirm that other poroelastic clusters with different sizes follow this
linear relation; see figure 14(b) of the Appendix. In summary, the effects of porosity,
elasticity and hydrodynamic interaction between the cylinders on the rearrangement,
represented by the enlargement in the frontal area, are collectively reflected in the scaled
elastic energy E∗

y/φ.

4. Concluding remarks

In this study, we have numerically investigated the rearrangement of a poroelastic cluster
in low-Re flow by varying the porosity (solid fraction) and elasticity (spring stiffness)
of the cluster. Compared with a rigid cluster, the poroelastic cluster generates a larger
drag force via enlargement of the frontal area normal to the flow. This dynamic behaviour
contrasts with that of fixed elastic structures, which generally reconfigure to reduce the
frontal area and drag force. The collective movement of the elastic constituents and the
resultant change in the shape of the poroelastic cluster are governed by the formation of
virtual fluid barriers inside the gaps between the constituents. The effects of the solid
fraction φ and elasticity k∗ on the frontal area and drag force were elucidated in terms of
the degree of hydrodynamic blockage by analysing the fluid-force components acting on
the constituents, and the optimal value of φ for maximising the drag force was obtained.
Furthermore, a scaled elastic energy E∗

y/φ that reflects the coupled effects of porosity and
elasticity was introduced to characterise the rearrangement of the poroelastic cluster, based
on the energy balance between the work done by the flow and the elastic energy stored by
the rearrangement. The extent of rearrangement, measured as the change in the frontal
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area (	L∗
y ), appears to be linearly related with E∗

y/φ for all poroelastic clusters considered
in the present study.

As a fundamental investigation on the flow-induced rearrangement of poroelastic
clusters, we limited our investigation to two-dimensional space and used an ideal
model composed of regularly distributed constituents with the same size and elasticity.
Despite such simplicity, this study has established the fluid-dynamic mechanism whereby
the poroelastic cluster could utilise rearrangement to effectively increase aerodynamic
loading, which critically affects flight performance, via enlargement of the frontal area.
Given the similar flow conditions at the low-Reynolds-number regime, the rearrangement
of three-dimensional poroelastic clusters will also be governed by the same fluid-dynamic
mechanisms elucidated in this study. However, detailed flow behaviours may be altered
by various aspects such as spatial variations in the solid fraction. Thus, the extent
of hydrodynamic blockage within the three-dimensional clusters and the optimal
solid fraction are expected to differ from those of our two-dimensional model. To
elaborate the efficacy of the rearrangement process in the aerodynamics of poroelastic
clusters, the analytical approaches employed in the current study could be extended to
three-dimensional space, including more complicated configurations and situations, such
as non-uniform initial distribution of elastic constituents with different elasticities and
dynamic responses under various types of unsteady flows.
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Appendix. Additional simulations for scaling relation

In § 3.3, the sizes of the cluster and the constituent cylinders remain unchanged at
d/D = 1/21. Here, other poroelastic clusters with different sizes are considered to confirm
that the increment of cluster drag is determined by the enlargement of frontal area and
to check whether relation (3.5) can be generalised. Cylinders with a different diameter
d′ are used while maintaining the same cluster diameter D: d′ = 2d for the A20 cluster
(φ = 0.18) and d′ = 0.5d for the A95 cluster (φ = 0.05). The Reynolds number and
mass ratio based on the new cylinder diameter d′ remain unchanged (Red′ = 10 and
m∗ = 1). The A20 and A95 models are selected as representatives because they exhibit
the weakest and strongest effects of hydrodynamic blockage, respectively. For each new
cluster, the same dimensionless spring stiffness values, k∗ = 0.3, 0.5, 0.7 and 1.0, are
applied. For the numerical simulations, the finest grid size and time step are 	xf = 0.02d′
and 	t = 0.004d′/U.

In figure 14(a), F∗
x /F∗

x,rigid is plotted for the new cluster models A20 (2d) and A95 (0.5d)
with respect to L∗

y , together with the data in figure 6(d). The extent of drag increment
F∗

x /F∗
x,rigid is in a linear relationship with the enlarged frontal area L∗

y , even though
clusters with different d/D values are considered. Similarly, in addition to the data in
figure 13(b), the E∗

y/φ values for the new cluster models are included in figure 14(b),
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Figure 14. Plots of (a) F∗
x /F∗

x,rigid with respect to L∗
y and (b) 	L∗

y with respect to E∗
y /φ. Additional models of

A20 (2d) and A95 (0.5d) are denoted with + and × markers, respectively. In panel (b), the grey dashed line is
drawn with the identical slope as the line in figure 13(b).

which demonstrates that E∗
y/φ can be regarded as a general parameter characterising the

rearrangement of the cluster.
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