NEAR-RINGS WITH CHAIN CONDITIONS ON RIGHT ANNIHILATORS

by A. OSWALD (Received 29th September 1978)

Throughout this note, N will denote a (Left) near-ring with two-sided zero. Definitions of basic concepts can be found in (9).

We prove first that a right ideal I in a d.g. near-ring has a right identity if and only if $x \in xI$ for each $x \in I$. This enables us to study the structure of regular d.g. near-rings with chain conditions on right annihilators. Specifically we will prove that a regular d.g. near-ring with both the maximum and the minimum conditions on right annihilators is a finite direct sum of near-rings which are either rings of matrices over division rings or non-rings of the form $M_G(\Gamma)$ for a suitable type 2 N-module Γ . Finally we consider the case of maximum condition on N-subgroups.

These results generalise some results of Heatherly (5).

The idea for our first result is taken from (4).

Theorem 1. Let N be a d.g. near-ring and I be a right ideal of N which, as a near-ring, has the minimum condition on right annihilators. Then the near-ring I has a right identity if and only if $x \in xI$ for each $x \in I$.

Proof. The necessity is immediate. Let N be d.g. by S and for $a \in I$ define $L_a = \{s - as : s \in S\}$. Choose $e \in I$ such that $l_I(L_e) = \{x \in I : xL_e = (0)\}$ is maximal where $b \in l_I(L_e)$ if and only if $bL_e = (0)$ and $b \in I$. Suppose $l_I(L_e) \neq I$. Choose $y \in I$ with $yL_e \neq (0)$ and $s \in S$ with $y(s - es) \neq 0$. Then $(y - ye)s \neq 0$ so $y - ye \neq 0$. Also $y - ye \in (y - ye)I$ so y - ye = (y - ye)e' for some $e' \in I$. Writing $e' = \Sigma \pm s_i$ where $s_i \in S$ we then have

$$y = (y - ye)e' + ye$$

= $y\left(\sum \pm (s_i - es_i) + e\right)$
= $y\left(\sum \pm s_i + u + e\right)$ for some $u \in I$
= yf , where $f = e' + u + e$.

Now $y \in l_I(L_f)$ but $y \notin l_I(L_e)$. Also $z \in l_I(L_e)$ implies $zf = z(\Sigma \pm (s_i - es_i) + e) = ze$ and so $z \in l_I(L_f)$. This contradicts the maximality of $l_I(L_e)$ and so $l_I(L_e) = I$. But then if $r \in I$ we have $rL_e = (0)$ and so (r - re)S = (0) from which (r - re)N = (0). In particular (r - re)I = (0) and thus r = re and e is a right identity.

A. OSWALD

Corollary 1. A d.g. near-ring with minimum condition on right annihilators has a right identity if and only if $x \in xN$ for each $x \in N$.

As a first application of this theorem we give an alternative proof of a theorem of Szeto (11). We say that a near-ring N is a subdirect sum of near-rings N_{λ} if and only if there exist ideals I_{λ} of N with $\bigcap_{\lambda} I_{\lambda} = (0)$ and $N_{\lambda} \approx N/I$ as near-rings. Then as in Stewart (10) we have.

Lemma 1. A near-ring N has no nilpotent elements if and only if it is isomorphic to a subdirect sum of near-rings without proper divisors of zero.

Lemma 2. (Beidleman (1)). If N is a regular near-ring and $0 \neq b \in N$ then bN = fN for some idempotent $f \in N$.

Theorem 2. (Szeto (11)). A regular d.g. near-ring N has no nilpotent elements if and only if it is a subdirect sum of division near-rings.

Proof. The sufficiency is immediate. Suppose N has no nilpotent elements. Then by Lemma 1 it is a subdirect sum of near-rings without proper divisors of zero each of which is d.g., regular and trivially has the minimum condition on right annihilators. Let N_1 be one such subdirect summand. From Corollary 1 it has a right identity, esay. Then $0 \neq x \in N_1$ implies $xN_1 = fN_1$ for some idempotent $f \in N_1$. Since r(f) = $\{x \in N_1: fx = 0\} = (0)$ we get $N_1 = fN_1 = xN_1$ and so e = xy for some $y \in N_1$. Thus $N_1 \setminus \{0\}$ is a group and N_1 is a division near-ring as required.

Observe that since N_1 is a division near-ring then by Ligh (7) it has abelian addition. Consequently from Fröhlich (3; 4.4.1) it is distributive and hence is a ring. We thus get

Corollary 2. A regular d.g. near-ring has no (non-zero) nilpotent elements if and only if it is a ring and a subdirect sum of division rings.

If I is an ideal of the near-ring N and $x \in I$ we denote by $Sg_I(x)(Sg_N(x))$ the *I*-subgroup (N-subgroup) of I (N) generated by x. Clearly $Sg_N(x) \subseteq I$ and $Sg_I(x) \subseteq Sg_N(x)$.

Theorem 3. Let N be d.g. and I be an ideal of N which, as a near-ring, has the minimum condition on right annihilators and $A^2 = A$ for each I-subgroup A of I. Then I has an identity which is a central idempotent of N.

Proof. If L is an I-subgroup of I and $x \in L$ then xN is an I-subgroup of I. Also $xN = xNxN \subseteq xI \subseteq L$ so each I-subgroup of I is an N-subgroup of N contained in I. Hence if $x \in I$ then $Sg_N(x) \subseteq Sg_I(x)$ and thus $Sg_I(x) = Sg_N(x)$. Now $x \in Sg_N(x) = Sg_N(x)Sg_N(x)$ and so x = uv for some $u, v \in Sg_N(x)$. If N is distributively generated by S then $v = \Sigma \pm s_i$ where $s_i \in S$ and $u = \Sigma xr_j$ where $r_j \in N$ or r_j is formal identity. Hence $uv = \Sigma xr_j\Sigma \pm s_i = x\Sigma \pm r_js_i \subseteq xN = xNxN \subseteq xI$. Applying Theorem 1 we see that I has a right identity e. Now suppose that $y \in N$ with z = ey - ye. Then $z \in I$ and

124

ez = ey - e(ye) = 0 from which IezI = (0) and IzI = (0). Then $(zI)^2 = (0)$ so that zI = (0) and z = 0. Thus e is a central idempotent of N and a two-sided identity for I.

Corollary 3. If N is a regular, d.g. near-ring with the minimum condition on right annihilators then N has a two-sided identity.

Proof. N regular implies $A^2 = A$ for each N-subgroup A of N.

Corollary 4. A d.g. near-ring with the minimum condition on N-subgroups and no nilpotent N-subgroups has a two-sided identity.

Proof. Such a near-ring is completely reducible (8) and hence regular.

Theorem 4. A d.g. near-ring N which is regular with the minimum condition on right annihilators is a direct sum of ideals which are simple d.g. near-ring with identity.

Proof. If I is a non-zero ideal of N then I has an identity e and so $I \cap r(e) = (0)$. Now $N = I \oplus r(e)$ and if $x \in r(e)$ and $n \in N$ then enx = nex = 0 so that r(e) is an ideal of N and hence has a two-sided identity f. Now $I \subseteq r(f)$ and $r(f) \cap r(e) = (0)$ from which I = r(f). It follows that every ideal of N is of the form r(f) for some central idempotent f of N. Let $r(e_1)$ be a minimal non-zero ideal of N. There is an ideal of N, I_1 , with $I_1 \cap r(e_1) = (0)$ and $I_1 \oplus r(e_1) = N$. Choose $e_2 \in I_1$ with $r(e_2)$ a minimal non-zero ideal of N in I_1 . For some ideal I_2 of N we have $N = I_2 \oplus r(e_1) \oplus r(e_2)$. In this way we construct a descending chain $I_1 \supseteq I_2 \supseteq \ldots$ of right annihilators. It follows that for some k, $N = r(e_1) \oplus \ldots \oplus r(e_k)$. If I is an ideal of N and if B is an ideal of I then $BN \subseteq B$ when I is a direct summand of N. Furthermore, if e is the identity of I then eN = Ne and $NB = NeB = eNB \subseteq IB \subseteq B$. Hence the ideals $r(e_i)$ are simple and we have the result.

The following result is proven in the same way as in Koh (6).

Lemma 3. If N is regular and I is a maximal annihilator right ideal of N then there is a minimal N-subgroup B = eN, where e is an idempotent, with $I \cap B = (0)$ and I + B = N.

An N-module Γ is type-2 if $\Gamma N \neq (0)$ and Γ has no proper N-subgroups. If N has an identity then Γ has no proper N-subgroups if and only if $\gamma N = \Gamma$ or $\gamma N = (0)$ for each $\gamma \in \Gamma$. Hence if N is a regular near-ring with the maximum condition on right annihilators then N has an N-subgroup which is a type-2 N-module. If, in addition, N has no non-trivial two-sided ideals this N-subgroup Γ will be such that $\Gamma a = (0)$ implies that a = 0 and Γ will be a type-2 faithful N-module. In such a case we say that N is 2-primitive on Γ .

In the case where N is a ring Γ will be a faithful ring module so that N will be a regular simple primitive ring and if N also has the minimum condition on right annihilators then N will have an identity. The set of minimal right ideals will be non-empty and the sum of all of them will be an ideal containing Γ and hence will be

A. OSWALD

N. It follows that N will be the sum of finitely many minimal right ideals and hence N will have the minimum condition on right ideals so that N will be a ring of matrices over a suitable division ring.

Turning to the case where N is a non-ring we have

Theorem 5. If N is a non-ring with identity and the minimum condition on right annihilators which is 2-primitive on an N-module Γ which is an N-subgroup of N then $N = M_G(\Gamma)$ where $G = \operatorname{Aut}_N(\Gamma)$ and $M_G(\Gamma) = \{f : \Gamma \to \Gamma : f\alpha = \alpha f \text{ for each } \alpha \in G\}$.

Proof. This is the same as in Betsch (2; Thm 2.5) making use of the fact that since $\Gamma \subseteq N$, $r(\gamma_1) \cap r(\gamma_2) = r(\{\gamma_1, \gamma_2\})$ is an annihilator right ideal of N.

Observe that in view of (2; Thm 5.9) we have

Corollary 5. A non-ring N with identity and the minimum condition on right annihilators which is 2-primitive on an N-module Γ which is an N-subgroup of N has both the minimum and the maximum conditions on right ideals.

Theorems 4 and 5 and the intervening discussion now yield the result mentioned in the introduction.

Theorem 6. A d.g. near-ring which is regular and has the minimum and maximum conditions on right annihilators is a finite direct sum of ideals which are d.g. near-rings each of which is either a ring of matrices over a suitable division ring or a non-ring of the form $M_G(\Gamma)$ for a suitable type-2 near-ring module Γ .

An N-subgroup A of N is module-essential if whenever $A \cap B = (0)$ with B a right ideal of N then B = (0). The N-subgroup A is essential when this is true for B an N-subgroup of N.

Theorem 7. Let N be a near-ring in which module essential N-subgroups are essential. If N is regular with maximum condition on right annihilators and no infinite direct sums of right ideals then N has minimum condition on right annihilators.

Proof. Let $A_1 \supset A_2 \supset ...$ be a properly descending chain of right annihilators and U be a left annihilator minimal subject to $l(A_k) \subsetneq U \subseteq l(A_{k+1})$. Then $U \neq (0)$ and $UA_k = (0)$. Choose $u \in U$ with $uA_k \neq (0)$. Since N is regular, N has no nilpotent N-subgroups so $uA_kuA_k \neq (0)$ and so for some $a \in A_k$, $uauA_k \neq (0)$. If $y \in A_k$ with $auy \in A_{k+1} \cap auA_k$ then Uauy = (0). Now $l(A_k) \subseteq l(y)$ so $l(A_k) \subseteq l(y) \cap U \subseteq U$. Since U is minimal either $U = l(y) \cap U$ or $l(A_k) = l(y) \cap U$. As uauy = 0 we have $uau \in l(y) \cap U$ whereas $uauA_k \neq (0)$. It follows that $U = l(y) \cap U$ and so $U \subseteq l(y)$ and Uy = (0). Then auy = 0 and so $A_{k+1} \cap auA_k = (0)$. For each $k \ge 1$ choose a right ideal X_k maximal subject to $A_{k+1} \cap X_k = (0)$. Then $A_{k+1} + X_k$ is module-essential and hence essential in N. Writing $C_k = A_k \cap X_k$ we can find, since $l(A_k) \neq l(A_{k+1})$, an N-subgroup $B_k \subset A_k$ with $B_k \neq (0)$ and $A_{k+1} \cap B_k = (0)$. Let $b \in B_k \cap (A_{k+1} + X_k)$ with $b \neq 0$. Then $b = t + x, t \in A_{k+1}, x \in X_k$ so $x = -t + b \in A_k \cap X_k$ and so $A_k \cap X_k \neq (0)$. It follows that

126

 C_k is a non-zero right ideal of N and $C_k \cap A_{k+1} = (0)$. We then have a chain $C_1 \subsetneq C_1 \bigoplus C_2 \subsetneq \ldots$ which must terminate and so N has the minimum condition on right annihilators.

Corollary 6. If N is a regular d.g. near-ring in which module-essential Nsubgroups are essential and if N has the maximum condition on right annihilators and no infinite direct sums of right ideals then N is a finite direct sum of ideals which are either rings of matrices over division rings or non-rings of the form $M_G(\Gamma)$ for a suitable type-2 N-module Γ .

Obviously Theorem 7 holds when N is a regular near-ring in which module essential N-subgroups are essential and N has the maximum condition on Nsubgroups. In this case the conclusion of Corollary 6 again follows.

REFERENCES

(1) J. C. BEIDLEMAN, A note on regular near-rings, J. Ind. Math. Soc. 33 (1969), 207-210.

(2) G. BETSCH, Some Structure theorems on 2-primitive near-rings, *Colloquia Mathema*tica Societatis János Bolyai: Rings, Modules and Radicals, Keszthely (Hungary) 1971 (North Holland, 1973).

(3) A. FROHLICH, Distributively generated near-rings (I Ideal theory), Proc. London Math. Soc. (3) 8 (1958), 76-94.

(4) F. HANSON, One-sided prime ideals, Pac. J. Math. 58 (1975), 79-85.

(5) H. E. HEATHERLY, Regular near-rings, J. Ind. Math. Soc. 38 (1974), 345-364.

(6) K. KOH, On von Newmann regular rings, Canad. Math. Bull. 17 (1974), 283-284.

(7) S. LIGH, On division near-rings, Canad. J. Math. 21 (1969), 1366-1371.

(8) A. OSWALD, Completely reducible near-rings, Proc. Edinburgh Math. Soc. 20 (1977), 187-197.

(9) G. PILZ, Near-rings (North Holland, 1977).

(10) P. N. STEWART, Semisimple radical classes, Pac. J. Math. 32 (1970), 249-254.

(11) G. SZETO, On regular near-rings with no non-zero nilpotent elements, Math. Jap. 79 (1974), 65-70.

DEPARTMENT OF MATHEMATICS AND STATISTICS TEESSIDE POLYTECHNIC MIDDLESBROUGH CLEVELAND