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1. Introduction

Let X be a smooth projective irreducible curve of genus g over an algebraically closed
field k, G a connected reductive algebraic group over k and P a parabolic subgroup.
For a principal G-bundle E over X, consider the associated G/P-bundle
n: E/P—X. If ¢ is a section of = we denote by N, the normal bundle of a(X)
in E/P. The first result proved in this paper is the following.

THEOREM 1.1. There exist a section o of m: E/P —> X such that
deg (N,) < g - dim (G/P),

where g is the genus of X and deg(N,) denotes the degree of the normal bundle N,
considered as a vector bundle on X.

The above result was classically known in the case of G = GL(2) and P a maximal
parabolic, in the form of the theorem of M. Nagata [8] and C. Segre, which asserts
that a ruled surface on X admits a section whose self intersection number is
< g. It has also been proved for G = GL(n) and P a maximal parabolic subgroup
by Mukai and Sakai [12], and for G a classical group and P a maximal parabolic
subgroup by Nitsure [9]. For a general survey of the topic in the case of vector
bundles one may refer to Lange [7].

The main idea of our proof of the Theorem 1.1 is a ‘no-ghosts theorem’ for the
Hilbert scheme of E/P, which asserts that every point of the Hilbert scheme which
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lies in an irreducible component containing the Hilbert point of a minimal section
(i.e. for which deg(N,) is minimum), is itself the Hilbert point of a section
(Proposition 2.3). We then adapt an argument of Mukai—Sakai to complete the proof
of the theorem.

In the second part of the paper, we prove the following theorem:

THEOREM 1.2. Let G be a connected reductive algebraic group and X a smooth
projective irreducible curve over an algebraically closed field k of arbitrary
characteristic. Then the set of isomorphism classes of semi-stable G-bundles on
the curve X with a given degree is bounded. In particular, if G is semi-simple then
semi-stable G-bundles form a bounded family.

For a precise definition of degree see Section 3. In characteristic 0, the above theorem
is due to Ramanathan [3]. For the classical groups, the result follows in all
characteristics (except in characteristic 2 for G = SO(n)) from the observation of
Ramanan (see [13], Proposition 4.2) that a G-bundle is semi-stable if and only if
the underlying vector bundle is so.

2. Minimal Sections

Let X be a smooth projective irreducible curve over an algebraically closed field k.
Let G be a connected reductive algebraic group over k and P a parabolic subgroup
of G.

Given a principal G bundle E over X, denote by n: M — X the associated bundle
E/P with G/P as fibres. If ¢ is a section of : M — X, we denote by N,, the vector
bundle on X obtained by pulling back by ¢ the normal bundle of ¢(X) in M. Observe
that N, is the pullback ¢*(T,) where T is the tangent bundle along the fibres of
wnM—X.

In the following lemma we prove that the degree deg(N,) of the vector bundle N,
on X is bounded below.

LEMMA 2.1. Given a principal G-bundle E —> X, there exists a constant C such that
deg(Ny) = C for all sections of the associated bundle m: M — X.

Proof. Let T, be the tangent bundle along the fibres of n. As already observed,
N, =2 ¢*(T,). If g (resp. p) are the Lie algebras of G (resp. P) we have an exact
sequence of P-modules

0—p—g—>g/p —0.

Note that g/p is the tangent space of G/ P at e. On M, we have the principal P-bundle
E— M, and the above short exact sequence of P-modules gives a short exact
sequence of vector bundles on M. Pulling it back under o gives us a short exact
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sequence of vector bundles on X, whose middle term is the adjoint bundle of £ and
the last term is 0*(77;). This implies that ¢*(77%) is a quotient of a fixed vector bundle
(independent of o). O

It is known that n: M — X admits sections. This follows from a theorem of Springer
(see, for example, Ramanathan [3], 2.11, p. 306).

Suppose ¢ is a section of n: M —> X. We say ¢ is a minimal section if deg(N,) is
minimum. As sections exist, and as their degrees are bounded below by Lemma 2.1,
there exists a minimal section.

We will now prove a lemma which is a crucial step in the proof of Theorem 1.1. Let
Y be a one-dimensional projective scheme over k. If L is a line bundle (locally free
sheaf of rank one) on Y, we define the degree of L by

Note that this is consistent with the usual definition of the degree of a line bundle on a
non-singular projective curve.

It is well known that if Lis ample on Y, then deg(Y, L) > 0 (see for example litaka
[10], 8.4). Observe that deg(Y, L) is the sum of deg(Y;, L) where Y; are the connected
components of Y (regarded as open subschemes), where the zero dimensional
components of Y contribute 0 to the degree.

LEMMA 2.2. Let X be a smooth projective irreducible curve over k and Y a
projective one dimensional scheme over k.
Let f: Y — X be a morphism. Assume that

(@) 2(X,0x)=(Y,Oy).
(b) For some line bundle L of degree 1 on X, we have y(X, L) = y(Y, f*(L)).

Then we have the following:

(1) There exists a unique irreducible component D of Y which dominates X. Let D,y
be the reduced subscheme structure on D induced from Y. Then
Sf1p,.y - Drea —> X is an isomorphism.

(1) Suppose that the component D given by (i) above is the only irreducible component
of Y of dimension one. Then f: Y —> X is an isomorphism (in particular, Y has no
zero-dimensional components).

(iii) Let & be a line bundle on Y. Suppose that Y has more than one irreducible
component of dimension one. Let Dy, D, ..., D, be the one-dimensional
irreducible components other than D and let D; ,.q be the corresponding reduced
subscheme of Y. Suppose (lp, ., is ample for all i Then we have
deg(Dreds é) < deg( Y, é)

Proof. We prove the proposition in several steps:
Step (1). R'f,(Oy) is a torsion sheaf, in particular, H'(X, R'f,(Oy)) = 0.
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Proof of Step (1). Let S C X be the set of points of X over which the fibres of
Y — X are positive-dimensional. As Y is one-dimensional, it follows from the
semi-continuity of the dimension of fibres that S is a finite set of points of X. If
U= X — S, then we observe that f|,1 ) is quasi-finite and proper, hence it is a
finite map. Therefore R",(Oy-1(7)) = 0. Now it is clear that R'f,(Oy) is supported
over S, hence it is a torsion sheaf.

Step (2). deg(Y, f*(L)) = x(X, f«(Oy) ® L) — (X, f«(Oy))

Proof of Step (2). We have H(Y,Oy) = H(X,f.(Oy)), and H(Y,f*(L)) =
H(X,f.f*(L)) = H'(X, f.(Oy) ® L) by the projection formula. Since dim(X) =1,
the Leray spectral sequence gives us the following exact sequences

0—H'(X,f(Oy) —H\(Y,0y)— H’(X, R'f,(Oy)) —0

and

0—H'(X,f.(Oy)® L)—HY(Y, f*(L)) — H(X, R'f,(Oy) ® L) —0.
Hence

1Y, Oy) = 1(X, £(Oy)) — i°(X, R'f.(Oy))
and

WY, 1 (L) = 2(X,f(Oy) ® L) = (X, Rf(Oy) ® L).
Note that as R!f,(Oy) is torsion by step (1), we have
KX, R'f.(Oy)) = (X, RYf(Oy) ® L).
Hence
deg(Y,/*(L)) = x(Y, /(L)) — (Y, Oy)
= 1(X, £(Oy) ® L) — y(X, £(Oy)).

Step (3). Rank f,(Oy) = 1, in particular, f is dominant.
Proof of Step (3). If T is the torsion submodule of £,(Oy), we have the short exact
sequence

0—>T—>f*(0y)—>Q_>O,

0 being locally free. Since we have

deg(Y,f*(L)) = 2(Y.f*(L)) — x(Y, Oy)
= (X, L) — y(X, Ox)(by (a) and (b) of the lemma)
=1,

it follows from step (2) that
1 =X, f:(Oy) ® L) — x(X, fi(Oy)).
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From the short exact sequence 0 —7T ® L —f,(Oy) ® L—Q0 ® L—0 we see
that

21X [:(Oy) ® L) — (X, fu(Oy)) = x(X, Q0® L) — 2(X, Q)

as y(X, T® L) = y(X, T) since T is a torsion sheaf.

Thus y(X,0® L) — y(X, Q) =1, in particular we have Q # 0. Note that this
implies that f is dominant. Let r be the rank of Q. Since deg(L) = 1, Riemann-Roch
on X gives

= (r+deg(Q) + r(1 — g)) — (deg(Q) + r(1 — g))

=r.

Thus r = 1.

Step (4). Proof of (i)

Since (f, /%) : (Y, Oy) — (X, Oy) is dominant (by step (3)) and X is reduced, the
corresponding homomorphism f%: Oy —f.(Oy) is injective (see EGA [2],
Proposition 5.4.3, p. 284). Since rank(fi.(Oy)) =1 (by step (3)), we have a short
exact sequence

0—0y —f(Oy) —T —0

where 7" is torsion. Let V' = X — Supp(7”) and U a non-empty open subscheme of X
such that f~!(U)— U is finite (see step (1)). Then f: f~{(UNV)—UNV,
(/" =flf1wnr)y 1s finite (and, hence, affine) and 1 uny,
Or-wnyy) = Ouny. Hence f” is an isomorphism. Let Y be the schematic image (see
EGA [2], 6.10, pp. 324-325) of the open inclusion f~'(UN V)= Y. Since
f~NUN V) is reduced, Y; is the reduced structure on f~1(U N V) induced by Y.
Then Y, is also irreducible and, hence, by Zariski’s main theorem,
fly,: Yo—X is an isomorphism. Since f":f"(UNV)—UNV is an
isomorphism, we see that Yy is the only component of Y which dominates X. In
the notation of the statement (i) of the lemma, we have D,.;, = Y.

Step (5). Proof of (ii)

Suppose now that Y has only one irreducible component D of dimension 1. Let
D,.q be the reduced subscheme of Y with support D. Then we have a short exact
sequence

0—I1—0Oy—0p , —>0.

red

Since f~1(U N V) is reduced and the other components, if any, are zero-dimensional,
we see that [ is supported at finitely many points. Now by hypothesis,
1Y, Oy) = (X, Ox) = y(Drea, Op,,,) as Dyeq —> X 13 an isomorphism. Since

1Y, 0y) = y(Y,0p,)+ (Y, 1) = x(X, Ox) + (Y, 1),
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we see that /°(Y, I) = 0, and since I is torsion, I = 0. Thus in this case f : ¥ — X is
an isomorphism.

Step (6). Proof of (iii)

Suppose that Y has other one-dimensional components apart from D.

Let Dy, ..., Dy (k = 1) be the other one dimensional components by Py, ..., P; the
0-dimensional components. Let Y' =Y — {Py,..., P/}, considered as an open
subscheme of Y. Let W = Y’—{points of intersection of two distinct components},
considered as an open subscheme of Y. Let W* be the schematic closure of W
in Y’. Similarly define D} for any component to be the schematic closure in Y’
of D;—{points of intersection of D; with the other components}. Observe that
D* = Dyq (see step (4)). Note that D* and D{ are closed subschemes of W*. We have
a short exact sequence

0—T) — 0Oy —0Ops —0
and
0 —>0Wx —)(QD»’{M (&) OD; D...8P OD;c —>T2 —0.

where T and T, are supported at finite number of points.
For the line bundle ¢ on Y, we have

deg(Y, ¢) = deg(Y’, §) = deg(W*, )

k
= deg(D},4, &) + Y _deg(D;, &).
i=1
Now (D?),,4 1s the same as the reduced scheme structure D; .; induced on D; by Y.
Since by hypothesis, &|p,,, is ample, ¢|p is ample too as can be seen. Hence

deg(Di, £) > 0 for each i. Thus, as D,y = D°, we get

deg(Dyeq, €) = deg(D’, §) < deg(Y, &).

This completes the proof of the Proposition 2.2. O

We now go back to proving the Theorem 1.1. The above Lemma is used in the
proof of the following proposition.

PROPOSITION 2.3. Let g be a minimal section of n: M — X as defined earlier. Let
‘H be the Hilbert scheme of closed subschemes of M (we may restrict ourselves to
Hilb? (M) where P is the Hilbert polynomial of o, with respect to an ample line
bundle). Let Y be the closed subscheme of M, represented by a point of H which
lies in an irreducible component containing the Hilbert point of oo(X). Then
nly : Y — X is an isomorphism.

Proof. Let L be a line bundle of degree 1 on X. Let 5 be the line bundle det(7);) on
M, where T, is the tangent bundle along the fibres of n. Consider the diagram
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N
H M—T—X
where py : X —'H is the universal family which is a flat morphism. By considering

the line bundles Oy, p3,n*(L) and p3,(n) and using the fact that Euler characteristics
are locally constant in a flat family of coherent sheaves, we see that

1Y, 0y)=y(X,0x) and x(Y,f*(L)) =x(X,L)=1,

where f = 7|y and x(Y, &) = x(X, a§(n7)), where & = y|y.

Now apply Lemma 2.2 to the morphism f. Using the notation of that
proposition, if D is the only irreducible component of dimension one which
dominates X, then by (ii) of the proposition, f : ¥ — X is an isomorphism. Sup-
pose there were other one-dimensional components Dy, D,, ..., Di. Now D; ey
is contained as a closed subschemes of a fibre of f. Since the restriction of 5 to
any fibre of the map M is ample we conclude that ¢|p, , is ample. Let 7 be the
section of M —> X defined by the inverse of the isomorphism f|,  : Dyeq — X.
We would then have

red

deg(X, t(T7)) = deg(Dyeq, ¢) < deg(Y, &) = deg(X, 6™(T7)),

by (iii)) of the Lemma 2.2 if there are other components. But this would
contradict that ¢ is a minimal section. Hence D is the only component of Y. This
completes the proof of the proposition. O

Remark. The Hilbert scheme H has an open subscheme I1(M/X), which consists
of Hilbert points of all sections of n: M — X (see FGA [1], TDTE, IV, SS 4c,
pp- 19-20).

LEMMA 2.4. Suppose that S is an irreducible component of TI(M/X) which is
proper over k. Then dim(S) < dim(G/P).

Proof. The restriction s:S8xX—M of the wuniversal morphism
IM(M/X) x X — M makes the following diagram commute.

/M
Sx X X,

Py
We claim that s is a finite morphism. As by assumption S is proper over k, the
morphism s is proper, it is enough to check that the fibres of s are zero-dimensional.
Suppose yo € M, such that dim(s~'(y)) >1. Then s~ !(yg) is of the form
By x {xo} where xo = n(yg), By C S. We can find a closed sub-variety B of By with
dim(B) = 1, with s(B x {xo}) = yo. Consider the morphism s|z .y : Bx X — M.
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Now B is complete, since S is so. Since s(B x {xo}) = yo, by rigidity Lemma
(Mumford [5], 1.4, p. 43) s factors through X, that is, there exists a morphism
¢ : X — M such that s = ¢ o py. This is a contradiction as dim(B) > 1 (compare
Mukai and Sakai [12], pp. 254-255). O

LEMMA 2.5. Let S be an irreducible component of the Hilbert scheme H which
contains the Hilbert point of a minimal section . Then S lies in TI(M/X), and
dim(S) < dim(G/P).

Proof. As Sis closed in H, and H is proper over k, it follows that S'is proper over k.
By Proposition 2.3, every point of S is the Hilbert point of some section of
n: M — X, hence S is contained in the open subscheme I1(M/X) of H. Therefore,
S is an irreducible component of I1(M/X). Hence, by Proposition 2.4, we have
the desired conclusion.

Proofof the Theorem 1.1. Let 6 be a minimal section, and N, be the normal bundle
of 6(X) in M. By deformation theory, it is known that the dimension of the Hilbert
scheme H at a point g(X) satisfies the inequality (see Mori [11], Proposition 3)

dimpgy(H) = KX, N) — I (X, N).

By Lemma 2.5 we have dim,(xy(H) < dim(G/P). On the other hand by Riemann—
Roch we have

(X, N,) — h'(X, N,) = deg(N,) + dim(G/P)(1 — g).
Hence it follows that deg(N,) < g-dim(G/P). This completes the proof of the
Theorem 1.1. [

Remark 2.6. In the case of a Borel subgroup it is easier to prove the existence of a
section ¢ such that deg(N,) < C, where C is a constant which depends on the genus
of the curve and the group G, but not on the particular G-bundle. In fact by a result
of Harder ([6], satz 2.2.6) there exists a reduction ¢ to B, a Borel subgroup, such
that if L, 1is the line bundle associated to a simple root o; we have
deg(L,,) = 2g. Now det(NN,) is the line bundle associated to the character of B defined
by (— ) ,.0 ), sum over all positive roots. Now

(~3)= (- Xm),

>0

where o;’s are simple roots taken with respect to a fixed maximal torus contained in B
and m; > 0 depending only on the group G. Hence

deg(N,) = — Zmideg(%)
< (Zm,) -2g.

This remark is sufficient for the applications we have in mind.
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3. Boundedness for Semi-Stable G-Bundles

In this section we use the results of the previous section to prove the boundedness of
semi-stable G-bundles of a fixed degree on a smooth projective curve X over an
algebraically closed field k& of arbitrary characteristic, where G is a connected
reductive algebraic group over k.

For any algebraic group G, a set S of principal G-bundles on X is called bounded if
there exists a scheme S of finite type over k, and a family of principal G-bundles
parametrised by S, such that each element of S is isomorphic on X to the G-bundle
on X obtained by restriction of the given family to some point of S.

PROPOSITION 3.1. Let B be a Borel subgroup of the reductive group G and
T = B/B,, where B, the unipotent radical of B. Let By be a bounded set of T-bundles
on X, and let B be a set of G-bundles on X such that each member of B admits a
reduction of structure group to B such that the associated T-bundle is isomorphic
to a member of Br. Then B is a bounded set of G-bundles.

Proof. We first prove it in the case of G = GL(n) and B = upper triangular
matrices. We may identify principal GL(n)-bundles with their associated vector
bundles. By hypothesis, each vector bundle E in B admits a full flag
OCECE,C...CE,=E such that the degrees of the line bundles
E;/E;_1(i=1,...,n) are bounded. Since line bundles of a given degree form a
bounded family and extensions of vector bundles in bounded families form a
bounded family (see FGA [1], 4, Proposition 1.2, p. 221), the proposition is proved
in this case.

In the general case, we embed G as a closed subgroup of GL(n) for some n. Let B;
(resp. B) be a Borel subgroup of GL(n) (resp. G) with B C B;. Since B, is contained
in By,, we have an induced homomorphism of T into 7}, where T = B/B, and
Ty = By/B1u.

Let B’ be the set of GL(n) bundles obtained from B by extension of structure group
via G— GL(n). From the commutative diagram

G +GL(n)

]
]

T —— T

we see that each bundle in B’ has a reduction to By, such that the corresponding 7
bundle is obtained by extension of structure group from an element of the set
Br. Since by hypothesis Br is a bounded set, by what has been proved above
for GL(n)-bundles, By is a bounded set.

Let P— X x W be a family of principal GL(n)-bundles on X parametrised by a
scheme W of finite type over k, such that up to isomorphism all the bundles in
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B’ occur in this family. Using P we shall now construct a family of G-bundles on X
parametrised by a scheme S of finite type over k, such that every bundle in B occurs
in this family.

By the results of Grothendieck (see FGA, 221, 4.c), there exists a W -scheme
S =wyx,w((P/G)/W x X) which has the following universal property: for any
W-scheme U — W, the set of sections of (P/G)y —X xw U is in bijective
correspondence with the set of sections of Sy over U. In particular, for w e W,
the fibres of S — W consists of the sections of the fibre bundle P,,/G —> X, where
P,, = Plw x X, and these are exactly the reductions of the GL(n) bundle P,, to G.

Therefore, the universal section of (P/G)g — X X S gives a family of G-bundles
parametrised by S, in which each bundle from the set B occurs. Finally, as G and
GL(n) are reductive groups, GL(n)/G is affine, and there is a representation of
GL(n) on a vector space V which gives a GL(n)-equivariant closed embedding of
GL(n)/G— V. Now it is clear that the scheme S is a closed subscheme of the scheme
S =y X/W(f//W x X), where V is the vector bundle associated to P by the
representation of GL(n) on V. Hence, S is of finite type over k (see Ramanathan
[4], Remark 4.8.2, p. 425). This completes the proof of the Proposition 3.1. [

Let G be a connected reductive group. Let X*(G) = Hom(G, k*). Let Z be the
center of G and Z° its connected component of identity. Then G = Z°.[G, G]
and Z° N[G, G] is finite. Thus X*(G) is a subgroup of X*(Z°) of maximal rank.

If E is a G-bundle on X, we have a homomorphism dg : X*(G) —> 7 given by
x\— deg(E,;), where E, is the line bundle associated to E by y.

DEFINITION 3.2. We shall call the element dp € Hom(X*(G), 7) the degree of E.
When G = GL(n), the above definition reduces to the usual definition of the degree of
the associated rank n vector bundle, as X*(GL(n)) = 7Z. Also note that if G is
semi-simple then dg is zero as Hom(X*(G), Z) = 0. We have the following:

LEMMA 3.3. Let T = GL(1)' be a torus and L C X*(T) be a subgroup of maximal
rank. For a T-bundle F on X, let dp : X*(T) —> 7 be the homomorphism as above,
and d, : L —7 be the restriction of dp to L. If S is a set of T-bundles on X such
that the set {di|F € S} is a finite set, then S is a bounded set of T-bundles.

Proof. We reduce the proof to the case where L = X*(T') as follows. If L ¢ X*(T)
is an arbitrary subgroup of maximal rank, then there exists a basis {y;,..., y}
of X*(T) such that {41y, ..., 4y} forms a basis for L, with /; € Z, 4; # 0 for each
i. Since dr(y;) = ii_ldF(/I,-;{i), the result is true for L if it is true for X*(T).

Hence we can assume that L = X*(T). Let {y;, ..., y;} be a basis of X*(T'). Then by
our hypothesis the set Ny = {di(y)|F € S,1 <i <[} is a finite set of integers. Thus
the set S can be considered as a subset of the set of all /-tuples (/ = dim(7))

{(L1,...,Lp)|L; € Pic(X) with deg(L) € Ny}
Hence S is a bounded set. O
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PROPOSITION 3.4. Let G be a connected semi-simple group. Then the family of
semi-stable G-bundles on X is bounded.

Proof. Let S be the set of G-bundles such that every element is semi-stable. We
shall show that each member E of S admits a reduction of structure group to B
such that the associated 7-bundles E7 (as E varies in S) form a bounded family.
We then apply the Proposition 3.1 to complete the proof. For any principal G-bundle
E, by Remark 2.6, we can choose a reduction ¢ of the structure group to B such that
deg(N,) < C, where C is a constant independent of E. To show that the set of
associated T-bundles {E7} is bounded, we will show that there is a subgroup L
of X*(T) of maximal rank with the property that {(dg,|.)| E € S} is a finite set
and then use Lemma 3.3.

Let A1, ..., A; be the set of fundamental weights with respect to a maximal torus
contained in B and the positive roots being contained in the Lie algebra of B.
Let m be a positive integer with the property that mA; is a character of T for every
i. Let L be the subgroup of X*(T) generated by {mA;|1 < i <[}. Then we observe
that L is of maximal rank. Now the line bundle det(N,)®” is associated to the
character

!
-2 Z(m/l,-) =— Z mo.
i=1

oa>0root

Hence for each E7 as above we have the condition

!
> dg,(mA;) = —deg(det(N,)®")/2 > — mC/2,

i=1

where dg, (mA;) is the degree of the line bundle associated to E7 by the character mA;.
On the other hand, if £ is semi-stable then for any reduction of structure group to B
the degree of the line bundle associated to a dominant character of Bis < 0 (see
Ramanathan [3]). Thus we have dg,(mA;) < 0. This together with the above
inequality implies that —mC/2 < dg,(mA;) < 0 for each i. Hence {(dg,| )| E € S}
is a finite set. This completes the proof. O

Proof of the Theorem 1.2. Let S’ be the set of semi-stable G-bundles with a fixed
degree. For each element £ of &’ we choose a reduction ¢ of structure group to
B with deg(N,) < C, C independent of E. We shall show that the associated
T-bundles form a bounded family and apply Proposition 3.1. This will be shown
by proving that there is a subgroup L of maximal rank in X*(7T) such that
{(de,| )| E € 8} is a finite set and then using the Lemma 3.3.

Note that 7" = T/Z° is a maximal torus of G' = G/Z°, contained in its Borel
subgroup B’ = B/Z°. As we have the isomorphism G/B = G'/B, it follows that
the G’-bundle E’ obtained from E by extension of structure group is semi-stable,
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and o gives rise to a reduction ¢’ of structure group of £ to B'. We also observe that
any dominant character vanishes on Z°.
Consider the following diagram:

0 ——&(T/2%) — X" (T) — X*(Z°) —0

|~

A*(G)

where the row is exact. As already remarked, X*(G) is a subgroup of maximal rank in
X*(Z°). Hence the subgroup L generated by X*(G) and X*(G/Z°) is of maximal rank
in X*(T). The set {dg, || E €S’} is finite because dg,|im+ () is fixed while
{dE;lim(r/20) | E € 8’} is a finite set as shown in Lemma 3.4, since G’ is semi-simple
and E’ is semi-stable. Now the theorem follows from the Lemma 3.3 and
Proposition 3.1. [
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