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On Superposition by the Aid of Dissection.

BY R. F. MUIRHEAD, M.A., B.Sc.

What do we mean when we assert that one plane figure is equal
to another ? In trying to find a satisfactory answer to this question
I was led to consider the subjects treated in this paper.

Euclid's Axiom : Magnitudes which coincide are equal, may be
taken as defining the nature of geometrical equality: but it
obviously does not apply to any but congruent figures. We must
therefore have a more comprehensive definition. I suppose the
conception tacitly used by mathematicians is that magnitudes are
equal which can be so dissected that for each part of one there is a
corresponding part of the other which is congruent to it. This
would be sufficient for elementary Geometry, while for higher
Geometry the method of limits would be needed in addition, and
magnitudes would have to be recognised as equal if pairs of
mutually congruent parts could be subtracted from them con-
tinually until the remainders were both infinitesimal.

Now the first proposition of Euclid in which equal non-congruent
figures occur, is the 36th of Book I. But there it is to be noted
that the two parallelograms are proved to be equal, not directly by
dissecting them into mutually congruent parts, but by the aid of
the axiom that if equals be taken from, equals, the remainders are
equal. However, a very simple method of dissection rendering
superposition possible in this case is well known, and is given in
some school editions of Euclid.

The more general question arises, as to whether any two equal
rectilinear plane figures can be rendered superposable by dissection
into a finite number of parts. I shall show that this question may
be answered in the affirmative.

Prop. 1. Any two rectilinear figures, or systems of rectilinear
figures, A and B, can be dissected into pairs of equal triangles, one
triangle of each pair belonging to A and the other to B.

By joining vertices, we can divide both A and B into triangular
areas. Suppose the system A gives m, and the system B, n triangles.
Consider any pair of triangles, one from A and the other from B.
If they are equal, cut off both, and A is left with m- 1, B with
n - 1 triangles. But if the triangle in A is greater than that in B,
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cut off from the former a part equal to the latter, and cut off the
latter, and A is left with m, B with n - 1 triangles. Thus the total
number of triangles is diminished by two or one according as the
triangles chosen are equal or unequal. By repeating this process,
we dissect A and B as required, and the number of pairs of con-
gruent triangles cannot exceed m + n.

Prop. 2. Any two equal triangles can be made superposable by
dissection.

Case 1. If the triangles have two sides of one equal to two sides
of the other, and the contained angles supplementary, they may be
placed as the triangles ABC, DBC in Fig. 40. Then by joining the
mid points of AB and BD to C we divide the triangles into two
pairs of congruent triangles marked 1, 1 and 2, 2.

Case 2. If the triangles have a side of one equal to a side of the
other, let them be placed with this as common base, but on opposite
sides of it as in Fig. 41, where ABC, DBC are the equal triangles.

Join AD which will be bisected by BC in E. Then ABE, DBE
are triangles related as in Case 1, and can therefore be dissected as
required. So also the triangles AEC, DEC. Thus we have four
pairs of congruent triangles 1, 1; 2, 2 ; 3, 3 ; and 4, 4.

But this simple construction fails when -AD falls without the
given triangles. In such a case, as in Fig. 42, where the line AD
cuts BC produced in E, a further construction is necessary.

As before, join E to the mid points of AB and AC. Then take
points F, G, H, K, etc., such that EF = FG = EH = HK, etc.,
each = BC, and through these points draw lines parallel to the
lines previously drawn from E. Let a similar construction be made
for the lower triangle BCD, and we get ABC and DBC dissected
as required, the pairs of congruent parts being indicated as before
by numerals. (Observe the different order of the parts in ABC
and BCD.)

It is obvious that here also the number of parts will be finite.
Case 3. If the triangles have no pair of equal sides, but are

equal in area, let us construct an intermediate triangle equal to
either of the given triangles in area, and having one side common to
each of them. This is obviously always possible. Let the given
triangles be called P and Q, and the intermediate one, R. As in
Case 2, let P and R be dissected into mutually congruent parts, and
also Q and R. Then R is dissected by two sets of lines. Let each
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part of P be then dissected in the same manner as the corresponding
part of R is dissected by the lines of the second part of the con-
struction, and let the parts of Q be similarly treated. Then P and Q
are obviously dissected as required.

Prop. 3. (Corollary to the foregoing). Any two plane rectilinear
figures of equal area can be made superposable by dissection.

I made some attempts to carry out similar dissections for solid
figures bounded by plane faces, but though I succeeded in the case
of parallelepipeds and prisms, I failed in the case of tetrahedra and
other pyramids. It is to be remarked that precisely at this point
in the theory of solids does Euclid discontinue the use of the
elementary methods of Book XL, relegating the theory of pyramids
(with that of circular areas, etc.) to Book XII. where a method of
Exhaustions is used.

It seems to me probable for certain reasons that where I failed,
the problem is insoluble, i.e., that in general -it is impossible to
render two tetrahedra of equal volume congruent by means of
dissection into a finite number of parts, and I am not sure but that
this impossibility may be conclusively demonstrable. So far, how-
ever, I have not arrived at a satisfactory demonstration.

Probably, also, there is a connection between the " superpos-
ability" of two solids of equal volume or of two plane figures of
equal area and the possibility of proving their equality by elementary
geometrical methods, such that one involves the other.

By " superposability " I here mean capability of dissection into a
finite number of pairs of congruent parts, one from each figure.

To prove this connection, it would be necessary to show that all
the axioms relating to geometrical equality hold good also with
regard to "superposability," using this word in the sense just
explained. For example we should have to show that if "super-
posables" be added to " superposables," the wholes are "superposable,"
etc. I find that the only axiom which presents any difficulty is
that corresponding to Euclid's Axiom 3, viz: if "superposables" be
taken from "superposables" the remainders are "superposable,"
which again can be made to depend on this : if congruents be taken
from congruents the remainders are "superposable." I have not yet
succeeded in establishing this generally, but I find that a construc-
tion, of which Fig. 42 is a particular case, goes a good way towards
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i t : in fact it demonstrates the axiom for solids with the exception
of a special class of cases. But into these questions I shall not enter
further at present.

After I had obtained practically all the results given in this
paper, I found that a good deal had been already done by others,
though in a somewhat different way. In particular, the general
problem of Prop. 3 above is completely solved in a paper by Robert
Brodie, published in the T.R.S.E., Vol. XXXVI. part 2, p. 307,
entitled "On Professor Kelland's Problem on Superposition," in
which he refers to some previous papers by Kelland in earlier
volumes. Again, Perigal (Messenger of Mathematics, II. p. 103)
gives a solution for the case of Euclid I. 47, which is generalised to
some extent by Harry Hart (Messenger, VI. p. 150).

On the Elementary Differentiations.

By R. F. MUIRHEAD, M.A., B.Sc.
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