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Abstract
We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds under strong limits. For
a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the
limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence
to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets.
In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics
between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics.
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1. Introduction
The critical exponent of a discrete isometry subgroup of the hyperbolic space H𝑛 is an important
numerical invariant which relates the dynamical properties of the group action to the measure theory
and the spectrum of operators on the quotient manifold via the celebrated work of Patterson and Sullivan
[Pat76, Sul79, Sul84]. More explicitly, this invariant was shown to be equal to the Hausdorff dimension
of the limit set for any geometrically finite discrete isometry subgroup Γ [Sul79, Sul84], and is related
to the bottom spectrum 𝜆0 of the negative Laplace operator for any nonelementary complete hyperbolic
manifold [Sul87]. A natural line of inquiry is to ask whether this quantitative invariant can be uniformly
controlled for a sequence of hyperbolic manifolds (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N, for example, sequences of quasi-
Fuchsian manifolds in Bers’s model for the Teichmüller space of a surface S. It turns out that the critical
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2 B. Liu and F. Vargas Pallete

exponent of Γ𝑘 , the Hausdorff dimension of the limit set, and the bottom of the spectrum 𝜆0(H𝑛/Γ𝑘 ),
converge to the ones of the limit group Γ < Isom(H𝑛) under the assumption that Γ is geometrically
finite and 𝛿(Γ) > (𝑛−1)/2 for strongly convergent sequences of hyperbolic manifolds (𝑀𝑘 )𝑘∈N [CT99,
McM99]. See Section 2.5 for the definition of strong convergence.

Besides the bottom spectrum of the quotient manifold, there are finitely many small eigenvalues of
the negative Laplace operator in the interval [𝜆0, (𝑛 − 1)2/4], where (𝑛 − 1)2/4 is the bottom spectrum
of the hyperbolic space H𝑛 [LP82]. It is natural to ask whether these small eigenvalues converge to
the ones of Γ, respectively. We prove the convergence of small eigenvalues for strongly convergent
sequences of hyperbolic manifolds (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N. In particular, we give a uniform bound on the
Lax-Phillips spectral gap 𝑠1 defined by 𝑠1 := min{𝜆1(𝑀), (𝑛 − 1)2/4} − 𝜆0(𝑀), where 𝜆1(𝑀) is the
smallest eigenvalue of the negative Laplacian in (𝜆0(𝑀),∞).
Theorem 1.1. Suppose that (𝑀𝑘 = Isom(H𝑛)/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which
converges strongly to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ. The set of small eigen-
values in [𝜆0 (𝑀𝑘 ), (𝑛 − 1)2/4] converges to the small eigenvalues of the limit manifold M, counting
multiplicities. In particular, the sequence of Lax-Phillips spectral gaps of (𝑀𝑘 )𝑘∈N converges to that of
the limit manifold M.
Remark 1.2. We explain what the convergence of the set of small eigenvalues means in Section 3, and
leave the precise statement in Theorem 3.3. The statement of Theorem 1.1 for small eigenvalues holds
for negatively pinched manifolds, and the details are discussed in Section 3. The statement referring to
Lax-Phillips spectral gap is done in Theorem 3.4 for Kleinian groups. It could be possible that the set
of small eigenvalues is equal to the singleton {(𝑛 − 1)2/4} (or the empty set by considering pinched
negative manifolds), but it won’t affect the statement of the theorem.

Sequences of hyperbolic manifolds with uniform spectral gap are interesting to study, as the uniform
spectral gap sometimes controls the dynamical properties of the geodesic flow of the manifold. For
instance, following [EO21], uniform spectral gaps of hyperbolic manifolds imply uniform exponential
mixings of geodesic flows. In the same paper, they provided another family of hyperbolic manifolds with
uniform spectral gaps, coming from congruence subgroups of certain arithmetic lattice of Isom(H𝑛).

The exponentially mixing geodesic flow can be used to find good estimates for error in asymptotic
approximations of counting functions, such as the estimates available for orthogeodesic counting (as done
in [PP17]). Namely, given 𝐷−, 𝐷+ (locally) convex sets (or equivalently, 𝜋1 (𝑀) precisely invariant
convex sets in the universal covering) in M, one can estimate N𝐷− ,𝐷+ (𝑡), the number of orthogeodesics
between 𝐷− and 𝐷+ of length less than 𝑡 > 0, by

N𝐷− ,𝐷+ (𝑡) ≈ 𝐴𝑒𝛿𝑡 (1 + 𝑂 (𝑒−𝜅𝑡 )),

where 𝐴, 𝛿, 𝜅 and 𝑂 (.) depend on the geometric/dynamical features of 𝑀, 𝐷−, 𝐷+, with exponential
decay of correlations among these features. We consider the following two interesting cases in this paper:
1. 𝐷± are connected components in the thin part of M, that is, Margulis tubes or cusps.
2. 𝐷+ = 𝐷− is an embedded ball at a given point 𝑥 ∈ 𝑀 . That is, the lifts of 𝐷± are sufficiently small

balls of lifts of x in H𝑛.
The uniform orthogeodesic counting formula for strongly convergent sequences in case (1) can be

used in the study of the renormalized volume. Given a hyperbolic manifold M, the renormalized volume
is a function on the deformation space of M whose gradient flow has been of interest (see [BBB19],
[BBP21]). In [BBP21], it is shown that for M acylindrical, the gradient flow of the renormalized volume
converges to the unique critical point. This involves discarding strong limits with pinched rank-1 cusps by
the use of the Gardiner formula. For such a method to work, one needs a uniform control of contributing
terms in the Gardiner formula, which would be provided by uniform orthogeodesic counting. The
uniform orthogeodesic counting formula for case (2) gives a uniform asymptotic counting result with
uniform error term for geodesic loops based on a given point in M. Motivated by these applications,
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we show that the parameters 𝐴, 𝛿, 𝜅, and 𝑂 (.) are uniform for strongly convergent sequences, and such
parameters can be taken arbitrarily close to the corresponding parameters of the geometrically finite
limit.

Theorem 1.3. Let (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N be a sequence of hyperbolic manifolds which strongly converges
to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛 − 1)/2.

1. Suppose that 𝐷±
𝑘 are connected components in the thin part of 𝑀𝑘 , and (𝐷±

𝑘 )𝑘∈N converge strongly
to connected components 𝐷± in the thin part of M. Then there is a uniform counting formula for
orthogeodesics between 𝐷−

𝑘 to 𝐷+
𝑘 for the sequence (𝑀𝑘 )𝑘∈N.

2. Suppose that (𝑥𝑘 ∈ 𝑀𝑘 )𝑘∈N is a sequence of points converging to the point 𝑥 ∈ 𝑀 . Then there is a
uniform counting formula for geodesic loops based at 𝑥𝑘 for the sequence (𝑀𝑘 )𝑘∈N.

Remark 1.4. We in fact prove the result for strongly convergent sequences of well-positioned convex
sets in a strongly convergent sequence of hyperbolic manifolds (Theorem 5.3). We refer readers to
Section 2.5 for the definitions of well-positioned and strong convergence of convex sets in hyperbolic
manifolds.

The counting of primitive closed geodesics follows from the counting of geodesic loops in manifolds
with negatively pinched curvatures [Rob03, Chapter 5]. Hence, we obtain the following asymptotic
counting of primitive closed geodesics along sequences of strongly convergent hyperbolic manifolds.

Corollary 1.5. Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which strongly
converges to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛 − 1)/2. Then we
can count the number of primitive closed geodesics with length less than ℓ in 𝑀𝑘 , denoted by #G𝑀𝑘 (ℓ),
uniformly, in the sense that

#G𝑀𝑘 (ℓ) ≈
𝑒𝛿 (Γ𝑘 )ℓ

𝛿(Γ𝑘 )ℓ

up to a multiplicative error uniformly close to 1 along the sequence as ℓ gets larger and lim𝑘 𝛿(Γ𝑘 ) =
𝛿(Γ).

The proof of Theorem 1.3 involves the uniformity of the exponential mixing and the convergence
of certain measures for strongly convergent sequences. These measures refer to the classical Patterson-
Sullivan measures, the Bowen-Margulis measure, and the skinning measures. The convergence of
Patterson-Sullivan measures has been proved for strongly convergent sequences under the assumption
that the limit manifold is geometrically finite, and its critical exponent is greater than (𝑛−1)/2, [McM99].
The Bowen-Margulis measure and the skinning measures are defined in terms of the Patterson-Sullivan
measures. Answering a question of Oh, we prove the convergence of these two measures, which could
have its own interest.

Proposition 1.6. Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which are
strongly convergent to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛 − 1)/2.
For 𝑟 > 0, we denote by 𝑀<𝑟

𝑘 ⊂ 𝑀𝑘 , 𝑀<𝑟 ⊂ 𝑀 the sets of points with injectivity radius less than r.
Then the Bowen-Margulis measures 𝑚𝑘

BM on 𝑇1𝑀<𝑟
𝑘 converge to the one on 𝑇1𝑀<𝑟 weakly. Moreover,

we have the convergence of total masses.

Remark 1.7. The convergence of the Bowen-Margulis measures on 𝑇1𝑀<𝑟
𝑘 might be helpful for proving

that the Benjamini-Schramm limit of (𝑀𝑘 )𝑘∈N is also M (see, for instance [ABB+17, Section 3.9] for a
general definition of Benjamini-Schramm convergence).

We now discuss the convergence of skinning measures 𝜎± for the special type of well-positioned
convex sets in hyperbolic manifolds. Geodesic balls with sufficiently small radii and the thin part in
hyperbolic manifolds are well-positioned. We refer readers to Section 2.5 for the definition and detailed
discussions.
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Corollary 1.8. Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds that strongly
converges to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(𝑀) > (𝑛 − 1)/2. Let
𝐷𝑘 ⊂ 𝑀𝑘 , 𝐷 ⊂ 𝑀 be well-positioned convex sets, so that (𝐷𝑘 )𝑘∈N strongly converges to D. Then

‖𝜎±
𝜕𝐷𝑘

‖ → ‖𝜎±
𝜕𝐷 ‖.

The relative result also holds for subsets Ω𝑘 ⊆ 𝐷𝑘 , Ω ⊆ 𝐷 so that (Ω𝑘 )𝑘∈N strongly converges to Ω.

Organization of the paper

We review definitions of geometric finiteness, the Bowen-Margulis measure, and skinning measures in
Sections 2.1, 2.3, 2.4, respectively. Section 2.2 is about the relation between the critical exponent and the
bottom spectrum. Section 2.5 defines strong convergence of hyperbolic manifolds and the convergence
of well-positioned convex sets. Section 3 discusses small eigenvalues of the negative Laplacian on
negatively pinched Hadamard manifolds and gives a proof of Theorem 1.1. In Section 4, we prove the
convergence results of the Bowen-Margulis measure and the skinning measures, that is, Proposition 1.6
and Corollary 1.8. The last section, Section 5, proves the uniform asymptotic counting results of geodesic
loops and orthogeodesics along strongly convergent sequences, that is, the proof of Theorem 1.3.

2. Background

2.1. Geometric finiteness

In this subsection, we let X denote an n-dimensional negatively pinched Hadamard manifold whose
sectional curvatures lie between −𝜅2 and −1 for some 𝜅 ≥ 1. For any isometry 𝛾 ∈ Isom(𝑋), we define
its translation length 𝜏(𝛾) as follows:

𝜏(𝛾) := inf
𝑝∈𝑋

𝑑𝑋 (𝑝, 𝛾(𝑝)),

where 𝑑𝑋 is the Riemannian distance function in X. Based on the translation length, we can classify
isometries in X into three types; we call 𝛾 loxodromic if 𝜏(𝛾) > 0. In this case, the infimum is attained
exactly when the points are on the axis of 𝛾. The isometry 𝛾 is called parabolic if 𝜏(𝛾) = 0 and the
infimum is not attained. The isometry 𝛾 is elliptic if 𝜏(𝛾) = 0 and the infimum is attained.

From now on, we consider torsion-free discrete isometry subgroups Γ < Isom(𝑋), that is, Γ contains
no elliptic elements. If Γ < Isom(H𝑛) is a torsion-free discrete isometry subgroup, we call it a Kleinian
group. Given 0 < 𝜖 < 𝜖 (𝑛, 𝜅), where 𝜖 (𝑛, 𝜅) is the Margulis constant depending on the dimension n
and the constant 𝜅, let T𝜖 (Γ) be the set consisting of all points 𝑝 ∈ 𝑋 , such that there exists an isometry
𝛾 ∈ Γ with

𝑑 (𝑝, 𝛾𝑝) ≤ 𝜖 .

It is an Γ-invariant set, and the quotient T𝜖 (Γ)/Γ is the thin part of the quotient manifold 𝑀 = 𝑋/Γ,
denoted by 𝑀<𝜖 .

A subgroup 𝑃 < Γ is called parabolic if the fixed point set of P consists of a single point 𝜉 ∈ 𝜕∞𝑋 ,
where 𝜕∞𝑋 is the visual boundary of X. Note that T𝜖 (𝑃) ⊂ 𝑋 is precisely invariant under P, that is,
stabΓ (T𝜖 (𝑃)) = 𝑃 [Bow95, Corollary 3.5.6]. By abuse of notation, we can regard T𝜖 (𝑃) as a subset of
𝑀 = 𝑋/Γ, which is called a Margulis cusp. The union of all Margulis cusps consists of the cuspidal
part of M, denoted by cusp𝜖 (𝑀).

The limit set Λ(Γ) of a discrete, torsion-free isometry subgroup Γ < Isom(𝑋) is defined to be the
set of accumulation points of a Γ-orbit Γ(𝑝) in 𝜕∞𝑋 for any point 𝑝 ∈ 𝑋 . We call Γ elementary if
Λ(Γ) is finite; otherwise, we say Γ is nonelementary. For any two points 𝜉 and 𝜂 in 𝜕∞𝑋 , we use 𝜉𝜂
to denote the unique geodesic in X connecting these two points. The convex hull of Λ(Γ) ⊂ 𝜕∞𝑋 is
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the smallest closed convex subset in X whose accumulation set is Λ(Γ), denoted by Hull(Γ). We let
𝐶 (𝑀) = Hull(Γ)/Γ denote the convex core of quotient manifold 𝑀 = 𝑋/Γ. For any constant 𝜖 > 0, we
define the truncated core by

𝐶 (𝑀)>𝜖 = 𝐶 (𝑀) − 𝑀<𝜖 .

Given a constant 0 < 𝜖 < 𝜖 (𝑛, 𝜅), a discrete isometry subgroup Γ is geometrically finite if the
truncated core 𝐶 (𝑀)>𝜖 is compact in 𝑀 = 𝑋/Γ. If, in addition, 𝐶 (𝑀) is compact, that is, Γ contains no
parabolic isometries, then Γ is called convex cocompact. Furthermore, if Γ < Isom(𝑋) is geometrically
finite, the parabolic fixed points in Λ(Γ) are bounded, defined as follows:

Definition 2.1. [Bow93] A parabolic fixed point 𝜉 ∈ Λ(Γ) is bounded if (Λ(Γ) \ {𝑝})/stabΓ (𝑝) is
compact.

Given a point 𝑥 ∈ 𝑋 and a discrete isometry group Γ ∈ Isom(𝑋), the Poincaré series is defined as

𝑃𝑠 (Γ, 𝑥) =
∑
𝛾∈Γ

𝑒−𝑠𝑑𝑋 (𝑥,𝛾𝑥) .

The critical exponent of Γ is defined as

𝛿(Γ) := inf{𝑠 | 𝑃𝑠 (Γ, 𝑥) < ∞}.

It is not hard to see that the definition of 𝛿(Γ) is independent of the choice of x.

2.2. Eigenvalues and spectrum

As in Section 2.1, we let 𝑀 = 𝑋/Γ, where X is a negatively pinched Hadamard manifold, and Γ is a
torsion-free discrete isometry subgroup. Define the Sobolev space 𝐻1(𝑀) as the space obtained by the
completion of 𝐶∞

0 (𝑀) with respect to the norm ‖ 𝑓 ‖ =
√∫

𝑀
| 𝑓 |2 +

∫
𝑀

|∇ 𝑓 |2. This space can be also
defined as functions in 𝐿2 (𝑀) whose weak derivative (in the sense of distributions) is also in 𝐿2 (𝑀).

Given 𝑓 ∈ 𝐻1(𝑀), we define the Rayleigh quotient 𝑅( 𝑓 ) of f by

𝑅( 𝑓 ) =

∫
𝑀

|∇ 𝑓 |2∫
𝑀

| 𝑓 |2
.

The Rayleigh quotient is closely related to the spectrum 𝑆𝑝𝑒𝑐(𝑀) of the negative Laplace operator.
Namely, by posing the following minimization problem

𝜆 = inf
{
𝑅( 𝑓 )

���� 𝑓 ∈ 𝐻1(𝑀)
}
,

we obtain a 𝐿2 integrable smooth function f satisfying −Δ 𝑓 = 𝜆 𝑓 .
We let 𝜆0(𝑀) denote the bottom of the spectrum, and we say that 𝜆 ∈ 𝑆𝑝𝑒𝑐(𝑀) is a small eigenvalue

of M if 𝜆 < (𝑛 − 1)2/4. Moreover, given a constant 𝜇 < (𝑛 − 1)2/4, we define 𝑆𝑝𝑒𝑐𝜇 (𝑀) as the
collection (counting multiplicities) of eigenvalues of the negative Laplacian on M less than or equal
to 𝜇. The set of small eigenvalues is a finite set (see [Ham04]).

In the rest of the subsection, we list several properties of the bottom of the spectrum 𝜆0(𝑀). We will
use these properties in Section 3 to prove the uniform spectral gap for strongly convergent sequences of
geometrically finite groups (Γ𝑘 < Isom(𝑋))𝑘∈N.

Lemma 2.2. [Ham04] Let Γ < Isom(𝑋) be a torsion-free discrete elementary isometry subgroup of a
negatively pinched Hadamard manifold X with dimension n. Then 𝜆0(𝑋/Γ) ≥ (𝑛 − 1)2/4.
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Lemma 2.3. [Ham04, Lemma 2.3] Suppose that Γ < Isom(𝑋) is a geometrically finite discrete isometry
subgroup of a negatively pinched Hadamard manifold X with dimension n. Then for every 𝑟 > 0, we
have that 𝜇1(𝑀 \ 𝐵𝑟 (𝐶 (𝑀))) ≥ (tanh 𝑟)2(𝑛− 1)2/4, where 𝑀 = 𝑋/Γ and 𝜇1 (𝑀 \ 𝐵𝑟 (𝐶 (𝑀))) denotes
the smallest Rayleigh quotient for all smooth functions f with compact support in 𝑀 \ 𝐵𝑟 (𝐶 (𝑀)).

If 𝑋 = H𝑛, we have the following result relating 𝜆0(𝑀) to the critical exponent 𝛿(Γ).

Theorem 2.4. [Sul87] For any nonelementary complete hyperbolic manifold 𝑀 = H𝑛/Γ, one has

𝜆0(𝑀) =
{
(𝑛 − 1)2/4 if 𝛿(Γ) ≤ (𝑛 − 1)/2,

𝛿(Γ) (𝑛 − 1 − 𝛿(Γ)) if 𝛿(Γ) ≥ (𝑛 − 1)/2.

2.3. Patterson-Sullivan measure

Given a point 𝑝 ∈ H𝑛, and 𝜉 ∈ 𝜕∞H
𝑛, the Busemann function 𝐵(𝑥, 𝜉) on H𝑛 with respect to p is

defined by

𝐵(𝑥, 𝜉) = lim
𝑡→∞

(𝑑 (𝑥, 𝜌𝜉 (𝑡)) − 𝑡),

where 𝜌𝜉 (𝑡) is the unique geodesic ray from p to 𝜉. The Busemann cocycle 𝛽𝜉 (𝑥, 𝑦) : H𝑛 × H𝑛 ×
𝜕∞H

𝑛 → R is defined by

𝛽𝜉 (𝑥, 𝑦) = lim
𝑡→∞

(𝑑 (𝜌𝜉 (𝑡), 𝑥) − 𝑑 (𝜌𝜉 (𝑡), 𝑦)).

For a discrete isometry subgroup Γ < Isom(H𝑛), there exists a family of finite measures (𝜇𝑥)𝑥∈H𝑛

on 𝜕∞H
𝑛 whose support is the limit set Λ(Γ) and satisfies the following conditions:

1. It is Γ-invariant, that is, 𝛾∗(𝜇𝑥) = 𝜇𝛾𝑥 .
2. The Radon-Nikodym derivatives exist for all 𝑥, 𝑦 ∈ H𝑛, and for all 𝜉 ∈ 𝜕∞H

𝑛, they satisfy

𝑑𝜇𝑥
𝑑𝜇𝑦

(𝜉) = 𝑒−𝛿 (Γ)𝛽𝜉 (𝑥,𝑦) .

Such family of measures is a family of Patterson-Sullivan density of dimension 𝛿(Γ) for Γ. The Patterson-
Sullivan measures have very nice properties when the group Γ is geometrically finite.

Theorem 2.5. [McM99, Theorem 3.1] Let Γ < Isom(H𝑛) be a geometrically finite Kleinian group.
Then 𝜕∞H

𝑛 carries a unique Γ-invariant density 𝜇 of dimension 𝛿(Γ) with total mass one. Moreover,
𝜇 is nonatomic and supported on Λ(Γ), and the Poincaré series diverges at 𝛿(Γ).

Theorem 2.6. [McM99, Theorem 1.2] Suppose that (Γ𝑘 < Isom(H𝑛))𝑘∈N is a sequence of Kleinian
groups converging strongly to Γ < Isom(H𝑛). If Γ is geometrically finite with 𝛿(Γ) > (𝑛 − 1)/2, then
the Patterson-Sullivan densities 𝜇𝑘 of Γ𝑘 converge to the Patterson-Sullivan density 𝜇 of Γ in the weak
topology on measures.

Remark 2.7. Theorem 1.2 in [McM99] is stated for the 3-dimensional hyperbolic space. However, the
proof works exactly the same for general hyperbolic spaces H𝑛.

The proof Theorem 2.6 relies heavily on the analysis of the Poincaré series of parabolic groups and
its uniform convergence. This is also essential in the later proof of the convergence of Bowen-Margulis
measures and the uniform counting formulas for orthogeodesics in the rest of the paper. For readers’
convenience, we list the analytic properties of the Poincaré series corresponding to parabolic groups in
the section. The details can be found in [McM99, Section 6].

Let 𝐿 < Isom(H𝑛) be a torsion-free elementary isometry subgroup, which is either a hyperbolic
group, that is, a cyclic group generated by a loxodromic isometry, or a parabolic group. Given 𝑥 ∈ 𝜕∞H

𝑛
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and 𝑠 ≥ 0, the absolute Poincaré series for L is defined to be

𝑃𝑠 (𝐿, 𝑥) =
∑
𝛾∈𝐿

|𝛾′(𝑥) |𝑠 ,

where the derivative is measured in the spherical measure. Given any open subset 𝑈 ⊂ 𝜕∞H
𝑛, define

𝑃𝑠 (𝐿, 𝑈, 𝑥) =
∑

𝛾 (𝑥) ∈𝑈
|𝛾′(𝑥) |𝑠 .

Suppose that (𝐿𝑘 < Isom(H𝑛))𝑘∈N is a sequence of torsion-free elementary isometry subgroups which
converges geometrically to a parabolic group 𝐿 < Isom(H𝑛) with parabolic fixed point c, that is,
𝐿𝑘 converges to L in the Hausdorff topology on closed subsets of Isom(H𝑛). The Poincaré series for
(𝐿𝑘 , 𝑠𝑘 ), where 𝑠𝑘 ≥ 0 converges uniformly if for any compact subset 𝐾 ⊂ 𝜕∞H

𝑛 \ {𝑐} and 𝜖 > 0, there
is a neighborhood U of c, such that for all 𝑥 ∈ 𝐾 ,

𝑃𝑠𝑘 (𝐿𝑘 , 𝑈, 𝑥) < 𝜖

for 𝑘 � 0 sufficiently large. By using the same argument of the proof of Theorem 6.1 in [McM99], we
have the following:

Theorem 2.8. Suppose that (Γ𝑘 < Isom(H𝑛))𝑘∈N is a sequence of torsion-free discrete isometry
subgroups which strongly converges to a geometrically finite torsion-free group Γ < Isom(H𝑛). Let
𝐿 < Γ be a parabolic subgroup and (𝐿𝑘 < Γ𝑘 )𝑘∈N be a sequence of elementary groups which converges
to L geometrically. If

𝛿(Γ) >

{
1 if 𝑛 = 3, or
(𝑛 − 2)/2 if 𝑛 > 3,

then the Poincaré series for (𝐿𝑘 , 𝛿(Γ𝑘 )) converges uniformly to the one of (𝐿, 𝛿(Γ)).

2.4. Bowen-Margulis measure

The Bowen-Margulis measure is a measure defined on the unit tangent bundle 𝑇1
H
𝑛 of H𝑛 in terms of

the Patterson-Sullivan measures. One can identify the unit tangent bundle 𝑇1
H
𝑛 with the set of geodesic

lines 𝑙 : R→ H𝑛, such that the inverse map sends the geodesic line l to its unit tangle vector �𝑙 (0) at 𝑡 = 0.
Given a point 𝑥0 ∈ H𝑛, we can also identify 𝑇1

H
𝑛 with 𝜕∞H

𝑛×𝜕∞H
𝑛×R via the Hopf’s parametrization:

𝑣 → (𝑣−, 𝑣+, 𝑡),

where 𝑣−, 𝑣+ are the endpoints at −∞ and ∞ of the geodesic line defined by v and t is the signed distance
of the closest point to 𝑥0 on the geodesic line.

We let 𝜋 : 𝑇1
H
𝑛 → H𝑛 denote the base point projection. The geodesic flow on 𝑇1

H
𝑛 is the smooth

one-parameter group of diffeomorphisms (𝑔𝑡 )𝑡 ∈R of 𝑇1
H
𝑛, such that 𝑔𝑡 (𝑙 (𝑠)) = 𝑙 (𝑠+𝑡), for all 𝑙 ∈ 𝑇1

H
𝑛,

and 𝑠, 𝑡 ∈ R. Similarly, one can define the geodesic flow on 𝑇1𝑀 by replacing the geodesic lines l by
locally geodesic lines. The Kleinian group Γ acts on 𝑇1

H
𝑛 via postcomposition, that is, 𝛾 ◦ 𝑙, and it

commutes with the geodesic flow. For simplicity, we sometimes write 𝛿(Γ) as 𝛿 if the context is clear
in the rest of the paper.

Given the Patterson-Sullivan density (𝜇𝑥)𝑥∈H𝑛 and a point 𝑥0 ∈ H𝑛, one can define the Bowen-
Margulis measure �̃�BM on 𝑇1

H
𝑛 given by

𝑑�̃�BM (𝑣) = 𝑒−𝛿 (𝛽𝑣− (𝜋 (𝑣) ,𝑥0)+𝛽𝑣+ (𝜋 (𝑣) ,𝑥0))𝑑𝜇𝑥0 (𝑣−)𝑑𝜇𝑥0 (𝑣+)𝑑𝑡

= 𝑒−2𝛿 (𝑣− |𝑣+)𝑥0 𝑑𝜇𝑥0 (𝑣−)𝑑𝜇𝑥0 (𝑣+)𝑑𝑡.
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Here we introduce the notation (𝑣−|𝑣+)𝑥0 = 1
2 (𝛽𝑣− (𝑦, 𝑥0) + 𝛽𝑣+ (𝑦, 𝑥0)), where y is any point in the

geodesic joining 𝑣−, 𝑣+. It is not hard to verify that (𝑣−|𝑣+)𝑥0 does not depend on y.
The Bowen-Margulis measure �̃�BM is independent of the choice of 𝑥0, and it is invariant under both

the action of the group Γ and the geodesic flow. Hence, it descends to a measure 𝑚BM on 𝑇1𝑀 invariant
under the quotient geodesic flow, which is called the Bowen-Margulis measure on 𝑇1𝑀 .

Theorem 2.9. [Sul84, Bab02] Let Γ < Isom(H𝑛) be a geometrically finite Kleinian group. The Bowen-
Margulis measure 𝑚BM has finite total mass, and the geodesic flow is mixing with respect to 𝑚BM.

Another related measure we consider in the paper is the so-called skinning measure. Let D be a
nonempty proper closed convex subset in H𝑛. We denote its boundary by 𝜕𝐷 and the set of points at
infinity by 𝜕∞𝐷. Let

𝑃𝐷 : H𝑛 ∪ (𝜕∞H𝑛 \ 𝜕∞𝐷) → 𝐷 (1)

be the closest point map. In particular, for points 𝑥 ∈ H𝑛, 𝑃𝐷 (𝑥) is the point on D which minimizes the
distance function 𝑑 (𝑦, 𝑥) for 𝑦 ∈ 𝐷, and for points 𝜉 ∈ 𝜕∞H

𝑛 \ 𝜕∞𝐷, 𝑃𝐷 (𝜉) is the point 𝑦 ∈ 𝐷 which
minimizes the function 𝑦 → 𝛽𝜉 (𝑦, 𝑥0) for a given 𝑥0.

The outer unit normal bundle 𝜕1
+𝐷 of the boundary of D is the topological submanifold of 𝑇1

H
𝑛

consisting of the geodesic lines 𝑣 : R → H
𝑛, such that 𝑃𝐷 (𝑣+) = 𝑣(0). Similarly, one can define the

inner unit normal bundle 𝜕1
−𝐷 which consists of geodesic lines v such that 𝑃𝐷 (𝑣−) = 𝑣(0). Note that

when D is totally geodesic, 𝜕1
+𝐷 = 𝜕1

−𝐷. Given the Patterson-Sullivan density (𝜇𝑥)𝑥∈H𝑛 , the outer
skinning measure on 𝜕1

+𝐷 is the measure �̃�+
𝐷 defined by

𝑑�̃�+
𝐷 (𝑣) = 𝑒−𝛿𝛽𝑣+ (𝑃𝐷 (𝑣+) ,𝑥0)𝑑𝜇𝑥0 (𝑣+).

Similarly, one can define the inner skinning measure �̃�−
𝐷 on 𝜕1

−𝐷 as follows:

𝑑�̃�−
𝐷 (𝑣) = 𝑒−𝛿𝛽𝑣− (𝑃𝐷 (𝑣−) ,𝑥0)𝑑𝜇𝑥0 (𝑣−).

For simplicity, we sometimes identify a precisely invariant subset 𝐶 ⊂ 𝑀 = H𝑛/Γ with its funda-
mental domain �̃� in the universal cover, and use the notation 𝜎±

𝜕𝐶 to denote the outer/inner skinning
measure �̃�±

�̃�
on 𝜕1

±�̃�.

2.5. Convergence of convex sets

In this subsection, we first define strong convergence that admits disconnected limits. Suppose that
((𝑀𝑘 , 𝑔𝑘 ))𝑘∈N is a sequence of n-manifolds of pinched sectional curvature −𝜅2 ≤ 𝐾 ≤ −1. We
say that the sequence converges strongly to a (possibly disconnected) geometrically finite n-manifold
(𝑁 = ∪𝑚𝑖 𝑁𝑖 , 𝑔) if the following holds:

1. There exist points 𝑝𝑘,𝑖 ∈ 𝑀𝑘 , 𝑝𝑖 ∈ 𝑁𝑖 so that 𝑑 (𝑝𝑘,𝑖 , 𝑝𝑘, 𝑗 ) → +∞ for 𝑖 ≠ 𝑗 and (𝑀𝑘 , 𝑝𝑘,𝑖) →
(𝑁𝑖 , 𝑝𝑖) geometrically, that is, there exists an exhaustion 𝑈1,𝑖 ⊂ 𝑈2,𝑖 ⊂ . . . of relatively compact open
sets of (𝑁𝑖 , 𝑝𝑖) and smooth maps 𝜑𝑘,𝑖 : 𝑈𝑘,𝑖 → 𝑀𝑘 so that 𝜑𝑘,𝑖 (𝑝𝑖) = 𝑝𝑘,𝑖 and 𝜑∗

𝑘,𝑖𝑔𝑘 converges
smoothly in compact sets to g.

2. For any 𝜖 , the truncated cores 𝐶 (𝑀𝑘 )>𝜖 converge to the disjoint union∪𝑖𝐶 (𝑁𝑖)>𝜖 . This means that for
large k, we have 𝐶 (𝑀𝑘 )>𝜖 = ∪𝑚𝑖=1𝐶 (𝑀𝑘,𝑖)>𝜖 , where 𝐶 (𝑀𝑘,𝑖)>𝜖 ⊂ 𝐼𝑚(𝜑𝑘,𝑖) and 𝜑−1

𝑘,𝑖 (𝐶 (𝑀𝑘,𝑖)>𝜖 )
converges to 𝐶 (𝑁𝑖)>𝜖 in the Hausdorff topology of compact sets in 𝑁𝑖 .

The definition accommodates situations like Dehn drilling and pinching closed geodesics in hyperbolic
3-manifolds. The pinching case can result in disconnected limit manifolds. If 𝑀𝑘 and N are hyperbolic
manifolds, and N is connected, this definition is equivalent to the one described in [McM99] for strong
convergence. Because of this, in the cases when N is connected, we will simply omit the mention of
possibly disconnected, as well as the subindex i from our notation.
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Moreover, given a sequence (𝑀𝑘 )𝑘∈N converging strongly to a possibly disconnected manifold N,
we say that the sequence of functions ( 𝑓𝑘 : 𝑀𝑘 → R)𝑘∈N converges strongly to a function 𝑓 : 𝑁 → R
if, with the notation above, we have that for any base point 𝑝𝑖 the sequence ( 𝑓𝑘 ◦ 𝜑𝑘,𝑖)𝑘∈N converges
smoothly in compact sets to f. Similarly, if Σ𝑘 , Σ are smooth properly embedded submanifolds in 𝑀𝑘 , 𝑁 ,
we say that (Σ𝑘 )𝑘∈N converges strongly to Σ if 𝜑−1

𝑘,𝑖 (Σ𝑘 ) converges smoothly in compact sets to Σ. Since
for any fixed compact set in 𝑁𝑖 the maps 𝜑𝑘,𝑖 are embeddings for k sufficiently large, we can define
strong convergence of functions and submanifolds of 𝑇1𝑀𝑘 to 𝑇1𝑀 by composing the derivatives of
𝜑𝑘,𝑖 with the projections from 𝑇∗𝑀𝑘 to 𝑇1𝑀𝑘 .

Using the definition of strong convergence, we obtain a straightforward corollary:

Corollary 2.10. Suppose that (𝑀𝑘 )𝑘∈N is a sequence of manifolds with negatively pinched curvature
which converges strongly to a (possibly disconnected) geometrically finite manifold N with negatively
pinched curvature. Then the manifolds 𝑀𝑘 are also geometrically finite for sufficiently large k.

Proof. Suppose that 𝑁 = ∪𝑚𝑖 𝑁𝑖 . The truncated core 𝐶 (𝑁)>𝜖 is compact for any 0 < 𝜖 < 𝜖 (𝑛, 𝜅), since
N is geometrically finite. By Item (2) in the definition of strong convergence, 𝐶 (𝑀𝑘 )>𝜖 is also compact
for large k, since 𝐶 (𝑀𝑘,𝑖)>𝜖 is compact for large k, and all 1 ≤ 𝑖 ≤ 𝑚. �

In Section 3, we work on sequences of manifolds of negatively pinched curvature that converge
strongly to (possibly disconnected) limit manifolds. Given an n-dimensional manifold M with negatively
pinched curvature (possibly disconnected) and a constant 𝜇 < (𝑛 − 1)2/4, 𝑆𝑝𝑒𝑐𝜇 (𝑀) is defined as the
collection of eigenvalues of the negative Laplacian on M less than 𝜇. If M is disconnected, 𝑆𝑝𝑒𝑐𝜇 (𝑀)
agrees with the union of 𝑆𝑝𝑒𝑐𝜇 of each component of M (counting multiplicity). Specifically, a function
𝑓 : 𝑀 → R satisfies the equation −Δ 𝑓 = 𝜆 𝑓 if and only if its restriction to each component of M is
either an eigenfunction with eigenvalue 𝜆, or 0. Moreover, while taking orthonormal eigenfunctions for
M, we can consider that each eigenfunction has support in a unique component of M.

In Sections 4 and 5, we focus on sequences of hyperbolic manifolds strongly converging to connected
limit manifolds. Suppose now 𝑀 = H𝑛/Γ is an n-dimensional hyperbolic manifold. As we stated in the
Introduction, locally convex sets in M are in 1-to-1 correspondence with Γ-precisely invariant convex
sets in H𝑛 by the projection map Proj : H𝑛 → 𝑀 . In particular, we sometimes identify local convex
sets with one of their lifts which are Γ-precisely invariant, and we do not consider immersed locally
convex sets, for example, nonprimitive closed geodesics. For simplicity, we will omit the word locally
and plainly denote the sets as convex.

We say that a convex set D in M is well-positioned if 𝜕�̃� is smooth, where �̃� denotes the lift of D
to H3, and 𝜎±

𝜕𝐷 has compact support.

Example 2.11. Suppose that M is a geometrically finite hyperbolic manifold. Embedded geodesic balls
and the thin part of M are well-positioned convex sets.

Proof. Geodesic balls with radii smaller than the injectivity radius of the center and Margulis tubes
are compact convex subsets, so they are well-positioned. The lifts of a cusp neighborhood D in M
are horoballs whose boundaries are smooth. Since M is geometrically finite, all parabolic fixed points
are bounded. Hence, the intersection of 𝜕𝐷 with the convex core is compact. Thus, 𝜎±

𝜕𝐷 has compact
support and D is well-positioned. �

Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds that converges strongly to a
geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ. We say that well-positioned convex sets 𝐷𝑘 ⊂ 𝑀𝑘

strongly converge to a well-positioned convex set 𝐷 ⊂ 𝑀 if

1. the boundary 𝜕𝐷𝑘 converges strongly to 𝜕𝐷, or equivalently, the lifts of 𝜑−1
𝑘 (𝜕𝐷𝑘 ) converge smoothly

in compact sets to lifts of 𝜕𝐷, where 𝜑𝑘 : 𝑈𝑘 → 𝑀𝑘 are the smooth maps in the definition of strong
convergence of (𝑀𝑘 )𝑘∈N,

2. �̄�(𝑠𝑢𝑝𝑝(𝜎±
𝜕𝐷𝑘

)) is contained in 𝜑𝑘

(
𝑁1 (�̄�(𝑠𝑢𝑝𝑝(𝜎±

𝜕𝐷)))
)

for large k, where �̄� : 𝑇1𝑀 → 𝑀 and 𝑁1

denotes the 1-neighborhood.
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Example 2.12. Let (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N be a sequence of hyperbolic manifolds that converges strongly
to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ.

1. Suppose that (𝑥𝑘 )𝑘∈N is a sequence of points in 𝑀𝑘 that converges to 𝑥 ∈ 𝑀 . The geodesic balls
around the 𝑥𝑘 with radius r converge strongly to the geodesic ball of x with the same radius, where r
is smaller than the injectivity radius of x.

2. Given 0 < 𝜖 < 𝜖 (𝑛, 𝜅), the thin parts 𝑀<𝜖
𝑘 converge strongly to the thin part 𝑀<𝜖 .

3. Convergence of small eigenvalues

In this section, we study the convergence of small eigenvalues and prove the uniform spectral gap
for strongly convergent sequences of geometrically finite n-manifolds of negatively pinched curvature
−𝜅2 ≤ 𝐾 ≤ −1.

Proposition 3.1. Let M be a geometrically finite Riemannian n-manifold of pinched sectional curvature
−𝜅2 ≤ 𝐾 ≤ −1, and let 𝜖 = 𝜖 (𝑛, 𝜅) > 0 be the Margulis constant. Given 𝜇 < (𝑛 − 1)2/4, there exists a
sufficiently large constant 𝑟 (𝜇) = 𝑟 > 0 and some constant 𝜂(𝜇, 𝑟) = 𝜂 > 0, so that if 𝑓 ∈ 𝐻1(𝑀) with

𝑅( 𝑓 ) ≤ 𝜇, then
∫
𝐵2𝑟 (𝐶 (𝑀 )>𝜖 ) | 𝑓 |

2 ≥ 𝜂
∫
𝑀

| 𝑓 |2. Moreover, one can take 𝜂 →
(
1 − 4𝜇

(𝑛−1)2

)
as 𝑟 → +∞.

Proof. Since 𝐶∞
0 (𝑀) is dense in 𝐻1 (𝑀), we can assume without loss of generality that f is compactly

supported with
∫
𝑀

𝑓 2 = 1.
Observe that we can find 𝐶1 functions 𝑔, ℎ : R→ [0, 1] so that

◦ 𝑔2 (𝑥) + ℎ2 (𝑥) = 1 for any 𝑥 ∈ R,
◦ 𝑠𝑢𝑝𝑝(𝑔) ⊆ (−∞, 1], 𝑠𝑢𝑝𝑝(ℎ) ⊆ (0, +∞].

Given a positive constant 𝑟 > 0, we define 𝑢 := 𝑢𝑟 (𝑥), 𝛼 := 𝛼𝑟 (𝑥) ∈ 𝐶1
0 (𝑀) satisfying the following

properties, by using scalings of 𝑔, ℎ along equidistant sets to 𝜕𝐶 (𝑀):
1. 0 ≤ 𝑢, 𝛼 ≤ 1
2. 𝑠𝑢𝑝𝑝(𝑢) ⊆ 𝐵2𝑟 (𝐶 (𝑀))
3. 𝑠𝑢𝑝𝑝(𝛼) ⊆ 𝑖𝑛𝑡 (𝐵𝑐𝑟 (𝐶 (𝑀)))
4. 𝑢2 + 𝛼2 ≡ 1
5. |∇𝑢 |, |∇𝛼 | ≤ 𝐶

𝑟 everywhere in M, for some constant C independent of r and M.

Similarly, for the thick-thin decomposition of M, we define functions 𝑣 := 𝑣𝑟 (𝑥), 𝛽 := 𝛽𝑟 (𝑥) ∈ 𝐶1
0 (𝑀)

along equidistant sets to 𝜕𝑀>𝜖 satisfying the following properties

1. 0 ≤ 𝑣, 𝛽 ≤ 1
2. 𝑠𝑢𝑝𝑝(𝑣) ⊆ 𝐵2𝑟 (𝑀>𝜖 )
3. 𝑠𝑢𝑝𝑝(𝛽) ⊆ 𝑖𝑛𝑡 (𝐵𝑐𝑟 (𝑀>𝜖 ))
4. 𝑣2 + 𝛽2 ≡ 1
5. |∇𝑣 |, |∇𝛽 | ≤ 𝐶

𝑟 everywhere in M, for some constant C independent of r and M.

Define then 𝑓1 := 𝑢𝑣 𝑓 , 𝑓2 := 𝑢𝛽 𝑓 , 𝑓3 := 𝛼 𝑓 which are in 𝐶1
0 (𝑀). By the definitions of 𝑢, 𝛼, 𝑣, 𝛽, we

have

1. 𝑠𝑢𝑝𝑝( 𝑓1) ⊆ 𝐵2𝑟 (𝑀>𝜖 ∩ 𝐶 (𝑀))
2. 𝑠𝑢𝑝𝑝( 𝑓2) ⊆ 𝐵𝑐𝑟 (𝑀>𝜖 )
3. 𝑠𝑢𝑝𝑝( 𝑓3) ⊆ 𝐵𝑐𝑟 (𝐶 (𝑀))
4. 𝑓 2

1 + 𝑓 2
2 + 𝑓 2

3 = 𝑓 2.

We can expand 𝑅( 𝑓1) as

𝑅( 𝑓1) =
( ∫

𝑀
𝑓 2 |∇(𝑢𝑣) |2 + 2𝑢𝑣 𝑓 〈∇(𝑢𝑣),∇ 𝑓 〉 + 𝑢2𝑣2 |∇ 𝑓 |2

)/ ( ∫
𝑀

𝑢2𝑣2 𝑓 2
)
.
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Since ∇(𝑢𝑣) = 𝑢∇𝑣 + 𝑣∇𝑢, then it follows that |∇(𝑢𝑣) | ≤ 2𝐶
𝑟 , and subsequently∫

𝑀
𝑓 2 |∇(𝑢𝑣) |2 ≤ 4𝐶2

𝑟2 .

By Cauchy-Schwarz, we also have that���� ∫
𝑀

2𝑢𝑣 𝑓 〈∇(𝑢𝑣),∇ 𝑓 〉
���� ≤ 2

∫
𝑀

|〈 𝑓∇(𝑢𝑣),∇ 𝑓 〉| ≤ 4𝐶

𝑟

√
𝑅( 𝑓 ).

Collecting these inequalities and defining 𝑎 :=
∫
𝑀

𝑓 2
1 for convenience, we arrive to

𝑅( 𝑓1) ≤
(

4𝐶2

𝑟2 + 4𝐶

𝑟

√
𝑅( 𝑓 ) +

∫
𝑀

𝑢2𝑣2 |∇ 𝑓 |2
)/

𝑎. (2)

Similarly, define 𝑏 :=
∫
𝑀

𝑓 2
2 , 𝑐 :=

∫
𝑀

𝑓 2
3 . Then

𝑅( 𝑓2) ≤
(

4𝐶2

𝑟2 + 4𝐶

𝑟

√
𝑅( 𝑓 ) +

∫
𝑀

𝑢2𝛽2 |∇ 𝑓 |2
)/

𝑏, (3)

𝑅( 𝑓3) ≤
(

4𝐶2

𝑟2 + 4𝐶

𝑟

√
𝑅( 𝑓 ) +

∫
𝑀

𝛼2 |∇ 𝑓 |2
)/

𝑐. (4)

By doing 𝑎(2) + 𝑏(3) + 𝑐(4), we obtain

𝑎𝑅( 𝑓1) + 𝑏𝑅( 𝑓2) + 𝑐𝑅( 𝑓3) ≤
(

12𝐶2

𝑟2 + 12𝐶

𝑟

√
𝑅( 𝑓 ) +

∫
𝑀
(𝑢2𝑣2 + 𝑢2𝛽2 + 𝛼2) |∇ 𝑓 |2

)
=

(
12𝐶2

𝑟2 + 12𝐶

𝑟

√
𝑅( 𝑓 ) +

∫
𝑀

|∇ 𝑓 |2
)

≤
(

12𝐶2

𝑟2 + 12𝐶

𝑟

√
𝜇 + 𝜇

)
. (5)

Since 𝑠𝑢𝑝𝑝( 𝑓2) ⊆ 𝑖𝑛𝑡 (𝐵𝑐𝑟 (𝑀>𝜖 )), 𝑠𝑢𝑝𝑝( 𝑓3) ⊆ 𝑖𝑛𝑡 (𝐵𝑐𝑟 (𝐶 (𝑀))), we have by Lemmas 2.2 and
2.3 (or more precisely, by applying a combination of the lemmas on each component of M) that
𝑅( 𝑓2) ≥ (tanh 𝑟)2(𝑛 − 1)2/4, 𝑅( 𝑓3) ≥ (tanh 𝑟)2(𝑛 − 1)2/4. Using these bounds together with the
obvious bound 𝑎𝑅( 𝑓1) ≥ 0, we arrive to

(𝑏 + 𝑐) (tanh 𝑟)2(𝑛 − 1)2

4
≤ 12𝐶2

𝑟2 + 12𝐶

𝑟

√
𝜇 + 𝜇,

(𝑏 + 𝑐) ≤ 4
(tanh 𝑟)2(𝑛 − 1)2

(
12𝐶2

𝑟2 + 12𝐶

𝑟

√
𝜇 + 𝜇

)
.

By the fact that 𝑎 + 𝑏 + 𝑐 = 1, we obtain

𝑎 ≥ 4
(tanh 𝑟)2(𝑛 − 1)2

(
(tanh 𝑟)2(𝑛 − 1)2

4
− 12𝐶2

𝑟2 − 12𝐶

𝑟

√
𝜇 − 𝜇

)
.

The result follows from observing that for the left-hand side, we have
∫
𝐵2𝑟 (𝑀>𝜖 ∩𝐶 (𝑀 )) 𝑓 2 ≥ 𝑎,

whereas the right-hand side depends only on 𝜇, 𝑟 and converges to 1 − 4𝜇
(𝑛−1)2 > 0 as 𝑟 → +∞. �

Now we use Proposition 3.1 to take limits of eigenfunctions with small eigenvalues along a strongly
convergent sequence of manifolds with negatively pinched curvature.
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Lemma 3.2. Suppose that (𝑀𝑘 )𝑘∈N is a sequence of n-manifolds of pinched curvature −𝜅2 ≤
𝐾 ≤ −1 that converges strongly to a (possibly disconnected) geometrically finite n-manifold M. Let
𝜇 < (𝑛−1)2/4, and for each 𝑀𝑘 , let 𝑓𝑘 be an eigenfunction of the negative Laplacian so that 𝑅( 𝑓𝑘 ) ≤ 𝜇
and

∫
𝑀𝑘

| 𝑓𝑘 |2 = 1. Then, after possibly taking a subsequence, we have that 𝑓𝑘 converges strongly to f, a
nonzero eigenfunction of the negative Laplacian in M with 𝑅( 𝑓 ) ≤ 𝜇.

Proof. By Proposition 3.1, there exist 𝑟 > 0 and 𝜂 > 0 independent of k so that
∫
𝐵2𝑟 (𝐶 (𝑀𝑘 )>𝜖 ) | 𝑓𝑘 |

2 ≥ 𝜂.
By elliptic regularity and strong convergence, we have that the Sobolev norms

‖ 𝑓𝑘 ‖𝑊 2,ℓ (𝐵2𝑟 (𝐶 (𝑀𝑘 )>𝜖 ))

are uniformly bounded for any given ℓ. By the Rellich-Kondrachov compactness theorem, we can take
a convergent subsequence with limit f in 𝐵2𝑟 (𝐶 (𝑀)>𝜖 ) in any 𝑊2,ℓ norm. Taking 𝑟 → +∞ and doing
a Cantor diagonal argument, we have that 𝑅( 𝑓 ) ≤ 𝜇, −Δ𝑀 𝑓 = 𝑅( 𝑓 ) 𝑓 ,

∫
𝑀

| 𝑓 |2 ≥ 𝜂, which concludes
the Lemma. �

Recall that 𝑆𝑝𝑒𝑐𝜇 (𝑀) denotes the collection of eigenvalues of the negative Laplacian on the
negatively pinched manifold M which are smaller than 𝜇, where for convenience, we assume that
𝜇 < (𝑛−1)2/4 is not an eigenvalue of M (this is possible for all 𝜇 < (𝑛−1)2/4 with the exception of finitely
many values). Suppose that (𝑀𝑘 )𝑘∈N is a sequence of negatively pinched manifolds which converges
strongly to a geometrically finite n-manifold M. Given any small eigenvalue 𝜆 ∈ 𝑆𝑝𝑒𝑐𝜇 (𝑀), we can use
the discreteness of small eigenvalues to take 𝜖 > 0 small enough so that (𝜆−𝜖, 𝜆+𝜖)∩ 𝑆𝑝𝑒𝑐𝜇 (𝑀) = {𝜆}.
We have then that (𝜆 − 𝜖, 𝜆 + 𝜖) ∩ 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ) is either empty or accumulates to 𝜆 as 𝑘 → ∞, where
we desire to prove the latter case. Let then 𝑚𝜆 be the multiplicity of 𝜆 and 𝑚𝜆,𝑘 be the cardinality of
(𝜆 − 𝜖, 𝜆 + 𝜖) ∩ 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ) (counting multiplicities). We say 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ) converges to 𝑆𝑝𝑒𝑐𝜇 (𝑀), if
lim𝑘→∞ 𝑚𝜆,𝑘 = 𝑚𝜆 for any small eigenvalue 𝜆 ∈ 𝑆𝑝𝑒𝑐𝜇 (𝑀).

Theorem 3.3. Suppose that (𝑀𝑘 )𝑘∈N is a sequence of n-manifolds of pinched curvature −𝜅2 ≤ 𝐾 ≤ −1
that converges strongly to a (possibly disconnected) geometrically finite n-manifold M. Then for any
given 𝜇 < (𝑛 − 1)2/4 not in 𝑆𝑝𝑒𝑐(𝑀), we have that 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ) converges (counting multiplicities) to
𝑆𝑝𝑒𝑐𝜇 (𝑀).

Proof. To prove the theorem, we will show the convergence of eigenspaces. Namely, let 𝑉𝑘 , 𝑉 denote
the linear spaces of functions generated by the eigenfunctions with eigenvalues in 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ) and
𝑆𝑝𝑒𝑐𝜇 (𝑀), which have a natural orthogonal decomposition by the eigenspaces of 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ) and
𝑆𝑝𝑒𝑐𝜇 (𝑀). We show that 𝑉𝑘 → 𝑉 , in the following sense:

1. Any function 𝑓 ∈ 𝑉 can be obtained as the limit of a strongly convergent sequence ( 𝑓𝑘 ∈ 𝑉𝑘 )𝑘∈N.
2. Any sequence of families ( 𝑓𝑙,𝑘 ⊂ 𝑉𝑘 )𝑘∈N of orthonormal functions in 𝑀𝑘 converges strongly (after

possibly taking a subsequence) to a linearly independent family of functions in M.

Item (1) implies that lim inf𝑘→∞ 𝑚𝜆,𝑘 ≥ 𝑚𝜆, and Item (2) implies that lim sup𝑘→∞ 𝑚𝜆,𝑘 ≤ 𝑚𝜆. Thus,
it suffices to prove the convergence of eigenspaces. We first show Item (2). Suppose that 𝑓1,𝑘 , . . . 𝑓𝑙,𝑘
are orthonormal eigenfunctions of 𝑀𝑘 . By Lemma 3.2, we can assume they converge in compact sets
to 𝑓1, . . . , 𝑓𝑙 . If the functions 𝑓1, . . . , 𝑓𝑙 are not linearly independent in 𝐿2 (𝑀), there exist real numbers
𝛼1, . . . , 𝛼𝑙 not all vanishing so that 𝛼1 𝑓1 + . . .+𝛼𝑙 𝑓𝑙 ≡ 0. Hence, 𝑔𝑘 = 𝛼1 𝑓1,𝑘 + . . .+𝛼𝑙 𝑓𝑙,𝑘 are functions
in 𝐻1 (𝑀𝑘 ) with norm

√
𝛼2

1 + . . . + 𝛼2
𝑘 ≠ 0. We can normalize ‖𝑔𝑘 ‖𝐿2 (𝑀 ) = 1 so that 𝑅(𝑔𝑘 ) ≤ 𝜇, and

since the limit of 𝑔𝑘 in compact sets is not identically zero from Proposition 3.1, we have a contradiction.
Now we prove Item (1). Assume that not all functions in V are obtained as limits of functions in 𝑉𝑘 .

Let 𝑉 ′ be the proper maximal space in V, consisting of functions that can be obtained as limits. Assume
that there exists an eigenfunction f of M with eigenvalue 𝜆, such that f is orthogonal to 𝑉 ′. Approximate
f in 𝐻1 (𝑀) by a compactly supported function 𝑓0, which is normalized so that

∫
𝑀

| 𝑓0 |2 = 1 and
𝑅( 𝑓0) is close to 𝜆. It follows that

∫
𝑀

𝑓0𝑔 =
∫
𝑀
( 𝑓0 − 𝑓 )𝑔 can be taken uniformly small for all 𝑔 ∈ 𝑉 ′
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with
∫
𝑀

|𝑔 |2 = 1. Let 𝑓 𝑘0 be the pullback of 𝑓0 in 𝑀𝑘 by the maps 𝜑𝑘,𝑖 from the definition of strong
convergence. Then for sufficiently large k, we have that (after identifying the compact cores)

∫
𝑀𝑘

𝑓 𝑘0 𝑔𝑘

can be also taken uniformly small for any 𝑔𝑘 ∈ 𝑉𝑘 with
∫
𝑀𝑘

|𝑔𝑘 |2 = 1 by Proposition 3.1. For large k,
we also have that in 𝑀𝑘 the Rayleigh quotient 𝑅( 𝑓 𝑘0 ) is close to 𝜆. Denote then by 𝑓0,𝑘 the projection
of 𝑓 𝑘0 perpendicular to 𝑉𝑘 . Then 𝑅( 𝑓0,𝑘 ) is also very close to 𝜆 for sufficiently large k. Hence, this
contributes to an eigenfunction in 𝑀𝑘 which does not belong to 𝑉𝑘 . However, by construction, 𝑉𝑘 is the
linear space of functions generated by eigenfunctions with eigenvalues in 𝑆𝑝𝑒𝑐𝜇 (𝑀𝑘 ), which gives a
contradiction. Therefore, any function 𝑓 ∈ 𝑉 can be obtained as the limit of a strongly convergent
sequence ( 𝑓𝑘 ∈ 𝑉𝑘 ). �

Recall that the Lax-Phillips spectral gap 𝑠1 = min{𝜆1(𝑀), (𝑛 − 1)2/4} − 𝜆0(𝑀) for a hyperbolic
manifold 𝑀 = H𝑛/Γ. We obtain the following convergence result of spectral gap for strongly convergent
sequences of hyperbolic manifolds.

Theorem 3.4. Suppose that (𝑀𝑘 = Isom(H𝑛)/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which
converges strongly to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ. Then the sequence of
Lax-Phillips spectral gaps 𝑠1(𝑀𝑘 ) converges to 𝑠1(𝑀).

Proof. By [McM99, Theorem 1.5] and Theorem 2.4, we have that lim𝑘→∞ 𝜆0(𝑀𝑘 ) = 𝜆0(𝑀). By
Theorem 3.3, if 𝜆1(𝑀) ≥ (𝑛 − 1)2/4, then lim inf 𝜆1(𝑀𝑘 ) ≥ (𝑛 − 1)2/4 for sufficiently large k, or if
𝜆1(𝑀) < (𝑛 − 1)2/4, we have that lim𝑘→∞ 𝜆1(𝑀𝑘 ) = 𝜆1(𝑀) > 𝜆0(𝑀) for sufficiently large k. In either
case, the convergence of 𝑠1(𝑀𝑘 ) to 𝑠1(𝑀) follows. �

Proof of Theorem 1.1. The proof follows from Theorems 3.3 and 3.4.

4. Uniform convergence of measures

In this section, we prove convergence for skinning measures and the Bowen-Margulis measure under
strong convergence. We assume that M is a hyperbolic n-manifold, and by 𝑀<𝜖 , we denote the 𝜖-thin
part of M for a constant 𝜖 smaller than the n-dimensional Margulis constant. We first prove that the
Bowen-Margulis measure of the thin part is (uniformly) relatively small.

Proposition 4.1. Suppose (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds that strongly
converges to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛−1)/2. Let 𝑚𝑘

BM, 𝑚BM
be the Bowen-Margulis measures on 𝑇1𝑀𝑘 and 𝑇1𝑀 , respectively. Then, for any 𝛼 > 0, there exist
𝜖 > 0 and 𝑁 > 0 so that for 𝜖 ′ < 𝜖 and 𝑘 > 𝑁 , we have that∫

𝑇 1𝑀<𝜖 ′
𝑘

𝑑𝑚𝑘
BM < 𝛼.

Proof. This follows Dalbo-Otal-Peigne’s proof [DOP00] on the finiteness of 𝑚BM. We first let 𝜖 > 0
be a constant which is smaller than the shortest geodesic in M. Take a fundamental domain F for the
convex core of M in the universal cover H𝑛, and divide F as the thin part 𝐹<𝜖 (i.e., the intersection of
F with the thin part of M) and the thick part 𝐹>𝜖 . Consider a component D of 𝐹<𝜖 , which must be a
cuspidal component. Suppose that H is the corresponding horoball based at the parabolic fixed point 𝜉,
so that D is a fundamental domain for the parabolic subgroup P < 𝜋1 (𝑀) that preserves H.

As detailed in [DOP00, page 118], we can bound �̃�BM in D by

�̃�BM (𝑇1𝐷) ≤
∑
𝑝∈P

∫
D×𝑝D

𝑐𝜇 (𝑑𝜂−𝑑𝜂+)
∫
(𝜂−𝜂+)∩H

𝑑𝑡,

where 𝑐𝜇 (𝑑𝜂−𝑑𝜂+) = 𝑒−2𝛿 (Γ) (𝜂− |𝜂+)𝑥 𝑑𝜇𝑥 (𝜂−)𝑑𝜇𝑥 (𝜂+) for a given point 𝑥 ∈ H𝑛 and D ⊆ 𝜕∞H
𝑛 \ {𝜉} is

a compact set, such that {𝑝D}𝑝∈P covers Λ(𝑀) \ {𝜉}. The existence of the compact set D is ensured by
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the assumption that M is geometrically finite, hence, the parabolic fixed point 𝜉 is bounded [Bow93].
Now, let P𝑘 be the elementary group in 𝑀𝑘 that converges to P , which is either parabolic or loxodromic.
We discuss the proof that when the groups P𝑘 are loxodromic. The argument for parabolic subgroups is
similar.

Let H𝑘 be a neighborhood of the geodesic 𝜉−𝑘 𝜉+𝑘 preserved by P𝑘 so that H𝑘 → H, 𝜉±𝑘 → 𝜉. Since
𝑀𝑘 converges to M strongly, by [McM99], we can take D large enough so that {𝑝D}𝑝∈P𝑘 covers
Λ(𝑀𝑘 ) \ {𝜉−𝑘 , 𝜉+𝑘 }. Hence, it follows that

𝑚𝑘
BM (𝑇1 (H𝑘/P𝑘 )) ≤

∑
𝑝∈P𝑘

∫
D×𝑝D

𝑐
𝜇
𝑘 (𝑑𝜂−𝑑𝜂+)

∫
(𝜂−𝜂+)∩H𝑘

𝑑𝑡.

Assume without loss of generality that we can take a common point 𝑥 ∈ H𝑘 ,H. There exist compact
set 𝐾 ⊂ H𝑛 and open neighborhood 𝑉 ⊆ H𝑛 of 𝜉 so that for k large, if the (oriented) geodesic 𝜂−𝜂+

with 𝜂− ∈ D ∩Λ(Γ𝑘 ) and 𝜂+ ∈ 𝑝D ∩Λ(Γ𝑘 ) intersects H𝑘 , then the point of entry belongs to 𝐾 ∩ 𝜕H𝑘

and 𝑝−1𝑥 belongs to V. In particular, such geodesic 𝜂−𝜂+ verifies 0 ≤ (𝜂−|𝜂+)𝑥 ≤ 𝑑𝑖𝑎𝑚(𝐾). Moreover,
we have that |

∫
(𝜂−𝜂+)∩H𝑘

𝑑𝑡 − 𝑑 (𝑥, 𝑝𝑥) | < 2𝑑𝑖𝑎𝑚(𝐾). Hence, there exists a constant 𝐶 > 0 depending
only on 𝑑𝑖𝑎𝑚(𝐾) so that

𝑚𝑘
BM (𝑇1 (H𝑘/P𝑘 )) ≤ 𝐶

���
∑
𝑝∈P′

𝑘

𝜇𝑘𝑥 (D)𝜇𝑘𝑥 (𝑝D) (𝑑 (𝑥, 𝑝𝑥) + 𝐶)���,

where 𝜇𝑘𝑥 denotes the Patterson-Sullivan measure on 𝑀𝑘 and P ′
𝑘 is the subset of {𝑝 ∈ P𝑘 | 𝑝−1𝑥 ∈ 𝑉}

so that the summand
∫
D×𝑝D 𝑐

𝜇
𝑘 (𝑑𝜂−𝑑𝜂+)

∫
(𝜂−𝜂+)∩H𝑘

𝑑𝑡 is non-zero.
Recall that

𝜇𝑘𝑥 (𝑝D) =
∫
D

𝑒−𝛿 (Γ𝑘 )𝐵𝜂 (𝑝−1𝑥,𝑥)𝜇𝑘𝑥 (𝑑𝜂),

so we would like to estimate 𝐵𝜂 (𝑝−1𝑥, 𝑥). Observe that as H𝑘 is preserved by P𝑘 , we have that if 𝜂−𝜂+

is a geodesic with 𝜂− ∈ D ∩ Λ(Γ𝑘 ) and 𝜂+ ∈ 𝑝D ∩ Λ(Γ𝑘 ) that intersects H𝑘 , then the exit point of
𝜂−𝜂+ from H𝑘 belongs to 𝑝𝐾 ∩ 𝜕H𝑘 . By triangular inequality, we have that under such conditions
|
∫
(𝜂−𝜂+)∩H𝑘

𝑑𝑡 − 𝐵𝜂 (𝑥, 𝑝𝑥) | < 2𝑑𝑖𝑎𝑚(𝐾). Hence, for 𝑝 ∈ P ′
𝑘 have |𝐵𝜂 (𝑝−1𝑥, 𝑥) − 𝑑 (𝑝−1𝑥, 𝑥) | ≤

4𝑑𝑖𝑎𝑚(𝐾). Combining this with our previous inequality (and making the domain of the sum bigger if
necessary), we get

𝑚𝑘
BM (𝑇1 (H𝑘/P𝑘 )) ≤ 𝐶

���
∑

𝑝∈P𝑘 , 𝑝−1𝑥∈𝑉
(𝜇𝑘𝑥 (D))2𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝

−1𝑥,𝑥) (𝑑 (𝑥, 𝑝𝑥) + 𝐶)���
for some 𝐶 > 0 independent of 𝜖 and k.

We claim that the above discussion holds for smaller 𝜖 corresponding to a smaller neighborhood
𝑉 (𝜖) for the same base point x. Consider a smaller thin part corresponding to 𝜖 ′ < 𝜖 . The sets H𝑘 , 𝐾
vary with 𝜖 ′, although it is clear that H𝑘 (𝜖 ′) ⊂ H𝑘 (𝜖) and 𝑑𝑖𝑎𝑚(𝐾 (𝜖 ′)) < 𝑑𝑖𝑎𝑚(𝐾 (𝜖)). Hence, after
taking a base point 𝑦 ∈ 𝐾 (𝜖 ′), we have

𝑚𝑘
BM (𝑇1 (H𝑘 (𝜖 ′)/P𝑘 )) ≤ 𝐶

���
∑

𝑝∈P𝑘 , 𝑝−1𝑦∈𝑉 (𝜖 ′)
(𝜇𝑘𝑦 (D))2𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝

−1𝑦,𝑦) (𝑑 (𝑦, 𝑝𝑦) + 𝐶)���
for a constant 𝐶 > 0 independent of 𝜖 ′ and k.
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The neighborhood 𝑉 (𝜖 ′) is smaller and smaller as 𝜖 ′ → 0, as if 𝜂−𝜂+ intersects H𝑘 (𝜖 ′), then it has
to intersect H𝑘 (𝜖). Then for the p summands considered for 𝜖 ′, we have

𝑑 (𝑦, 𝑝𝑦) ≤ 𝑑 (𝑥, 𝑝𝑥) + 𝐶 ′, 𝜇𝑘𝑦 (D) ≤ 𝐶 ′𝑒−𝛿 (Γ𝑘 )𝑑 (𝑥,𝑦)𝜇𝑘𝑥 (D)

for 𝐶 ′ constant independent of 𝜖 ′ and k. We always have the bound 𝑑 (𝑦, 𝑝𝑦) ≥ 𝑑 (𝑥, 𝑝𝑥) − 2𝑑 (𝑥, 𝑦) by
triangular inequality and the fact that p is an isometry.

Putting altogether, we have that

𝑚𝑘
BM (𝑇1 (H𝑘 (𝜖 ′)/P𝑘 )) ≤ 𝐶 ′′(𝜇𝑘𝑥 (D))2 ���

∑
𝑝∈P𝑘 , 𝑝−1𝑥∈𝑉 (𝜖 ′)

𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝
−1𝑥,𝑥) (𝑑 (𝑥, 𝑝𝑥) + 𝐶 ′′)��� (6)

for a constant 𝐶 ′′ > 0 independent of 𝜖 ′ and k. Recall that when 𝛿(Γ𝑘 ) is strictly bigger than (𝑛−1)/2, by
[McM99, Theorem 6.1], the tails of the series

∑
𝑝∈P𝑘

𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝
−1𝑥,𝑥) are uniformly small. Specifically,

for any 𝜂 > 0, there exists a neighborhood 𝑈 ⊂ H𝑛 of 𝜉 so that∑
𝑝∈P𝑘 , 𝑝𝑥⊂𝑈

𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝
−1𝑥,𝑥) < 𝜂,

for k sufficiently large. We also have that the tails of the series
∑
𝑝∈P𝑘

𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝
−1𝑥,𝑥) (𝑑 (𝑥, 𝑝𝑥) + 𝐶 ′′)

are uniformly small, as 𝑑 (𝑥, 𝑝𝑥) is uniformly dominated by 𝑒𝑐𝑑 (𝑝
−1𝑥,𝑥) for any 𝑐 > 0. Hence, by

taking 𝜖 ′ sufficiently small, the right-hand side of (6) corresponds to a smaller tail of the series∑
𝑝∈P𝑘

𝑒−𝛿 (Γ𝑘 )𝑑 (𝑝
−1𝑥,𝑥) (𝑑 (𝑥, 𝑝𝑥) +𝐶 ′′). Thus, by applying [McM99, Theorem 6.2] for the sequence of

exponents 𝛿(Γ𝑘 ) − 𝑐, the right-hand side of (6) will be arbitrarily small for 𝜖 ′ sufficiently small and k
sufficiently large. �

Next, we use Proposition 4.1 to prove the convergence of the Bowen-Margulis measures. The follow-
ing proposition is a restatement of Proposition 1.6.
Proposition 4.2. Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which is
strongly convergent to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛− 1)/2. Let
𝑚𝑘

BM, 𝑚BM be the Bowen-Margulis measures on 𝑇1𝑀𝑘 and 𝑇1𝑀 , respectively. For 𝑟 > 0, we denote by
𝑀<𝑟
𝑘 ⊂ 𝑀𝑘 , 𝑀<𝑟 ⊂ 𝑀 the set of points with injectivity radius less than r. Then, for any 𝑟 > 0, we have

lim
𝑘→∞

∫
𝑇 1𝑀<𝑟

𝑘

𝑑𝑚𝑘
BM →

∫
𝑇 1𝑀<𝑟

𝑑𝑚BM.

Moreover, by taking r sufficiently large, we have that

‖𝑚𝑘
BM‖ → ‖𝑚BM‖.

Proof. Denote 𝑀𝑎,𝑏 = 𝑀>𝑎 ∩ 𝑀<𝑏 . Take 𝑈1, . . . 𝑈𝑚 ⊂ 𝑀 balls with compact closure, whose union
covers 𝐶 (𝑀) 𝜖 ,𝑟 = 𝐶 (𝑀) ∩ 𝑀 𝜖 ,𝑟 . Take �̄�1, . . . , �̄�𝑚 partition of unity subordinated to 𝑈1, . . . 𝑈𝑚, in the
sense that �̄� =

∑𝑚
𝑖=1 �̄�𝑖 has support contained in 𝑀 𝜖−𝜂,𝑟+𝜂 and is identically equal to 1 in 𝐶 (𝑀) 𝜖 ,𝑟 ,

for some arbitrarily small 𝜂 > 0. Let �̃�𝑖 be a lift of 𝑈𝑖 in H𝑛, such that the union covers a fundamental
domain of M. We denote 𝜑𝑖 a compactly supported function subordinated to �̃�𝑖 , such that 𝜑𝑖 = �̄�𝑖 ◦Proj.

Then since the Patterson-Sullivan measures 𝜇𝑘𝑥0 converge weakly to 𝜇𝑥0 , the critical exponents
𝛿𝑘 = 𝛿(Γ𝑘 ) converge to 𝛿 = 𝛿(Γ), and we can express the Bowen-Margulis measures as 𝑑�̃�𝑘

BM (𝑣) =
𝑒−𝛿𝑘 (𝛽𝑣− (𝜋 (𝑣) ,𝑥0)+𝛽𝑣+ (𝜋 (𝑣) ,𝑥0))𝑑𝜇𝑘𝑥0 (𝑣−)𝑑𝜇𝑘𝑥0 (𝑣+)𝑑𝑡, then, for k sufficiently large, we have���� ∫

𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�𝑘
BM −

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�BM

���� < 𝛼, (7)

for some small 𝛼 > 0.
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By Proposition 4.1, we have that
∫
𝑇 1𝑀<𝜖

𝑘
𝑑𝑚𝑘

BM,
∫
𝑇 1𝑀<𝜖 𝑑𝑚BM < 𝛼, and by construction, we have

that ���� ∫
𝑇 1𝑀<𝑟

𝑑𝑚BM −
𝑚∑
𝑖=1

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�BM

���� <

∫
𝑇 1𝑀<𝜖

𝑑𝑚BM +
∫
𝑇 1𝑀𝑟,𝑟+𝜂

𝑑𝑚BM. (8)

Now, since 𝑀𝑘 converges strongly to M, for k large, we have that
∑𝑚
𝑖=1

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�𝑘
BM is bounded

between (1 − 𝛼)
∫
𝑇 1𝑀

𝜖 +𝜂,𝑟−𝜂
𝑘

𝑑𝑚𝑘
BM and (1 + 𝛼)

∫
𝑇 1𝑀

𝜖−𝜂,𝑟+𝜂
𝑘

𝑑𝑚𝑘
BM. Hence���� ∫

𝑇 1𝑀<𝑟
𝑘

𝑑𝑚𝑘
BM −

𝑚∑
𝑖=1

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�𝑘
BM

���� <

∫
𝑇 1𝑀<𝜖

𝑘

𝑑𝑚𝑘
BM + 𝛼

∫
𝑇 1𝑀 𝜖 ,𝑟

𝑘

𝑑𝑚𝑘
BM +

∫
𝑇 1𝑀

𝑟,𝑟+𝜂
𝑘

𝑑𝑚𝑘
BM. (9)

By a similar partition of unity argument, we can show that for any 0 < 𝑎 < 𝑏, there exists 𝜂0 > 0
sufficiently small so that for any 𝑘 � 1 sufficiently large, we have that∫

𝑇 1𝑀𝑎,𝑏
𝑘

𝑑𝑚𝑘
BM < 2

∫
𝑇 1𝑀𝑎−𝜂0 ,𝑏+𝜂0

𝑑𝑚BM. (10)

Finally, we have to see that the function (𝑎, 𝑏) ↦→
∫
𝑇 1𝑀𝑎,𝑏 𝑑𝑚𝑘

BM is continuous. Because of monotonicity,
this reduces to prove that for any 𝑟 > 0,

∫
𝑇 1𝜕𝑀<𝑟 𝑑𝑚𝑘

BM = 0. Indeed, the lift 𝜕�̃�<𝑟 ⊆ H𝑛 is contained in
the union of tubes around closed geodesics of length ≤ 𝑟 (considering parabolic cusps corresponding to
0 length geodesics). For core geodesics of length strictly less than r, these tubes are strictly convex, and
hence, the boundaries intersect any geodesic in a discrete set. If we happen to have a geodesic of length
r, then the intersection of 𝜕�̃�<𝑟 with any geodesic is a discrete set, unless the geodesic is equal to the
geodesic axis. In either case, the set 𝜕�̃�<𝑟 ⊆ H𝑛 has zero measure for the Bowen-Margulis measure
𝑑�̃�BM (𝑣) = 𝑒−2𝛿 (𝑣− |𝑣+)𝑥0 𝑑𝜇𝑥0 (𝑣−)𝑑𝜇𝑥0 (𝑣+)𝑑𝑡, as for almost every geodesic line ℓ, the intersection
𝜕�̃�<𝑟 ∩ ℓ has length 0.

Applying the triangular inequality, replacing equations (7), (8), (9), and then using Proposition 4.1,
(10) (for sufficiently large k and 𝜂 sufficiently small), we have that���� ∫

𝑇 1𝑀<𝑟
𝑘

𝑑𝑚𝑘
BM −

∫
𝑇 1𝑀<𝑟

𝑑𝑚BM

���� <

���� ∫
𝑇 1𝑀<𝑟

𝑘

𝑑𝑚𝑘
BM −

𝑚∑
𝑖=1

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�𝑘
BM

����
+

𝑚∑
𝑖=1

���� ∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�𝑘
BM −

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�BM

����
+

���� ∫
𝑇 1𝑀<𝑟

𝑑𝑚BM −
𝑚∑
𝑖=1

∫
𝑇 1�̃�𝑖

𝜑𝑖𝑑�̃�BM

����
<

∫
𝑇 1𝑀<𝜖

𝑘

𝑑𝑚𝑘
BM + 𝛼

∫
𝑇 1𝑀 𝜖 ,𝑟

𝑘

𝑑𝑚𝑘
BM +

∫
𝑇 1𝑀

𝑟,𝑟+𝜂
𝑘

𝑑𝑚𝑘
BM

+ 𝑚𝛼 +
∫
𝑇 1𝑀<𝜖

𝑑𝑚BM +
∫
𝑇 1𝑀𝑟,𝑟+𝜂

𝑑𝑚BM

< (𝑚 + 2)𝛼 + 2𝛼

∫
𝑇 1𝑀<𝑟+𝜂

𝑑𝑚BM + 3
∫
𝑇 1𝑀𝑟−𝜂,𝑟+2𝜂

𝑑𝑚BM

(11)

which goes to 0 as 𝑘 → +∞, and 𝛼, 𝜂 → 0. �

The last part of the section is to prove the convergence of skinning measures.

Proof of Corollary 1.8. Observe that since we have strong convergence for well-positioned convex sets
𝐷𝑘 → 𝐷, we can take lifts 𝐷𝑘 , �̃� ⊂ H𝑛 and compact sets 𝐸𝑘 ⊂ 𝜕𝐷𝑘 , 𝐸 ⊂ 𝜕�̃� so that 𝐸𝑘 , E are
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fundamental domains for the support of 𝜎±
𝜕𝐷𝑘

, 𝜎±
𝜕𝐷 (respectively) and 𝐸𝑘 converges strongly to E. We

can further assume there exists a set 𝐹 ⊂ S𝑛−1 so that 𝑃𝐷𝑘 (𝐹), 𝑃𝐷 (𝐹) cover 𝐸𝑘 and E (respectively)
on its interior, see (1) for the definition of the maps 𝑃𝐷𝑘 and 𝑃𝐷 . Under these assumptions, we have

‖𝜎±
𝜕𝐷𝑘

‖ ≤ �̃�±
𝐷𝑘

(𝑃𝐷𝑘 (𝐹)) → �̃�±
�̃�
(𝑃𝐷 (𝐹)).

Reducing the set F so that �̃�±
𝐷𝑘

(𝑃𝐷𝑘 (𝐹) \ 𝐸𝑘 ), �̃�±
�̃�
(𝑃𝐷 (𝐹) \ 𝐸) are arbitrarily small, we then have

‖𝜎±
𝜕𝐷𝑘

‖ = �̃�±
𝐷𝑘

(𝐸𝑘 ) → �̃�±
�̃�
(𝐸) = ‖𝜎±

𝜕𝐷 ‖,

which proves the first statement
The relative result for subsets Ω𝑘 ,Ω is proved by taking the fundamental domains 𝐸 ′

𝑘 ⊂ 𝜕𝐷𝑘 ,
𝐸 ′ ⊂ 𝜕�̃� for the support of 𝜎±

𝜕Ω𝑘
, 𝜎±

𝜕Ω (respectively) and arguing as above. �

5. Application: Uniform orthogeodesic counting

In this section, we use the results of uniform spectral gap and convergence of the Bowen-Margulis and
skinning measures in Sections 3 and 4 to prove Theorem 1.3. Suppose that 𝐷+, 𝐷− are well-positioned
convex subsets of a hyperbolic manifold 𝑀 = H𝑛/Γ. A common perpendicular from 𝐷− to 𝐷+ is a
locally geodesic path in M which starts perpendicularly from 𝐷− and arrives perpendicularly to 𝐷+. For
any 𝑡 ≥ 0, let N𝐷− ,𝐷+ (𝑡) be the cardinality of the set of common perpendiculars from 𝐷− to 𝐷+ with
length at most t.

As before, (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which converges strongly to a
geometrically finite manifold 𝑀 = H𝑛/Γ, so that we have well-positioned convex subsets 𝐷±

𝑘 ⊂ 𝑀𝑘 that
strongly converge to 𝐷± ⊂ 𝑀 . Before the proof, we need to introduce the following notations.

Given 𝑣 ∈ 𝑇1
H
𝑛, the strong stable/unstable manifold is defined as

𝑊±(𝑣) = {𝑣′ ∈ 𝑇1
H
𝑛 : 𝑑 (𝑣(𝑡), 𝑣′(𝑡)) → 0 as 𝑡 → ±∞},

which is equipped with Hamenstädt’s distance function 𝑑𝑊 ± (𝑣) , see [Ham89, PP17]. Then given any
constant 𝑟 > 0, for all 𝑣 ∈ 𝑇1

H
𝑛, we can define the open ball of radius r centered at v in the strong

stable/unstable manifold in the following

𝐵±(𝑣, 𝑟) = {𝑣′ ∈ 𝑊±(𝑣) : 𝑑𝑊 ± (𝑣) (𝑣, 𝑣′) < 𝑟}.

Given any 𝑣 ∈ 𝑇1
H
𝑛, and 𝜂, 𝜂′ > 0, let

𝑉±
𝑣,𝜂,𝜂′ =

⋃
𝑠∈[−𝜂,𝜂 ]

𝑔𝑠𝐵±(𝑣, 𝜂′).

Given a proper closed convex subset D of H𝑛, for all subsets Ω− of 𝜕1
+𝐷 and Ω+ of 𝜕1

−𝐷, let

V𝜂,𝜂′ (Ω±) =
⋃
𝑣 ∈Ω±

𝑉∓
𝑣,𝜂,𝜂′ .

By using the projection map 𝜋 : 𝑇1
H
𝑛 → H

𝑛, the strong stable/unstable manifold 𝑊±(𝑣) projects
to the stable/unstable horosphere of v centered at 𝑣+ and 𝑣−, denoted by 𝐻±(𝑣) = 𝜋(𝑊±(𝑣)). The
corresponding horoball bounded by 𝐻±(𝑣) is denoted by 𝐻𝐵±(𝑣). Following the notation in [PP17],
we let

𝜇𝑊 + (𝑣) = �̃�−
𝐻𝐵+ (𝑣) and 𝜇𝑊 − (𝑣) = �̃�+

𝐻𝐵− (𝑣)

denote the skinning measures on the strong stable/unstable manifolds 𝑊±(𝑣).
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Definition 5.1. Given a discrete isometry subgroup Γ < Isom(H𝑛), we say (H𝑛, Γ) has radius-
continuous strong stable/unstable ball masses if, for every 𝜖 > 0, and 𝑟 ≥ 1 close enough to 1,

𝜇𝑊 ± (𝑣) (𝐵±(𝑣, 𝑟)) ≤ 𝑒𝜖 𝜇𝑊 ± (𝑣) (𝐵±(𝑣, 1)),

for all 𝑣 ∈ 𝑇1
H
𝑛 where 𝐵±(𝑣, 1) meets the support of 𝜇𝑊 ± (𝑣) .

The following proposition proves that the radius-continuous property of the strong stable/unstable ball
masses can be taken uniformly along a strongly convergent sequence of geometrically finite hyperbolic
manifolds.

Proposition 5.2. Suppose (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which strongly
converges to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛 − 1)/2. Let
(𝐷𝑘 ⊆ 𝑀𝑘 )𝑘∈N be a sequence of well-positioned convex subsets in 𝑀𝑘 which strongly converges to
a well-positioned convex subset D, with lifts to H𝑛 denoted by 𝐷𝑘 , 𝐷, respectively. Let Ω∓

𝑘 ⊆ 𝜕1
±𝐷𝑘 ,

Ω∓ ⊆ 𝜕1
±𝐷 be compact sets so that Ω∓

𝑘 converges strongly to Ω∓. Then there exists sufficiently large
𝑅 > 0, so that for any 𝜖 , we have 𝜂 = 𝜂(𝜖, 𝑅) > 0 satisfying that

𝜇𝑘𝑊 ± (𝑣) (𝐵
±(𝑣, (1 + 𝑟)𝑅)) ≤ 𝑒𝜖 𝜇𝑘𝑊 ± (𝑣) (𝐵

±(𝑣, 𝑅))

for any 𝑣 ∈ Ω∓
𝑘 , 0 < 𝑟 < 𝜂.

Proof. Let’s prove that case for Ω+, and the proof for Ω− is similar. As done in the proof of [Rob03,
Proposition 6.2] (using [Rob00, Section 3.1]), the function (𝑣, 𝑅) ↦→ 𝜇𝑊 ± (𝑣) (𝐵±(𝑣, 𝑅)) is continuous for
𝑣 ∈ 𝑇1

H
𝑛, 𝑅 > 0, as well as Γ-invariant. Moreover, since Ω+ is compact, there exists 𝑅 > 0 sufficiently

large so that the function 𝑣 ↦→ 𝜇𝑊 − (𝑣) (𝐵−(𝑣, 𝑅)) is a uniformly continuous positive function in some
neighborhood of Ω−. It suffices then to prove the statement for sufficiently large k.

Denote by 𝐴(𝑣, 𝑅, 𝑟) = 𝐵−(𝑣, (1 + 𝑟)𝑅) \ 𝐵−(𝑣, 𝑅) ⊂ 𝑊−(𝑣) the annulus in 𝑊−(𝑣) with center v
between radius 𝑅, (1 + 𝑟)𝑅. We will show that there exists 𝑚 > 0 and function 𝜂(𝜖) > 0 so that for k
large, 𝑣 ∈ V𝜂,𝜂 (Ω+) and 0 < 𝑟 < 𝜂 the following two statements hold

1. 𝜇𝑘
𝑊 − (𝑣) (𝐵

−(𝑣, 𝑅)) ≥ 𝑚,
2. 𝜇𝑘

𝑊 − (𝑣) (𝐴(𝑣, 𝑅, 𝑟)) < 𝜖 .

Then it is clear that the statement follows from Items (1) and (2) by making 𝜖 arbitrarily small. Now we
prove Items (1) and (2) respectively.

1. For a vector 𝑢 ∈ 𝑇1
H
𝑛, we define a function 𝑃𝑢 : 𝑊−(𝑢) → 𝜕∞H

𝑛, where 𝑃𝑢 (𝑣) is the endpoint of
the bi-infinite geodesic 𝑢−𝜋(𝑣) different from 𝑢−, as shown in Figure 1. Since V𝜂,𝜂 (Ω+) has compact
closure, we can take finitely many 𝑣𝑖 ∈ V𝜂,𝜂 (Ω+) so that for any 𝑢 ∈ V𝜂,𝜂 (Ω+), there exists 𝑣𝑖 , such
that

𝑃−1
𝑢 𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 𝑅/2)) ⊆ 𝐵−(𝑢, 𝑅).

Moreover, we can assume that the conformal factor between 𝜇𝑘
𝑊 − (𝑣𝑖) and 𝜇𝑘

𝑊 − (𝑢) at the sets
𝐵−(𝑣𝑖 , 𝑅/2), 𝑃−1

𝑢 𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 𝑅/2)) is between 1
2 and 2. This can be done uniformly for all k by

following [Rob03, Section 1.H]. By taking 𝜂 small, we can assume that 𝜇𝑊 − (𝑣𝑖) (𝐵−(𝑣𝑖 , 𝑅/2)) > 2𝑚
for some fixed 𝑚 > 0 and for any 𝑣𝑖 ∈ V𝜂,𝜂 (Ω+). Then, by weak-convergence of measures, we have
that for any 𝑣𝑖 (and large k) 𝜇𝑘

𝑊 − (𝑣𝑖) (𝐵
−(𝑣𝑖 , 𝑅/2)) > 2𝑚. Then it follows that

𝜇𝑘𝑊 − (𝑢) (𝐵
−(𝑢, 𝑅)) ≥ 𝜇𝑘𝑊 − (𝑢) (𝑃

−1
𝑢 𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 𝑅/2))) ≥ 1

2
𝜇𝑘𝑊 − (𝑣𝑖) (𝐵

−(𝑣𝑖 , 𝑅/2)) > 𝑚.
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Figure 1.

2. Since V𝜂,𝜂 (Ω+) has compact closure and 𝛿(Γ) > (𝑛 − 1)/2, given 𝜖 > 0, we can take 𝜂 small
enough so that for 𝑣 ∈ V𝜂,𝜂 (Ω+), we have that 𝜇𝑊 − (𝑣) (𝐴(𝑣, 𝑅, 5𝜂)) < 𝜖 . We will take again a finite
collection of vectors 𝑣𝑖 , although now they need to satisfy the following list of properties.
◦ The finite collection of 𝑣𝑖 is taken so that 𝐵−(𝑣𝑖 , 4𝜂) ⊂ 𝐴(𝑣, 𝑅, 5𝜂) for some 𝑣 ∈ V𝜂,𝜂 (Ω+).

Denote their total number by 𝐶2,
◦ For any 𝑣 ∈ V𝜂,𝜂 (Ω+) and any 𝐵−(𝑢, 2𝜂) ⊂ 𝐴(𝑣, 𝑅, 5𝜂), we have that

𝑃−1
𝑢 𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 4𝜂)) ⊇ 𝐵−(𝑢, 2𝜂)

with conformal factor bounded between 1
2 and 2.

Take sufficiently large k so that 𝜇𝑘
𝑊 − (𝑣𝑖) (𝐵

−(𝑣𝑖 , 4𝜂)) ≤ 𝜇𝑊 − (𝑣𝑖) (𝐵−(𝑣𝑖 , 4𝜂)) + 𝜁 for 𝜁 small still
to be determined.Let 𝑣 ∈ V𝜂,𝜂 (Ω+). Cover 𝐴(𝑣, 𝑅, 𝜂) by finitely many disjoint measurable sets 𝐵 𝑗 ,
so that each 𝐵 𝑗 is contained in a ball 𝐵−(𝑢 𝑗 , 2𝜂) inside of 𝐴(𝑣, 𝑅, 5𝜂). Then by the second bullet
point, for each 𝑢 𝑗 , we choose 𝑣𝑖 so that

𝑃−1
𝑢 𝑗

𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 4𝜂)) ⊇ 𝐵−(𝑢 𝑗 , 2𝜂).

Observe that each 𝑣𝑖 can only be repeatedly selected less than 𝐶3 times, for some constant 𝐶3
depending only on the dimension n. Then we have the following chain of inequalities, which fol-
low from the covering {𝐵 𝑗 } of 𝐴(𝑣, 𝑅, 𝑟), the inclusion 𝑃−1

𝑢 𝑗
𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 4𝜂)) ⊇ 𝐵−(𝑢 𝑗 , 2𝜂) ⊇ 𝐵 𝑗 ,

the bound on the conformal factor of 𝑃−1
𝑢 𝑃𝑣𝑖 , the convergence 𝜇𝑘

𝑊 − (𝑣) → 𝜇𝑊 − (𝑣) , the inclusion
𝐵−(𝑣𝑖 , 4𝜂) ⊂ 𝐴(𝑣, 𝑅, 5𝜂), and the bound on the cardinality of the finite set of 𝑣𝑖’s

𝜇𝑘𝑊 − (𝑣) (𝐴(𝑣, 𝑅, 𝑟)) ≤
∑
𝑗

𝜇𝑘𝑊 − (𝑣) (𝐵 𝑗 ) ≤ 𝐶3
∑
𝑖

𝜇𝑘𝑊 − (𝑣) (𝑃
−1
𝑢 𝑗

𝑃𝑣𝑖 (𝐵−(𝑣𝑖 , 4𝜂)))

≤ 2𝐶3
∑
𝑖

𝜇𝑘𝑊 − (𝑣) (𝐵
−(𝑣𝑖 , 4𝜂)) ≤ 2𝐶3

∑
𝑖

(
𝜇𝑊 − (𝑣) (𝐵−(𝑣𝑖 , 4𝜂)) + 𝜁

)
≤ 4𝐶3

∑
𝑖

(
𝜇𝑊 − (𝑣) (𝐴(𝑣, 𝑅, 5𝜂)) + 𝜁

)
≤ 4𝐶2𝐶3 (𝜖 + 𝜁) (12)

which is arbitrarily small for 𝜂 small and k large. �

Now we state and sketch the general uniform orthogeodesic counting for convergent sequences of
convex sets in strongly convergent hyperbolic n-manifolds. For a thorough presentation, we refer the
reader to Theorem 5.5 in the Appendix.

Theorem 5.3. Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which strongly
converges to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛− 1)/2. Let (𝐷±

𝑘 )𝑘∈N
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be a sequence of well-positioned convex subsets in 𝑀𝑘 which converges strongly to a well-positioned
convex subset 𝐷± in M, respectively. Then we can count N𝐷−

𝑘
,𝐷+

𝑘
(𝑡) uniformly, in the sense that

N𝐷−
𝑘
,𝐷+

𝑘
(𝑡) ≈

||𝜎+
𝐷−

𝑘
| | · | |𝜎−

𝐷+
𝑘
| |

𝛿(Γ𝑘 ) | |𝑚𝑘
BM | |

𝑒𝛿 (Γ𝑘 )𝑡

up to a multiplicative error uniformly close to 1 along the sequence as t gets larger, and with
| |𝜎∓

𝐷±
𝑘
| |, | |𝑚𝑘

BM | |, 𝛿(Γ𝑘 ) converging to | |𝜎±
𝐷∓ | |, | |𝑚BM | |, 𝛿(Γ), respectively. In particular, for 𝑛 = 3, there

exist constants 𝐴 > 0, 0 < 𝑏 < 2 so that

N𝐷−
𝑘
,𝐷+

𝑘
(𝑡) ≤ 𝐴𝑒𝑏𝑡

Proof. There is an explicit counting formula of N𝐷− ,𝐷+ (𝑡) for orthogeodesic arcs between two convex
sets 𝐷± given in [PP17, Theorem 3]:

N𝐷− ,𝐷+ (𝑡) =
| |𝜎+

𝐷− | | · | |𝜎−
𝐷+ | |

𝛿 | |𝑚BM | | 𝑒𝛿 (Γ)𝑡 (1 + 𝑂 (𝑒−𝜅𝑡 )).

This formula holds under the assumption that (H𝑛, Γ) has radius-continuous strong stable/unstable
masses. The constant 𝑂 (·) and the parameter 𝜅 depend on Γ, the convex sets 𝐷±, the speed of mixing,
and the property of radius-continuous strong stable/unstable masses.

By Proposition 4.2 and Corollary 1.8, the Bowen-Margulis measure and the skinning measures
converge to the ones of the limit manifold M weakly. The critical exponent 𝛿(Γ𝑘 ) converges to 𝛿(Γ)
[McM99, Theorem 1.5]. The convergence of the speed of mixing is controlled by the spectral gap
[EO21]. Hence, this quantity also converges to the one of the limit manifold by Theorem 1.1. Therefore,
it suffices to prove the sequence Γ𝑘 and the limit Γ have uniform radius-continuous strong stable/unstable
ball masses property, which follows from Proposition 5.2. �

Remark 5.4. Careful readers might notice that [PP17, Theorem 3] has the assumption that the manifold
has radius-Hölder-continuous strong stable/unstable ball masses, which is not satisfied by the strongly
convergent sequence of hyperbolic manifolds 𝑀𝑘 and the limit manifold M. However, this assumption
can be replaced by the property of radius-continuous strong stable/unstable masses [PP17, Lemma 11],
and the uniform radius-continuity suffices to control the error term in our setting. We write down the
details about the replacement in the Appendix for readers’ convenience, and most of the arguments
follow from [PP17].

Proof of Theorem 1.3. By Example 2.12, connected components 𝐷±
𝑘 in the thin part of 𝑀𝑘 are well-

positioned convex sets that are strongly convergent to the well-positioned convex sets 𝐷± (respectively).
By Theorem 5.3, there is a uniform counting formula for orthogeodesics between 𝐷−

𝑘 to 𝐷+
𝑘 along the

sequence. This proves Item (1). Similarly, for small 𝑟 > 0, the radius r embedded balls centered at 𝑥𝑘
are well-positioned convex subsets which are strongly convergent to the embedded r-ball centered at x.
In that case, let 𝐷+

𝑘 = 𝐷−
𝑘 be the radius r ball at 𝑥𝑘 , and 𝐷+ = 𝐷− be the radius r ball at x. Observe that

if we change the radius 𝑟 > 0 to a radius 𝑠 > 0, 𝑠 < 𝑟 , we have a one-to-one correspondence between
the set of orthogeodesics by extending/shortening the geodesic arcs. Such correspondence takes an
orthogeodesic of length ℓ to its extension of length ℓ + 2(𝑟 − 𝑠). Hence, applying Theorem 5.3 again and
making s arbitrarily small (or equivalently, translating by 2𝑟 the counting function for the balls of radius
r), we obtain the uniform counting for geodesic loops based at 𝑥𝑘 along the sequence. �

Proof of Corollary 1.5. As explained for instance by Roblin in [Rob03, Chapter 5], one can deduce an
asymptotic counting of closed primitive geodesics in manifolds with negative pinched curvature from
the asymptotic counting of orbit distance (i.e., geodesic loops), which only depends on the geometry of
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the universal cover. Namely, if G𝑀 (ℓ) is the set of closed primitive geodesics in M of length less than
ℓ > 0, then [Rob03, Corollary 5.3]

#G𝑀 (ℓ) ≈ 𝑒𝛿ℓ

𝛿ℓ
as ℓ → +∞.

Combining with the uniform counting of geodesic loops (Theorem 1.3), we obtain the uni-
form counting of closed primitive geodesics along a strongly convergent sequence of hyperbolic
manifolds. �

Appendix

Let’s start with notations needed in the Appendix. Recall that 𝑃𝐷 : H𝑛 ∪ (𝜕∞H𝑛 \ 𝜕∞𝐷) → 𝐷 is
the closest point map defined in Section 2.4 for any nonempty proper closed convex subset D in H𝑛.
Let 𝑃+

𝐷 denote the inverse of the restriction to 𝜕1
+𝐷 of the positive endpoint map 𝑣 ↦→ 𝑣+, which is

a homeomorphism from 𝜕∞H
𝑛 \ 𝜕∞𝐷 to 𝜕1

+𝐷. It is a natural lift of 𝑃𝐷 , such that 𝜋 ◦ 𝑃+
𝐷 = 𝑃𝐷 on

𝜕∞H
𝑛 \ 𝜕∞𝐷, where 𝜋 : 𝑇1

H
𝑛 → H𝑛. Similarly, one can define 𝑃−

𝐷 = 𝜄 ◦ 𝑃+
𝐷 , where 𝜄 : 𝑇1

H
𝑛 → 𝑇1

H
𝑛

is the antipodal flip map given by 𝜄𝑣 = −𝑣.
Define

U±
𝐷 = {𝑣 ∈ 𝑇1

H
𝑛 : 𝑣± ∉ 𝜕∞𝐷}.

This is an open set in 𝑇1
H
𝑛 which is invariant under the geodesic flow and satisfies the U±

𝛾𝐷 = 𝛾U±
𝐷 for

any 𝛾 ∈ Isom(H𝑛). Define a fibration 𝑓 +𝐷 : U+
𝐷 → 𝜕1

+𝐷 as the composition of the positive endpoint map
and 𝑃+

𝐷 . Given 𝑤 ∈ 𝜕1
+𝐷, the fiber of w for 𝑓 +𝐷 is the set

𝑊0+(𝑤) = {𝑣 ∈ 𝑇1
H
𝑛 : 𝑣+ = 𝑤+}.

Similarly, one can define a fibration 𝑓 −𝐷 = 𝜄 ◦ 𝑓 +𝐷 ◦ 𝜄 : U−
𝐷 → 𝜕1

−𝐷 and the fiber 𝑊0−(𝑤) = {𝑣 ∈ 𝑇1
H
𝑛 :

𝑣− = 𝑤−}.
Suppose that 𝐷± are two well-positioned convex subsets in 𝑀 = H𝑛/Γ, and 𝜓± ∈ 𝐶∞

0 (𝑇1𝑀) are
compactly supported functions. Let

N𝜓− ,𝜓+ (𝑡) =
∑

𝜆,0<ℓ𝜆≤𝑡
𝜓−(𝑣−𝜆)𝜓

+(𝑣+𝜆),

where the sum is taken over all common perpendiculars 𝜆 between 𝐷− and 𝐷+ whose initial vector 𝑣−𝜆
belongs to 𝜕1

+𝐷− and the terminal vector 𝑣+𝜆 belongs to 𝜕1
−𝐷+, and the length ℓ𝜆 ≤ 𝑡.

In order to count orthogeodesics between 𝐷− and 𝐷+, we can parametrize the set of orthogeodesics
by a quotient of Γ up to a choice of base point. Denote by �̃�± the lifts of 𝐷± in H𝑛, and distinguish
two components 𝐷±

0 ⊂ �̃�±. Then for each 𝛾 ∈ Γ, we can consider the projection to M of the unique
orthogeodesic between 𝐷−

0 and 𝛾𝐷+
0 , such that the closures of 𝐷−

0 and 𝛾𝐷+
0 in H𝑛 ∪ 𝜕∞H

𝑛 have empty
intersection. It is a simple exercise to see that 𝛾1, 𝛾2 ∈ Γ map to the same orthogeodesic if and only if
there exists 𝑔± ∈ 𝑆𝑡𝑎𝑏(𝐷±

0 ) so that 𝛾1 = 𝑔−𝛾2𝑔+. Hence, we can parametrize orthogeodesic by taking
the quotient Γ/∼:= Γ/{𝛾1 = 𝑔−𝛾2𝑔+, 𝑔± ∈ 𝑆𝑡𝑎𝑏(𝐷±

0 )}. Although this labeling depends on the choice
of 𝐷±

0 , we will always work once this decision has been made. We use 𝑣∓𝛾 ∈ 𝜕1
±𝐷∓ to denote the unit

tangent vector of 𝛾 at the start/end.

Theorem 5.5. Suppose that (𝑀𝑘 = H𝑛/Γ𝑘 )𝑘∈N is a sequence of hyperbolic manifolds which strongly
converges to a geometrically finite hyperbolic manifold 𝑀 = H𝑛/Γ with 𝛿(Γ) > (𝑛− 1)/2. Let (𝐷±

𝑘 )𝑘∈N
be a sequence of well-positioned convex subsets in 𝑀𝑘 which strongly converges to 𝐷± in M, respectively.
Let as well (𝜓±

𝑘 ∈ 𝐶∞
0 (𝑇1𝑀𝑘 ))𝑘∈N, 𝜓± ∈ 𝐶∞

0 (𝑇1𝑀) be compactly supported functions so that 𝜓±
𝑘
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converges strongly to 𝜓±, respectively. Then, for any 𝜖 > 0, there exists 𝑡0 = 𝑡0(𝜖), 𝑘0 = 𝑘0 (𝜖) > 0 so
that for any 𝑡 > 𝑡0, 𝑘 > 𝑘0, we have that

𝜎+
𝐷−

𝑘
(𝜓−

𝑘 ) · 𝜎−
𝐷+

𝑘
(𝜓+

𝑘 )

𝛿(Γ𝑘 ) | |𝑚𝑘
BM | |

− 𝜖 ≤
𝑁𝜓−

𝑘
,𝜓+

𝑘
(𝑡)

𝑒𝛿 (Γ𝑘 )𝑡
≤

𝜎+
𝐷−

𝑘
(𝜓−

𝑘 ) · 𝜎−
𝐷+

𝑘
(𝜓+

𝑘 )

𝛿(Γ𝑘 ) | |𝑚𝑘
BM | |

+ 𝜖 . (13)

Here, 𝜎+
𝐷−

𝑘
(𝜓−

𝑘 ) =
∫
𝜕1
+𝐷

−
𝑘

𝜓−
𝑘 𝑑𝜎+

𝑘 , and 𝜎−
𝐷+

𝑘
(𝜓+

𝑘 ) is similarly defined.

Proof. Since both terms in (13) are bilinear in 𝜓±
𝑘 , we can assume without loss of generality that, by

using a partition of unity, the support of 𝜓±
𝑘 is contained in a small relatively compact open set 𝑈±

𝑘 in
𝑇1𝑀𝑘 , and there is a small relatively compact open set 𝑈±

𝑘 in 𝑇1
H
𝑛, such that the restriction of the

quotient map 𝑞𝑘 : 𝑇1
H
𝑛 → 𝑇1𝑀𝑘 to 𝑈±

𝑘 is a diffeomorphism to 𝑈±
𝑘 . Define 𝜓±

𝑘 ∈ 𝐶∞
0 (𝑇1

H) with support
in 𝑈±

𝑘 and coinciding with 𝜓± ◦ 𝑞𝑘 on 𝑈±
𝑘 . Similarly, we can define a compactly supported function

�̃� ∈ 𝐶∞
0 (𝑇1

H) corresponding to 𝜓. Observe that we can choose the lifts 𝑈±
𝑘 and 𝜓±

𝑘 appropriately, such
that 𝜓±

𝑘 converges strongly to 𝜓± and∫
𝜕1
±𝐷

∓
𝑘

𝜓∓
𝑘 𝑑𝜎±

𝐷∓
𝑘

=
∫
𝜕1
±𝐷

∓
𝑘

𝜓∓
𝑘 𝑑𝜎±

𝜕𝐷∓
𝑘
,

where �̃�±
𝑘 are lifts of 𝐷±

𝑘 . From now on, we will distinguish components of �̃�±
𝑘 . By abuse of notation,

we still denote by 𝐷±
𝑘 a connected component of �̃�±

𝑘 , which we assume is the only connected component
of �̃�±

𝑘 so that the intersection of 𝜕1
∓𝐷±

𝑘 with 𝑈±
𝑘 is nonempty by using partition of unity. Observe that

then we can label other components by Γ𝑘 left action 𝛾 ↦→ 𝛾𝐷±
𝑘 . These labels are redundant (i.e., label

the same set) if and only if 𝛾−1
1 𝛾2 belongs to the stabilizer of 𝐷±

𝑘 .
Take 𝜂, 𝑅 > 0 and k sufficiently large so that the statement of Proposition 5.2 applies for the sequence

of convergent precompact subsets (Ω±
𝑘 := 𝜕1

∓�̃�±
𝑘 ∩ 𝑠𝑢𝑝𝑝(𝜓±

𝑘 ))𝑘∈N. We will fix 𝑅 > 0 from now on, but
will keep taking smaller (independent of k) 𝜂. Observe that for small, fixed 𝜏 > 0, we have the inclusion

V𝜂𝑒−𝜏 ,𝑅𝑒−𝜏 (Ω±
𝑘 ) ⊂ V𝜂,𝑅 (Ω±

𝑘 )

is precompact in each slice 𝑉±
𝑤,𝜂,𝑅, and converges as a whole to V𝜂𝑒−𝜏 ,𝑅𝑒−𝜏 (Ω±) ⊂ V𝜂,𝑅 (Ω±) in the

usual sense. If by 1𝐴 we denote the characteristic function of a set A, then we can construct smooth
functions 𝜒±

𝑘 ∈ 𝐶∞(𝑇1
H
𝑛) so that the following items hold

1. For 𝑤 ∈ Ω±
𝑘 , 𝑣 ∈ 𝑊0∓(𝑤)

1V𝜂𝑒−𝜏 ,𝑅𝑒−𝜏 (Ω±
𝑘
) (𝑣) ≤ 𝜒±

𝑘 (𝑣) ≤ 1V𝜂,𝑅 (Ω±
𝑘
) (𝑣).

2. The Sobolev norms ‖𝜒±
𝑘 ‖𝛽 are uniformly bounded (i.e., independent of k), where 𝛽 is the Sobolev

norm appearing in the statement of [EO21, Theorem 1.1].
3. For any 𝑤 ∈ Ω±

𝑘 , we have that

𝑒−𝜖 𝜈±𝑤 (𝑉∓
𝑤,𝜂,𝑅) ≤

∫
𝑉 ∓
𝑤,𝜂,𝑅

𝜒±
𝑘 𝑑𝜈±𝑤 ≤ 𝜈±𝑤 (𝑉∓

𝑤,𝜂,𝑅)

for 𝜖 > 0 independent of k, where 𝑑𝜈±𝑤 := 𝑑𝑠𝑑𝜇𝑊 ∓ (𝑤) .

https://doi.org/10.1017/fms.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.64


Forum of Mathematics, Sigma 23

In order to define the test functions to apply exponential mixing, we start with the functions 𝐻±
𝑘 :

𝜕1
∓�̃�±

𝑘 → R defined by

𝐻±
𝑘 (𝑤) = 1∫

𝑉 ∓
𝑤,𝜂,𝑅

𝜒±
𝑘 𝑑𝜈±𝑤

.

Let Φ±
𝑘 : 𝑇1

H
𝑛 → R defined by

Φ±
𝑘 = (𝐻±

𝑘𝜓±
𝑘 ) ◦ 𝑓 ∓𝐷±

𝑘
𝜒±
𝑘 .

By construction, we have that ‖Φ±
𝑘 ‖𝛽 are uniformly bounded and have support in V𝜂,𝑅 (Ω±

𝑘 ). Moreover,
Φ±
𝑘 are nonnegative, measurable functions satisfying∫

𝑇 1H𝑛
Φ±
𝑘𝑑�̃�𝑘

BM =
∫
𝜕1
∓𝐷

±
𝑘

𝜓±
𝑘 𝑑𝜎∓

𝑘 . (14)

Following [PP17], we will estimate in two ways the quantity

𝐼𝑘 (𝑇) :=
∫ 𝑇

0
𝑒𝛿 (Γ𝑘 )𝑡

∑
𝛾∈Γ𝑘

∫
𝑇 1H𝑛

(Φ−
𝑘 ◦ 𝑔−𝑡/2) (Φ+

𝑘 ◦ 𝑔𝑡/2 ◦ 𝛾−1)𝑑�̃�𝑘
BM𝑑𝑡. (15)

By [EO21, Theorem 1.1] and Theorem 1.1, there exist uniform 𝜅 > 0, 𝑂 (.), such that

𝐼𝑘 (𝑇) =
∫ 𝑇

0
𝑒𝛿 (Γ𝑘 )𝑡

(
1

‖𝑚𝑘
BM‖

∫
𝑇 1H𝑛

Φ−
𝑘𝑑�̃�𝑘

BM

∫
𝑇 1H𝑛

Φ+
𝑘𝑑�̃�𝑘

BM + 𝑂 (𝑒−𝜅𝑡 ‖Φ−
𝑘 ‖𝛽 ‖Φ

+
𝑘 ‖𝛽)

)
𝑑𝑡

=
𝑒𝛿 (Γ𝑘 )𝑇

𝛿(Γ𝑘 )‖𝑚𝑘
BM‖

∫
𝜕1
−𝐷

−
𝑘

𝜓−𝑑𝜎−
𝑘

∫
𝜕1
+𝐷

+
𝑘

𝜓+𝑑𝜎+
𝑘 +

∫ 𝑇

0
𝑒𝛿 (Γ𝑘 )𝑡𝑂 (𝑒−𝜅𝑡 ‖Φ−

𝑘 ‖𝛽 ‖Φ
+
𝑘 ‖𝛽)𝑑𝑡

= 𝑒𝛿 (Γ𝑘 )𝑇

(
𝜎+
𝐷−

𝑘
(𝜓−

𝑘 ) · 𝜎−
𝐷+

𝑘
(𝜓+

𝑘 )

𝛿(Γ𝑘 )‖𝑚𝑘
BM‖

+ 𝑒−𝛿 (Γ𝑘 )𝑇
∫ 𝑇

0
𝑒𝛿 (Γ𝑘 )𝑡𝑂 (𝑒−𝜅𝑡 ‖Φ−

𝑘 ‖𝛽 ‖Φ
+
𝑘 ‖𝛽)𝑑𝑡

)
, (16)

where we used (14) for the second equality. Observe in the final line that we can make the error term
𝑒−𝛿 (Γ𝑘 )𝑇

∫ 𝑇
0 𝑒𝛿 (Γ𝑘 )𝑡𝑂 (𝑒−𝜅𝑡 ‖Φ−

𝑘 ‖𝛽 ‖Φ
+
𝑘 ‖𝛽)𝑑𝑡 arbitrarily small for any 𝑇 > 𝑇0, where 𝑇0 is sufficiently

large and independent of k. Now we use a second way to compute this integral 𝐼𝑘 (𝑇). Let 𝛿𝑘 = 𝛿(Γ𝑘 ).
We interchange the integral over t and the summation over 𝛾. Then

𝐼𝑘 (𝑇) =
∑
𝛾∈Γ𝑘

∫ 𝑇

0
𝑒𝛿𝑘 𝑡

∫
𝑇 1H𝑛

(Φ−
𝑘 ◦ 𝑔−𝑡/2) (Φ+

𝑘 ◦ 𝑔𝑡/2 ◦ 𝛾−1)𝑑�̃�𝑘
BM𝑑𝑡.

Suppose that if 𝑣 ∈ 𝑇1
H
𝑛 belongs to the support of (Φ−

𝑘 ◦ 𝑔−𝑡/2) (Φ+
𝑘 ◦ 𝑔𝑡/2 ◦ 𝛾−1), then

𝑣 ∈ 𝑔𝑡/2V𝜂,𝑅 (𝜕1
+𝐷−

𝑘 ) ∩ 𝑔−𝑡/2V𝜂,𝑅 (𝛾𝜕1
−𝐷+

𝑘 ).

Then by [PP17, Lemma 7], which is proved by using hyperbolic geometry in H𝑛, we have the following

𝑑 (𝑤±
𝑘 , 𝑣±𝛾) = 𝑂 (𝜂 + 𝑒−ℓ𝛾/2), (17)

where 𝑤−
𝑘 = 𝑓 +𝐷𝑘

(𝑣), 𝑤+
𝑘 = 𝑓 −

𝛾𝐷+
𝑘
(𝑣), 𝑣±𝛾 are endpoints of the common perpendicular between 𝐷−

𝑘 and

𝛾𝐷+
𝑘 , and ℓ𝛾 is the length of the common perpendicular. Since the Lipschitz norm of 𝜓±

𝑘 are uniformly
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bounded, and in particular bounded by the 𝛽 Sobolev norm of 𝜓±
𝑘 , we have

|𝜓±
𝑘 (𝑤

±
𝑘 ) − 𝜓±

𝑘 (𝑣
±
𝛾) | = 𝑂 ((𝜂 + 𝑒−ℓ𝛾/2) | |𝜓±

𝑘 | |𝛽).

If we define Φ̂±
𝑘 = 𝐻±

𝑘 ◦ 𝑓 ∓
𝐷±

𝑘
𝜒±
𝑘 so thatΦ±

𝑘 = (𝜓±
𝑘 ◦ 𝑓 ∓

𝐷±
𝑘
)Φ̂±

𝑘 , by applying the previous equation, we obtain

𝐼𝑘 (𝑇) =
∑
𝛾∈Γ𝑘

[𝜓±
𝑘 (𝑣

−
𝛾)𝜓±

𝑘 (𝑣
+
𝛾) + 𝑂 ((𝜂 + 𝑒−ℓ𝛾/2) | |𝜓−

𝑘 | |𝛽 | |𝜓
+
𝑘 | |𝛽)]×∫ 𝑇

0
𝑒𝛿𝑘 𝑡

∫
𝑣 ∈𝑇 1H𝑛

Φ̂−
𝑘 (𝑔

−𝑡/2𝑣)Φ̂+
𝑘 (𝛾

−1𝑔𝑡/2𝑣)𝑑�̃�𝑘
BM(𝑣)𝑑𝑡, (18)

for 𝑂 (.) independent of k.
We now related another test function to Φ̂±

𝑘 following [PP17, Lemma 8]. Let ℎ±𝑘 : 𝑇1
H
𝑛 → [0,∞]

be the Γ𝑘 -invariant measurable map defined by

ℎ∓𝑘 (𝑤) = 1
2𝜂𝜇𝑊 ±

𝑤
(𝐵±(𝑤, 𝑅)) (19)

if 𝜇𝑊 ± (𝑤) (𝐵±(𝑤, 𝑅)) > 0, and ℎ±𝑘 (𝑤) = 0 otherwise. We define the test function 𝜙∓
𝑘 = 𝜙∓

𝜂,𝑅,Ω±
𝑘

:
𝑇1
H
𝑛 → [0,∞] by

𝜙∓
𝑘 = ℎ∓𝑘 ◦ 𝑓 ±𝐷∓

𝑘
1V𝜂,𝑅 (Ω∓

𝑘
) .

By the properties of 𝜒±
𝑘 , we have

𝜙±
𝜂𝑒−𝜏 ,𝑅𝑒−𝜏 ,𝜕1

∓Ω
±
𝑘

𝑒−𝜖 ≤ Φ̂±
𝑘 ≤ 𝜙±

𝑘 .

Hence, it suffices to consider the integral

𝑖𝑘 (𝑇) =
∑
𝛾∈Γ𝑘

[𝜓±
𝑘 (𝑣

−
𝛾)𝜓±

𝑘 (𝑣
+
𝛾) + 𝑂 ((𝜂 + 𝑒−ℓ𝛾/2) | |𝜓−

𝑘 | |𝛽 | |𝜓
+
𝑘 | |𝛽)]×∫ 𝑇

0
𝑒𝛿𝑘 𝑡

∫
𝑇 1H𝑛

(𝜙−
𝑘 ◦ 𝑔−𝑡/2) (𝜙+

𝑘 ◦ 𝑔𝑡/2 ◦ 𝛾−1)𝑑�̃�𝑘
BM𝑑𝑡. (20)

By the definition of 𝜙±
𝑘 , the right-hand side of (20) is equal to∑

𝛾∈Γ𝑘

[𝜓±
𝑘 (𝑣

−
𝛾)𝜓±

𝑘 (𝑣
+
𝛾) + 𝑂 ((𝜂 + 𝑒−ℓ𝛾/2) | |𝜓−

𝑘 | |𝛽 | |𝜓
+
𝑘 | |𝛽)]×∫ 𝑇

0
𝑒𝛿𝑘 𝑡

∫
𝑇 1H𝑛

ℎ−𝑘 ◦ 𝑓 +𝐷−
𝑘
(𝑔−𝑡/2𝑣)ℎ+𝑘 ◦ 𝑓 −𝐷+

𝑘
(𝛾−1𝑔𝑡/2𝑣) × 1V𝜂,𝑅 (Ω−

𝑘
) (𝑔−𝑡/2𝑣)1V𝜂,𝑅 (Ω+

𝑘
) (𝛾−1𝑔𝑡/2𝑣)𝑑�̃�𝑘

BM𝑑𝑡.

(21)

By the Γ-invariance of ℎ±𝑘 , one has

ℎ−𝑘 ◦ 𝑓 +𝐷−
𝑘
(𝑔−𝑡/2𝑣) = 𝑒−𝛿𝑘 (𝑡/2)ℎ−

𝑘,𝑒−𝑡/2𝑅
(𝑔𝑡/2𝑤−

𝑘 ),

ℎ+𝑘 ◦ 𝑓 −𝐷+
𝑘
(𝛾−1𝑔𝑡/2𝑣) = 𝑒−𝛿𝑘 (𝑡/2)ℎ+

𝑘,𝑒−𝑡/2𝑅
(𝑔−𝑡/2𝑤+

𝑘 ),
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where 𝑤−
𝑘 = 𝑓 +𝐷−

𝑘
(𝑣), 𝑤+

𝑘 = 𝑓 −
𝛾𝐷+

𝑘
(𝑣) = 𝛾 𝑓 −

𝐷+
𝑘
(𝛾−1𝑣), and ℎ−

𝑘,𝑒−𝑡/2𝑅
is defined the same as in (19), except

we replace R by 𝑒−𝑡/2𝑅. Therefore,

ℎ−𝑘 ◦ 𝑓 +𝐷−
𝑘
(𝑔−𝑡/2𝑣)ℎ+𝑘 ◦ 𝑓 −𝐷+

𝑘
(𝛾−1𝑔𝑡/2𝑣) = 𝑒−𝛿𝑘 𝑡ℎ−

𝑘,𝑒−𝑡/2𝑅
(𝑔𝑡/2𝑤−

𝑘 )ℎ
+
𝑘,𝑒−𝑡/2𝑅

(𝑔−𝑡/2𝑤+
𝑘 ).

The remaining part 1V𝜂,𝑅 (Ω−
𝑘
) (𝑔−𝑡/2𝑣)1V𝜂,𝑅 (Ω+

𝑘
) (𝛾−1𝑔𝑡/2𝑣) is nonzero if and only if

𝑣 ∈ 𝑔𝑡/2V𝜂,𝑅 (Ω−
𝑘 ) ∩ 𝛾𝑔−𝑡/2V𝜂,𝑅 (Ω+

𝑘 ) = V𝜂,𝑒−𝑡/2𝑅 (𝑔𝑡/2Ω−
𝑘 ) ∩ V𝜂,𝑒−𝑡/2𝑅 (𝛾𝑔−𝑡/2Ω+

𝑘 ).

By [PP17, Lemma 7], there exist constants 𝑡0 > 0 and 𝑐0 (independent of k), such that if 𝑡 ≥ 𝑡0, the
following holds: there exists a common perpendicular 𝛼𝛾 from 𝐷−

𝑘 to 𝛾(𝐷+
𝑘 ) with

1. |ℓ𝛾 − 𝑡 | ≤ 2𝜂 + 𝑐0𝑒−𝑡/2,
2. 𝑑 (𝜋(𝑣±𝛾), 𝜋(𝑤±

𝑘 )) ≤ 𝑐0𝑒−𝑡/2,

3. 𝑑 (𝜋(𝑔±𝑡/2𝑤∓
𝑘 ), 𝜋(𝑣)) ≤ 𝜂 + 𝑐0𝑒−𝑡/2.

For all 𝛾 ∈ Γ𝑘 and 𝑇 ≥ 𝑡0, we define

A𝑘,𝛾 (𝑇) = {(𝑡, 𝑣) ∈ [𝑡0, 𝑇] × 𝑇1
H
𝑛 : 𝑣 ∈ V𝜂,𝑒−𝑡/2𝑅 (𝑔𝑡/2Ω−

𝑘 ) ∩ V𝜂,𝑒−𝑡/2𝑅 (𝛾𝑔−𝑡/2Ω+
𝑘 )},

and the integral

𝑗𝑘,𝛾 (𝑇) =
∫ ∫

(𝑡 ,𝑣) ∈A𝑘,𝛾 (𝑇 )
ℎ−
𝑘,𝑒−𝑡/2𝑅

(𝑔𝑡/2𝑤−
𝑘 )ℎ

+
𝑘,𝑒−𝑡/2𝑅

(𝑔−𝑡/2𝑤+
𝑘 )𝑑𝑡𝑑�̃�𝑘

𝐵𝑀 (𝑣)

=
1

(2𝜂)2

∫ ∫
(𝑡 ,𝑣) ∈A𝑘,𝛾 (𝑇 )

𝑑𝑡𝑑�̃�𝑘
𝐵𝑀 (𝑣)

𝜇𝑊 + (𝑤−
𝑡 ) (𝐵+(𝑤−

𝑡 , 𝑟𝑡 ))𝜇𝑊 − (𝑤+
𝑡 ) (𝐵−(𝑤+

𝑡 , 𝑟𝑡 ))
, (22)

where

𝑟𝑡 = 𝑒−𝑡/2𝑅, 𝑤−
𝑡 = 𝑔𝑡/2𝑤−

𝑘 , 𝑤+
𝑡 = 𝑔−𝑡/2𝑤+

𝑘 .

There exists then a constant 𝑐′′0 > 0 (independent of k), such that for 𝑇 ≥ 𝑡0, one has

−𝑐′′0 +
∑

𝛾∈Γ
𝑇−𝑂 (𝜂+𝑒−ℓ𝛾/2 ) ,−𝑂 (𝜂+𝑒−ℓ𝛾/2 ) ,𝑘

[𝜓±
𝑘 (𝑣

−
𝛾)𝜓±

𝑘 (𝑣
+
𝛾) + 𝑂 ((𝜂 + 𝑒−ℓ𝛾/2) | |𝜓−

𝑘 | |𝛽 | |𝜓
+
𝑘 | |𝛽)] 𝑗𝑘,𝛾 (𝑇)

≤ 𝑖𝑘 (𝑇) ≤

𝑐′′0 +
∑

𝛾∈Γ
𝑇 +𝑂 (𝜂+𝑒−ℓ𝛾/2 ) ,𝑂 (𝜂+𝑒−ℓ𝛾/2 ) ,𝑘

[𝜓±
𝑘 (𝑣

−
𝛾)𝜓±

𝑘 (𝑣
+
𝛾) + 𝑂 ((𝜂 + 𝑒−ℓ𝛾/2) | |𝜓−

𝑘 | |𝛽 | |𝜓
+
𝑘 | |𝛽)] 𝑗𝑘,𝛾 (𝑇 + 𝑂 (𝜂 + 𝑒−ℓ𝛾/2)),

(23)

where Γ𝑠,𝑟 ,𝑘 = {𝛾 ∈ Γ𝑘 |𝑡0 + 2 + 𝑐0 ≤ ℓ𝛾 ≤ 𝑠, 𝑣±𝛾 ∈ 𝑁𝑟Ω±} for all 𝑠, 𝑟 ∈ R.

Claim 5.6. For any 𝜖 > 0, if 𝜂 is small enough and ℓ𝛾 is large enough, then

𝑗𝑘,𝛾 (𝑇) = 𝑒𝑂 (𝜂+𝑒−ℓ𝛾/2)𝑒𝑂 (𝜖 𝑐′ ) (2𝜂 + 𝑂 (𝑒−ℓ𝛾/2))2

(2𝜂)2 ,

for 𝑐′ > 0 independent of k.

Proof. Since (H𝑛, Γ𝑘 ) has radius-continous strong stable/unstable ball masses. By [PP17, Lemma 11],
for every 𝜖 > 0 and every (𝑡, 𝑣) ∈ A𝑘,𝛾 (𝑇), one has

𝜇𝑊 ± (𝑤∓
𝑡 ) (𝐵

±(𝑤∓
𝑡 , 𝑟𝑡 )) = 𝑒𝑂 (𝜖 )𝜇𝑊 ± (𝑣𝛾) (𝐵±(𝑣𝛾 , 𝑟ℓ𝛾 ))
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if 𝜂 is small enough and ℓ𝛾 is large enough, independent of k. Here, 𝑣𝛾 denote the midpoint of the
common perpendicular from 𝐷−

𝑘 to 𝛾(𝐷+
𝑘 ). Hence,

𝑗𝑘,𝛾 (𝑇) =
𝑒𝑂 (𝜖 )

∫ ∫
(𝑡 ,𝑣) ∈A𝑘,𝛾 (𝑇 ) 𝑑𝑡𝑑�̃�𝑘

BM(𝑣)

𝜇𝑊 + (𝑣𝛾) (𝐵+(𝑣𝛾 , 𝑟ℓ𝛾 ))𝜇𝑊 − (𝑣𝛾) (𝐵−(𝑣𝛾 , 𝑟ℓ𝛾 ))
.

By [PP17, Lemma 10], for every (𝑡, 𝑣) ∈ A𝑘,𝛾 (𝑇), one has

𝑑𝑡𝑑�̃�𝑘
BM(𝑣) = 𝑒𝑂 (𝜂+𝑒−ℓ𝛾/2)𝑑𝑡𝑑𝑠𝑑𝜇𝑊 − (𝑣𝛾) (𝑣′)𝑑𝜇𝑊 + (𝑣𝛾) (𝑣′′)𝑑𝑡,

where 𝑣′ = 𝑓 +
𝐻𝐵− (𝑣𝛾) (𝑣) and 𝑣′′ = 𝑓 −

𝐻𝐵+ (𝑣𝛾) (𝑣). By [PP17, Lemma 9], the distances 𝑑 (𝑣, 𝑣𝛾), 𝑑 (𝑣′, 𝑣𝛾),
and 𝑑 (𝑣′′, 𝑣𝛾) are 𝑂 (𝜂 + 𝑒−𝑡/2). Combining these equations together, the claim follows. �

Applying then Claim 5.6 in equation (23), we get

𝐼𝑘 (𝑡) =
∑
𝛾∈Γ𝑘

[𝜓±
𝑘 (𝑣

−
𝛾)𝜓±

𝑘 (𝑣
+
𝛾)] + 𝑂 (𝜂𝑒𝛿𝑘 𝑡 ), (24)

for t sufficiently large independent of k, and 𝑂 (.) independent of 𝑘, 𝜂. Then by multiplying 𝑒−𝛿𝑘 𝑡 to
equations (16), (24), we get that for fixed 𝜂 > 0

𝜎+
𝐷−

𝑘
(𝜓−

𝑘 ) · 𝜎−
𝐷+

𝑘
(𝜓+

𝑘 )

𝛿(Γ𝑘 ) | |𝑚𝑘
BM | |

− 𝑂 (𝜂) ≤
𝑁𝜓−

𝑘
,𝜓+

𝑘
(𝑡)

𝑒𝛿 (Γ𝑘 )𝑡
≤

𝜎+
𝐷−

𝑘
(𝜓−

𝑘 ) · 𝜎−
𝐷+

𝑘
(𝜓+

𝑘 )

𝛿(Γ𝑘 ) | |𝑚𝑘
BM | |

+ 𝑂 (𝜂) (25)

for t sufficiently large independent of k and 𝑂 (.) independent of 𝑘, 𝜂, from where the result follows. �

More about the proof of Theorem 5.3. As (𝐷±
𝑘 )𝑘∈N is a sequence of well-positioned convex sets

in 𝑀𝑘 which converges strongly to a well-positioned set 𝐷± in M, we can select 𝜓±
𝑘 ∈ 𝐶∞

0 (𝑇1𝑀𝑘 ),
𝜓± ∈ 𝐶∞

0 (𝑇1𝑀) be compactly supported functions so that (𝜓±
𝑘 )𝑘∈N converges strongly to 𝜓± and 𝜓±

𝑘 ≡ 1
in 𝑠𝑢𝑝𝑝(𝜎∓

𝜕𝐷±
𝑘
). Hence, in the notation of Theorem 5.5

N𝜓−
𝑘
,𝜓+

𝑘
(𝑡) = N𝐷−

𝑘
,𝐷+

𝑘
(𝑡), 𝜎∓

𝐷±
𝑘
(𝜓±

𝑘 ) = ‖𝜎∓
𝐷±

𝑘
‖,

and in particular
𝜎+
𝐷−
𝑘
(𝜓−

𝑘 ) ·𝜎
−
𝐷+
𝑘
(𝜓+

𝑘 )

𝛿 (Γ𝑘 ) | |𝑚𝑘
BM | | ≠ 0. Then we can restate the conclusion of Theorem 5.3 by a

multiplicative error uniformly close to 1 along the sequence as t gets larger.
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