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Abstract

In this paper we derive solutions of the field equations of general
relativity for a compressible fluid sphere which obeys density-temperature
and pressure-temperature relations which allow for a variation of the
polytropic index throughout the sphere.

A comparison is made with results obtained recently by R. F. Tooper
for general relativistic polytropic fluid spheres and it is shown that our
model corresponds to a polytropic model of index slightly larger than two.

1. Introduction

Recently Tooper (1964) has discussed solutions of the field equations
of general relativity for a compressible fluid sphere in gravitational equi-
librium under the assumption that the fluid obeys a polytropic equation of
state. He obtained solutions of the equilibrium equations in terms of the
polytropic index # and the parameter ¢ which is the ratio of pressure to
energy density at the centre of the sphere.

In the present paper we study a problem of the same type in which we
adopt an equation of state in the form of pressure-temperature and density-
temperature relations which allow for the variation of the polytropic index
throughout the sphere. Various characteristics of the model are derived
and the equilibrium equations are integrated for various values of the
parameter o. The equivalent polytropic index in this model varies from
2.7508 at the centre of the sphere to the value 1.5 at the boundary and it
is shown that this leads to results similar to those for a polytropic model
of index slightly larger than two.

2. Basic equations

The field equations, corresponding to the orthogonal metric
(1) ds? = e*dr?+r%(d0%+sin® 0 d0%) —e7 di?
can be written (e.g. Synge 1960)
139
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(2) e = l—xvfr

(3) a+y1 = k7 e*(p+u)
(4) prtiv(ptu) =0
where

(5) v = J.(: rudr
and

(6) Kk = 8nG/ct.

The subscript one indicates differentiation with respect to r and the
non-zero components of the energy-momentum tensor are
TP=T2=T3=
(7) 1 B 2 . 3 \ p
Ti= —p= —cp.

Using equations (2) to (5) it is possible to derive the following system of
differential equations:

av 24, 1 v
(8) —vtr o — pta r (: - 7) = r¥(p-tp),
dv
(9) 2; = 72/4.

In order to proceed any further we have to introduce an equation of
state and we adopt in this paper the following density-temperature and pres-
sure-temperature relations

(10) p# = ac®|L(=),
(1) p= ;L%

where « and § are constants. In these expressions, § = 1/z is known as the
effective temperature and

L) = sz(x) exp {—zH (z)},
where
(12) H(z) = Kj(2)/K,(x),

K,(z) and K,(z) being the modified Bessel functions of the second kind.

As pointed out by Synge (1957), the density-temperature and pressure-
temperature-relations (10) and (11), due to the asymptotic properties of
L(z), reduce to the familiar pressure density relation
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P = const. plti/»
with )
n =3 for very high effective temperatures

and )
n = 1.5 for low effective temperatures.

From equation (11) it follows that

e A
(13
BH' dx
or Pr= L ar’

since it follows from the definition of L(z) that
al’4+L = —z*H'L

d dH
L@ | g dHE)
dx dx

(14)

where L' =

Using the well-known recurrence relations for the modified Bessel func-
tions of the second kind K,(x) and Kj(z), it can be shown that H(x) satisfies
the following differential equation,

5
H =— —-H+{H?*-1,
x
and therefore it follows from (13) that
5 dx
15 = —{— — 2_ 1V —
(15) h=t |- Hrm-1)

By substituting (15), (10) and (11) in (8) and (9) it can be shown that
the problem reduces to the solution of the following system of differential

equations:
dr
i é(r,v,H, L, x)
where
— 22 (l — 3) (~ k3 H+H2—1)
= K r x
= oc? n 1) B r”—}—v)
(ﬂ ez
d 2yl
(16) ‘—ig T 4,0, H, L, )
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d
aH = — — H +H*—
dx
dL
& il (— —H—|—H2——1) _=
dx x
If we assume 6 = 1 at the centre of the sphere it follows from (10) and
(11) that
-4
Pe ™ 771
1
(17) L(1)
p b
¢ L1
where
1
L(1) = gy & (~Ka(U/Ka(V)}
Introduce the notation
(18) l(z) = 1/L();

it follows (Watson 1922) that /(1) = 128.5.
If we now introduce
(i) the parameter

(19) o=

(ii) the new variable & defined by

(20) r = R& where R = {——czf——}i
4nGL(1)p
(iii) the new variable 7 defined by
(er) v = ac?R%)

we obtain, after a few lengthy but straightforward transformations, the
following system of differential equations:

s

(22)
a -——{ —56H -+ H?*—1}

dl !
_— e — - 2__ ] — —
5 03{ SHO+H?—1} — —
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where
_ (&2—2&D0) (—5HO+H?*—1)
T 02 (14-00)(c0iE3+5)
This system has to be integrated, subject to the following conditions:
(i) At the centre 8 =1, £ =0,7=0,

H(1) = K4(1)/K,(1) = 4.370544,

1
(1) = 7y = Kelh) exp (H(1)
(i) At the boundary 0 = 0, i.e.2 = o, § = £, and 7 = 7;, to be deter-
mined by numerical integration of the system (22).
By using the following asymptotic expansion (McLachlan 1955) for

K, (=), .
T 4n2—12  (4n®—1)(4n°—32)
K”(x)=V§Ee {1+ 118z 21(8z)?
(4n2—1%) (4n2—3%) (42 —5%)
31 (8x)3 }

it can be shown that H(z) has the following asymptotic expansion:
1 1\2 1)\3
H=1+§— +Lsi(;) —%—?(—) + -

x

from which it follows that at the boundary of the sphere H = 1.
Also, for x large (Synge 1957)

L(z) = V—g— xt

lzx) = VE;—— x4,

therefore / = 0, from which it follows that p and $ both vanish at the
boundary.

or

3. Various characteristics of the model

If the solution of the system (22) is known, i.e. if we know &, 9, H and
I as functions of the effective temperature 0, then it is possible to derive the
following characteristics of the model.
(i) Metric

From (2) it follows after a few obvious substitutions that
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2
(23) e* =1— —io.
£
Since the metric must go over into the Schwarzschild metric with
2GM
e =e%*=1—
c2ry

outside the sphere, we must have on the boundary (where 6 = 0)

Y —m e % =1 — .22”_ R
c2R¢&,

or using (23),

-~ 6M _ 20(E)0

c2RE, &

From (4) it follows that

¢ (—5HO+H*—1)
0 (14-00) 0%

or, using the condition at the boundary (24),

3(&, 0 (—5HO+H*—
(25) y=In (1_ 3‘?) -{—20’f0 ( ?1+je)02 L 26,

1

a0

y = y(é)+20

(ii) Pressure and density
The values of these follow from (10) and (11) and are given by:

P (6)
(26) =

p_00)
&7 b (1)

(ili) Concentration towards the centre
Following Tooper, we define the average density as follows:

(28) p= :7]‘7{1” where 7; = Ré,.
From
GM  9(&)o
on &
and (20), i.e.
R — c?ol(1) ,
47p G
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it follows that

20) B

T 308,

'Oll;\D

4. Numerical integration

The system of equations (22) was integrated numerically for various
values of ¢ in the range 0.05 to 0.70, starting from the centre and using the
following initial expansions:

£ = (ho,)t
/4
> (W0

L= 1ly—1y(h]6,)
H = Hy—H,(h]6,),

7 =

where
by = I(1)
H,=H(()
_ —(140)(o+3)
? T 2(—5H,+H2—1)
i, = (Dbl

— (5—Hy)H,lg(1+0) (0+3)

l, =
2 2(—5H,+H3:—1)

h being the initial step length.

In Table I we give the various characteristics of the model for several
values of g, such as (i) the values &, and 7, at the boundary, (ii) the maximum
value of ¢* and the point 7/R at which it occurs, (iii) the minimum value of
e? and (iv) the concentration towards the centre p,/p.

The relative radius 7/R is given by

_ [eryan
R =

7/ —
flo 2y d0

In Fig. 1 we give the values of p/p,, p/ps, 0, €*/(6%)max, M /M = 9[7;
and ¢? as functions of the relative radius 7/R in the case where o = 0.5.
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Figure 1. Values of p/pc, plpe, 0, €%/{e*)max, M,/M = /5, and e¥ as functions of the relative
radius #/R in the case where g = 0.5.

5. Conclusions

If we compare our system of differential equations with the general
relativistic Emden equation derived by Tooper (1964) we see that our model
has the “‘equivalent polytropic index’’

n= —1—(—50H+H?—1)/6°

and this varies from 2.7508 at the centre of the sphere to 1.5 on the boundary.
A comparison with the results derived by Tooper shows that the present
model is equivalent to a polytropic model with polytropic index slightly
larger than n = 2.
This is shown in Table IT in which we compare the central condensation
of polytropic models # = 2 and » = 2.5 with the results derived in this paper.
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TaBLE I
Various characteristics of the model
_ Max of  Corresponding Minimum of —
¢ & 2! % 7IR &Y pelp
0.056 0.68923 0.90731 1.2151 0.5457 0.62417 15.370
0.10 0.64315 0.68220 1.4109 0.50604 0.41366 16.610
0.15 0.61221 0.53786 1.5861 0.48235 0.28660 18.172
0.20 0.59152 0.43948 1.7413 0.46092 0.20547 20.059
025 0.57811 0.36919 1.8779 0.44189 0.15134 22.290
0.30 0.57008 0.31708 1.9976 0.42039 0.11394 24.890
0.35 0.566156 0.27719 2.1022 0.40148 0.08735 27.885
0.40 0.56544 0.24594 2.1935 0.38510 0.06799 31.309
0.45 0.56729 0.22092 2.2729 0.36970 0.05363 35.197
0.50 0.57122 0.20053 2.3421 0.35365 0.04278 39.588
0.55 0.57686 0.18364 2.4021 0.34009 0.03447 44.523
0.60 0.58390 0.16947 2.4543 0.32741 0.02802 60.033
0.65 0.59212 0.15742 2.4995 0.31558 0.02296 56.171
0.70 0.60133 0.14707 2.5387 0.30309 0.01895 62.973
TaBLE II

Comparison of the central condensation p,[p with the one obtained for polytropic models

Polytropic model Present Polytropic model

n=2 model n =25

0.1 12.99 16.610 31.18

0.2 15.67 20.059 46.10

0.3 19.27 24.890 74.36

0.4 24.41 31.309 129.6

0.5 31.42 39.588 242.3

0.6 40.90 50.033 480.4
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