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Abstract

We present a possible emission mechanism based on the idea of current sheets in magnetohy-
drodynamics. The current sheets are formed close to the light cylinder due to a relativistic effect
involving partly frozen-in particles. We estimate that the energy emitted by the current sheets fits

the observations fairly well.

Introduction

The pulsar emission problem has received the at-
tention of many astronomers (Michel 1981) and is a
very important problem. Some investigators, e.g.,
Ruderman and Sutherland (1975), believe that the
emission originates in the polar-cap gap region close
to the star, whereas others (Smith 1977) argue that
it is emitted near the velocity-of-light cylinder.

In this paper, we present a possible emission
mechanism based on the idea of magnetohydrody-
namic current sheets. Because the excited plasma
turbulence results in anomalous resistance near the
light cylinder of a pulsar, the frozen-in condition
is partly relaxed. In addition the magnetic field
lines in this area cannot perfectly corotate with the
star due to relativistic effects on the partly frozen-in
particles. The differentially rotating lines are drawn
along backward and therefore lead to the formation
of current sheets. The emission comes from such
current sheets, which act as an energy source for
the curvature or synchrotron radiation, giving rise
to the observed emission spectrum.

Parameter and energy
estimates

The mass of particles increases rapidly near the
light cylinder of a pulsar due to relativistic effects.
Therefore, the magnetic field lines no longer coro-
tate with the star, because the tremendously mas-
sive frozen-in particles are too heavy to constrain,
even if only partially frozen-in. So the magnetic
field lines are expected to lag behind and to be
curved in both the fully and partially frozen-in cases
(see figure 1), particularly close to the light cylin-
der.

The curved magnetic field lines will create an
induced electromotive force. We may estimate the
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electric field strength as
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Approximating the above equation

the area A originally (figure 1) has no magnetic field
which are curved now and then penetrate this place,
so AP = B. We introduce a parameter £ to de-
scribe the extent of the frozen-in condition, which
is between zero and unity, and will be defined later.
The magnetic annihilation time 7p = z*V}, is the
speed of magnetic field lines going into the diffu-
sion and 2* is the width of that region. Assuming
this is a dipolar magnetic field, B can be expressed
as B = ByR3/2r3, where Ry is the radius of a pul-
sar, and r is the distance from the center of the star.
Presumably it is reasonable that B should be multi-
plied by £ because only those field lines with frozen-
in particles lag behind and induce the electric field.
Replacing At by m, we obtain E = ({§B/4c)Vi,.
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Since angular momentum is conserved for a sys-
tem without 2 moment of force, we have the relation
mVr = 4iamV’r. The left side of the equation rep-
resents the angular momentum of a particle with
mass m, located at r from the center of the pul-
sar, and with revolution velocity V, whereas the
right side includes the relativistic effect on the par-
ticle and correspondingly the revolution velocity be-
comes V'(where~, is the Lorentz factor). Then we
obtain the velocity delay AV = V' = V(1 - 1/%y);
here V = Qr, and Q is the angular velocity of
the pulsar. We rewrite this equation in the form
AV = Qr(1 = 1/4in) which in equilibrium gives a
result close to the value of V mentioned above.

For describing the frozen-in extent more quanti-
tatively we introduce a parameter £ which is defined
as { = e~ !/Fm where R, is the Reynolds’ number.
Obviously € — 1 when the conductivity tends to
infinity, corresponding to fully frozen-in case, and
£ — 0 when o tends to zero corresponding to a
diffusion case; £ ~ 0.37 corresponds to the current-
sheet case in which R, ~ 1.

Using Vin = Qv(1 — 1/7in), we can rewrite the
equation describing the electric field strength as

B
~ ~E20y(1 - 1/70)

So far we do not know whether the plasma is turbu-
lent and thus whether there is interaction between
the charged particles and the plasmons. Consider-
ing only the collisions between the ions and elec-
trons, the conductivity o. of the plasma has the
form of o, & ne?/™«¥« for the strong magnetic field
case, where n is the number density of electrons, e
and m, the electric charge and mass of the electron,
respectively, and v; the collision frequency. The ex-
pression for v,i has the form v = wpe/Np, where
wpe is the frequency of an electron plasma and Np
the Debye number which is related to the Debye
length de and equal to n.d3. In the relativistic case

Ex —E—éﬂr (1 - —1—)
4c “Yin

(Kaplan and Tsytovich 1973), and we take £ = 2.5
and obtain o, ~ 6.9x 1084!/2(T,K3)%/2 where E, =
4meC?, and T, is the electron temperature in units
of Kelvin temperature.

The drift velocity of the electrons relative to
the ions is V3 = o.F/ne, which only includes the
particle collisions. Substituting eq.(1) in the ex-
pression for V, and taking n ~ 10'°cm~3 and
Q ~ 10%rads™!, it is fairly easy to find V4 > ¢/V/3,
which is an acoustic velocity. V4 will never be
greater than the speed of light, because o decreases
due to anomalous resistance as soon as Vj is greater
than ¢/v/3. So we expect that either an ion-acoustic

(1)
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wave or Buneman (1959) instability arises, produc-
ing plasma turbulence and thus anomalous resis-
tance. This is true even at r = 0.9R., where R, is
the radius of the light cylinder.

The anomalous conductivity in a strong mag-
netic field may be expressed as o4 cu%/47rwu
(Kaplan and Tsytovich 1973), where wy = eBc/e
and assuming only electrons and ions involved wg =

o w? =~ wge. Substituting wy and wg into o5, we

pX
obtain the anomalous conductivity

~

n
OA ~ 72B (2)

Since the conductivity is finite near the light
cylinder of a pulsar, the frozen-in condition may
be partially relaxed. The field lines are curved near
the light cylinder and form current sheets. For con-
venience we take the shape of the sheets to be rect-
angular with length x* and width z*. For this par-
ticular case the mass-conservation equation has the
form .

VinX‘ = (3)

on the basis of the mechanism proposed by Petschek
and Thorne (1967); and using the calculation
method of Vasylinuas (1975), we obtain the same
equation as they did

L]
out 2

(2*)? = Az" =A% =0, (4)

where the resistance length A = ¢2/270 Vi, and the
electron inertial length A = c\/m./27ne?, except
for the trivial differences in the coefficients. Obvi-
ously A > A, holds in the case we are considering,
and the width z* of the diffusion region is

2" = ct[2rowr(1 - 1/7)]. (5)
If we take n ~ 10!° as before, we find that the width
of the diffusion region is roughly z* ~ 10° cm. By
use of eq.(3) when A > A, the length x* of the
diffusion region is as follows x* = 02/47r0M Vin,
where M is the magnetic merging rate M
Vin/Vout- I the magnetic field in the reconnec-
tion region and the kinetic relevant to Vi, out-
side the sheet comparatively are negligible, we have
nYoum?, = (€B)?/8w. Then we obtain v, =
4.8 x 10*[(€B)?/n], that is Vou = c(1 = 1/42,,)'/?,
where c is the light speed. The magnetic merging
rate then becomes

_ M (-1rm)
c(1-1/72)"*

It is likely that the emitted energy of a pul-
sar results from the transfer of the magnetic field
whose energy comes from the rotating pulsar. Also
we see that the magnetic energy is sufficient to

(6)
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supply the radiation. The estimate of the anni-
hilation time mp is about 10~%s. The power sup-
plied by the magnetic field through a current sheet
is about (87)~!(¢B)?/mp, which represents about
1.36 x 10'* ergcm ! s~! for B ~ 5 x 10° Gauss near
the light cylinder, £ being roughly equal to 0.37
in the current sheet. Assume that the emission
region is located near the equatorial plane with
outer radius R. and inner radius 0.9R., so the
total emission from a volume 0.272*R? is about
8.5 x 103 ergs™!, which agrees fairly well with the
observational value—e.g., the case of PSR 0531+421.

The charged particles gain energy through the
magnetic merging and are then captured by the
magnetic field outside the field reversal region.
These particles release and distribute their kinetic
energy in various ways such as curvature and/or
synchrotron radiation.
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Conclusions

1. Because the electron drift velocity is greater
than the acoustic velocity near the light cylinder of
a pulsar, either an ion-wave or Buneman instability
occurs, which results in the appearance of anoma-
lous resistivity.

2. Since the conductivity of the plasma is not
infinite, the frozen-in state is necessarily partially
relaxed. This is the actual precondition to create a
current sheet.

3. Some particles frozen-in to the magnetic field
near the light cylinder cannot corotate with the cen-
tral pulsar due to relativistic effects and thus cause
the field lines to lag forming current sheets.

4. If the mechanism presented in this paper is
correct, the number density of charged particles in
the Goldreich and Julian (1969) model is low in
the radiation region, because the ejected particle
velocity appears to be unreasonable.
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