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Gravity-driven film flow down a uniformly heated
smoothly corrugated rigid substrate
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Gravity induced film flow over a rigid smoothly corrugated substrate heated uniformly
from below, is explored. This is achieved by reducing the governing equations of motion
and energy conservation to a manageable form within the mathematical framework of
the well-known long-wave approximation; leading to an asymptotic model of reduced
dimensionality. A key feature of the approach and to solving the problem of interest,
is proof that the leading approximation of the temperature field inside the film must
be nonlinear to accurately resolve the thermodynamics beyond the trivial case of ‘a flat
film flowing down a planar uniformly heated incline.’ Superior predictions are obtained
compared with earlier work and reinforced via a series of corresponding solutions to
the full governing equations using a purpose written finite element analogue, enabling
comparisons to be made between free-surface disturbance and temperature predictions,
as well as the streamline pattern and temperature contours inside the film. In particular,
the free-surface temperature is captured extremely well at moderate Prandtl numbers.
The stability characteristics of the problem are examined using Floquet theory, with
the interaction between the substrate topography and thermo-capillary instability modes
investigated as a set of neutral stability curves. Although there are no relevant experimental
data currently available for the heated film problem, recent existing predictions and
experimental data concerning the behaviour of corresponding isothermal flow cases are
taken as a reference point from which to explore the effect of both heating and cooling.

Key words: thin films, lubrication theory, thermocapillarity

1. Introduction

Thin film flows are ubiquitous in the formation of functional surfaces/barriers, while
playing a key role as part of numerous manufacturing/conversion process. In tandem,
predicting their behaviour has motivated the work of experimentalists and modellers alike
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for decades. This remains true today, whether the objective is to produce defect free coated
products as cheaply and as speedily as possible or to understand the source and means of
suppressing free-surface disturbances when trying to extend established stability envelops
to bring down production costs, etc.

For planar substrates and isothermal flow, the study of wave formation on the surface of
falling liquid films began with Kapitza (1948), whose subsequent experiments (Kapitza &
Kapitza 1949) revealed the presence of steady waves on laminar films due to the classical
hydrodynamic instability mode – a phenomenon recorded much earlier by Kirkbride
(1934). The apparent absence of surface waves at low Reynolds (Re) numbers (Friedman
& Miller 1941; Grimley 1945) popularised the existence of a critical Reynolds number,
Recrit, below which the film remained stable. Following measurements by Binnie (1957)
showing the average wavelength of instabilities was considerably larger than the average
depth of the film, Benjamin (1957) provided a consensus via a long-wave approximation.
Linearising the governing equations to first order he revealed Recrit = 5

4 cotβ in the
absence of surface tension, where β is the substrate inclination angle from the horizontal.
Yih (1963) corroborated the above, providing a simplified mathematical proof of Recrit
and showing the film’s stability to be governed by surface waves rather than shear waves,
at least for large β, in line with an earlier hypothesis proposed by Kapitza (1948).

The insights of Kapitza (1948) and Yih (1963) were subsequently exploited by Benney
(1966) who performed the first nonlinear analysis using an evolution equation for the
film thickness derived via a long-wave expansion. Whilst recovering Recrit from the
linearised theory, Benney omitted the effect of surface tension which meant his model
failed to predict the progression of instabilities to a steady, finite-amplitude state as
observed experimentally. Gjevik (1970) rectified this shortcoming by moving surface
tension ahead of its formal order in the long-wave expansion. Measurements by Liu,
Paul & Gollub (1993) provided the first accurate experimental determination of Recrit,
showing the Benney equation is only valid close to Recrit; an unphysical vanishing of
solitary waves occurs outside this neighbourhood during finite-time simulations (Pumir,
Manneville & Pomeau 1983; Joo, Davis & Bankoff 1991; Liu & Gollub 1994), limiting its
use to periodic solutions (Lin 1974; Nakaya 1975, 1989; Sivashinsky & Michelson 1983).
Ooshida (1999) extended the Benney equation’s plausible validity using a regularisation
method but accurately resolving the film dynamics beyond Recrit demands a multi-variable
model (Roberts 1996).

A two-equation depth-averaged model in terms of the flow rate and the film thickness
was supplied by Shkadov (1967); coined the integral-boundary-layer (IBL) equations.
The model utilised a self-similar parabolic velocity profile through the film but it failed
to recover the correct expression for Recrit. Ruyer-Quil & Manneville (1998) addressed
this problem by expanding Shkadov’s self-similar velocity profile to first order in the
long-wave expansion, leading to a modified IBL model and recovery of the correct Recrit.
Following this, Ruyer-Quil & Manneville (2000) presented an improved reduced model
based on a polynomial expansion of the streamwise velocity, giving rise to what have
become known as the weighted-IBL (WIBL) equations. In addition to predicting the
correct Recrit, the WIBL model does not display the unphysical behaviour beyond Recrit
which plagues the Benney model, making it a popular choice ever since.

The case of isothermal film flow down non-planar substrate became of interest much
later than its planar counterpart, with Tougou (1978) and Wang (1981) showing Recrit
remained unchanged for small substrate waviness. Subsequently, Wang (1984) found
the velocity through the film remained primarily parabolic when the film thickness is
sufficiently smaller than the amplitude of the corrugated substrate – a feature corroborated
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Film flow down uniformly heated corrugated inclines

experimentally (Scholle, Wierschem & Aksel 2001a,b). Subsequently, it was found
substrate undulations lead to an increase in the film thickness and inertia can be neglected
below the instability threshold (Zhao & Cerro 1992; Wierschem, Scholle & Aksel 2002).
Moderate substrate corrugations have been discovered to delay the onset of surface
instabilities when compared with their planar counterpart (Wierschem & Aksel 2003;
Wierschem, Lepski & Aksel 2005), with subsequent investigations (Oron & Henining
2008; D’Alessio, Pascal & Jasmine 2009; Cao, Vlachogiannis & Bontozoglou 2013; Pollak
& Aksel 2013) revealing a rich variety of stability phenomena including: short-wave
transitions and isles of stability (Trifonov 2014); the combined effect of corrugation
amplitude and wavelength on flow stabilisation (Schörner, Reck & Aksel 2015, 2016); and
culminating in the identification of six characteristic stability regimes for film flow over
topography (Schörner & Aksel 2018; Schörner et al. 2018). Recently, Veremieiev & Wacks
(2019) have shown the qualitative stability behaviour caused by substrate topography can
be captured by a WIBL model.

Interestingly, the problem of film flow down both planar, and corrugated, uniformly
heated substrates has received far less attention over the same period; initially
from Goussis & Kelly (1991) who found two instability modes associated with
thermo-capillarity: a long-wave variety linked to the hydrodynamic instability mode and
a short-wave one. Given the temperature distribution within ‘a flat film flowing down
a planar, uniformly heated incline’ is linear, it has become commonplace to initiate
a long-wave expansion with an assumed linear temperature dependence through the
film, even though it is impossible for the latter to satisfy all of the required boundary
conditions. Proceeding in this way, the long-wave thermo-capillary mode was explored by
Kalliadasis, Kiyashko & Demekhin (2003b) and Kalliadasis et al. (2003a) using a mixed
Shkadov-weighted-residual model; however, it fails to retrieve Recrit for uniformly heated
substrate. The WIBL model derived by Ruyer-Quil et al. (2005), using a self-similar linear
temperature profile, overcame this problem, accurately predicting Recrit (Scheid et al.
2005); and was extended to the three-dimensional case (Scheid et al. 2008). Saprykin et al.
(2007) were the first to consider the combined effect of topography and heating, employing
a Benney-like long-wave expansion to model an evolving film on a horizontally aligned
substrate. A self-similar linear temperature profile has been further utilised in WIBL
models investigating heated, wavy substrate (D’Alessio et al. 2010; Ogden, D’Alessio &
Pascal 2011); studies involving temperature-dependent fluid properties (Dávalos-Orozco
2012; Pascal, D’Alessio & Hasan 2018); and other heated film flow problems (Blyth &
Bassom 2012; Mukhopadhyay & Mukhopadhyay 2020; Sterman-Cohen & Oron 2020).

Problematically, a linear temperature dependence rapidly produces non-physical
negative fluid temperatures in solitary wave simulations at moderate Péclet number; the
fact most functional fluids exhibit large Péclet numbers underscores the importance of
overcoming this barrier. Utilising a Galerkin projection of the energy equation, Trevelyan
et al. (2007) showed the onset of negative temperature predictions can be stalled by
a nonlinear temperature dependence and eliminated entirely by modifying the weight
functions; however, the latter predictions are only in qualitative agreement with the
full energy equation. Elsewhere, Chhay et al. (2017) were able to evade the negative
predictions of a linear temperature dependence by interchanging asymptotically equivalent
terms in their averaged energy equation; instead constraining the temperature to follow
the flat-film solution at large Péclet number. Thompson et al. (2019) adopted a linear
temperature profile satisfying the Dirichlet and Neumann conditions at the free surface but
not the substrate Dirichlet condition; in consequence, their ‘projection approach’ is only
consistent at moderate Péclet numbers close to a critical value. The most promising results
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Figure 1. Schematic of film flow down a uniformly heated, wavy rigid substrate inclined at an angle β to the
horizontal, showing the main geometrical features relative to the adopted coordinate system.

to date are those of Cellier & Ruyer-Quil (2020), who applied a relaxation to the linear
temperature dependence which promotes the nonlinear diffusion of heat inside the film.
Proposing two models – a simpler single-variable one and a more complex two-variable
one – they achieved good agreement with the full energy equation at moderate Péclet
number, whilst concurrently delaying negative temperatures until large Péclet number.
The current modelling aligns closely with that of Cellier & Ruyer-Quil (2020) but
unequivocally shows why the leading temperature expansion needs to be nonlinear.

To achieve this, the present work approaches the problem from a different perspective
using substrate undulations to disturb the free surface. A rigorous analysis based on
the modelling approach of Ruyer-Quil & Manneville (2000) then reveals the primary
nature of the fluid temperature to be nonlinear. The remainder of the paper proceeds
as follows. The problem of interest is formulated in § 2 along with the derivation of a
reduced three-equation model and associated linear stability analysis. A comprehensive
set of results is provided and discussed in § 3, with conclusions drawn in § 4.

2. Problem formulation and modelling approach

2.1. Problem formulation
The problem of interest is that of a gravity-driven layer of Newtonian fluid, with
constant density ρ and dynamic viscosity μ, flowing over a uniformly heated, periodically
corrugated rigid substrate inclined at an angle β to the horizontal, as illustrated
schematically in figure 1. The corresponding Cartesian coordinate system is orientated
such that the X-axis points along and down the inclined substrate which is considered
to be infinite and invariant in the Y-direction, with the Z-axis normal to it, rendering the
principal problem two-dimensional. The substrate profile, S(X), is measured relative to the
X-axis and given by

S(X) = A

[
1 + cos

(
2πX

L

)]
2

, (2.1)

where A is the corrugation amplitude and L its wavelength.
The film thickness, H(X, T), at a downstream location X, is the difference

between the free-surface location, Z = F(X, T), and the corrugation height, Z = S(X).
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Film flow down uniformly heated corrugated inclines

The temperature of the substrate, Θs, and that of the surrounding ambient gas, Θa, remain
fixed and constant with the difference between them defined as ΘΔ = Θs −Θa.

The equations governing the flow are the continuity and Navier–Stokes (NS) equations

∇ · U = 0, (2.2a)

ρ
DU
DT

= −∇P + ρg + μ∇2U, (2.2b)

where U = (U,W)T and P are the velocity and pressure fields, respectively, ∇ =
(∂/∂X, ∂/∂Z) is the differential operator and g = ḡ(sinβ,− cosβ)T is the acceleration
due to gravity (with magnitude ḡ); together with a corresponding convection–diffusion
equation representing the conservation of energy. For the case of no volumetric heating and
negligible thermal viscous dissipation, the latter can be written in terms of the temperature
field Θ as

ρCP
DΘ
DT

= κ∇2Θ, (2.3)

in which the heat capacity at constant pressure CP and thermal conductivity κ of the fluid
are both assumed to remain constant.

The boundary conditions at the non-porous substrate include a no-slip and constant
temperature requirement, namely

U = 0, Θ = Θs, at Z = S(X). (2.4a,b)

The fluid is assumed to be non-volatile and ΘΔ to be small enough that no evaporation of
the liquid film takes place. Accordingly, the evolution of the free surface is described by
the kinematic condition, given by

∂H
∂T

+ U
∂F
∂X

= W, at Z = F(X, T), (2.5)

where F(X, T) = S(X)+ H(X, T). The normal and tangential force balance equations
there are

n̂ · T · n̂ − n̂ · T̂ · n̂ = −σ(∇ · n̂)
t̂ · T · n̂ − t̂ · T̂ · n̂ = ∇σ · t̂

}
at Z = F(X, T), (2.6a,b)

where T = −PI + μ[(∇U)+ (∇U)T] and T̂ = −P0I are the stress tensors of the fluid
and ambient surrounding air, respectively; P0 is the atmospheric pressure and I is the
identity matrix. The normal and tangent unit vectors at the free surface are given by

n̂ = 1√
1 + G

(
−∂F
∂X
, 1
)
, t̂ = 1√

1 + G

(
1,
∂F
∂X

)
; (2.7a,b)

both of which include the surface curvature pre-factor, G = (∂F/∂X)2. The surface tension
of the film, σ , varies with Θ in the following manner:

σ = σ0

[
1 + (Θ −Θa)

∂σ

∂Θ

]
, (2.8)

with σ0 the surface tension at temperatureΘa; the surface tension gradient ∂σ/∂Θ is taken
to be constant.
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The heat transferred at the free surface follows Newton’s law of cooling, which reads

− κn̂ · ∇Θ = α(Θ −Θa), at Z = F(X, T), (2.9)

where α is the liquid–gas heat transfer coefficient there and is valid as long as convective
heat transfer is minimal, which can be expected when ΘΔ is small.

The following scalings are used to non-dimensionalise the governing equations and
boundary conditions, (2.1)–(2.9):

X = Lx, Z = H0z, T = L
U0

t,

U = U0u, W = H0U0

L
w, Θ = ΘΔθ +Θa,

S = H0s H = H0h, P = μU0L

H2
0

p,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (2.10)

with lowercase letters representing dimensionless variables. The vertical length scale, H0,
corresponds to the Nusselt film thickness

H0 =
(

3μV̇0

ρḡ sinβ

)1/3

, (2.11)

while the free-surface velocity for a flat film, U0 = 3V̇0/2H0, is taken as the velocity scale.
The two are linked through the streamwise flow rate per unit cross-sectional width, V̇0.

Applying the scalings leads to the following dimensionless substrate profile:

s(x) = A
H0

[1 + cos(2πx)]
2

(2.12)

and dimensionless governing equations

∂u
∂x

+ ∂w
∂z

= 0, (2.13a)

εRe
[
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

]
= −∂p

∂x
+ 2 + ε2 ∂

2u
∂x2 + ∂2u

∂z2 , (2.13b)

ε3Re
[
∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

]
= −∂p

∂z
− 2ε cotβ + ε2 ∂

∂x

[
ε2 ∂w
∂x

+ ∂u
∂z

]
+ 2ε2 ∂

2w
∂z2 ,

(2.13c)

εRe Pr
[
∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z

]
= ε2 ∂

2θ

∂x2 + ∂2θ

∂z2 , (2.13d)

featuring the following dimensionless groups: the shallowness parameter, ε = H0/L; the
Reynolds number, Re = ρU0H0/μ; the Prandtl number, Pr = (μCP)/κ .

The dimensionless boundary conditions at the substrate, z = s(x), read

u|z=s = w|z=s = 0, θ |z=s = 1, (2.14a,b)

930 A23-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

92
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.920


Film flow down uniformly heated corrugated inclines

while scaling and expanding the boundary conditions at the free surface, z = f (x, t), leads
to the following expressions:

w|z=f = ∂h
∂t

+ u|z=f
∂f
∂x
, (2.15a)

p|z=f = p0 − 2ε2

⎡
⎢⎢⎣
(1 − ε2g)

∂u
∂x

+ ∂f
∂x

[
ε2 ∂w
∂x

+ ∂u
∂z

]
1 + ε2g

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
z=f

−
ε3(1 − Maϑ)

∂2f
∂x2

Ca[1 + ε2g]3/2 ,

(2.15b)

[
ε2 ∂w
∂x

+ ∂u
∂z

]∣∣∣∣
z=f

= 4

ε2 ∂f
∂x
∂u
∂x

∣∣∣∣
z=f

1 − ε2g
− ε

Ma
Ca

√
1 + ε2g

1 − ε2g

[
∂θ

∂x
+ ∂f
∂x
∂θ

∂z

]∣∣∣∣∣
z=f

, (2.15c)

∂θ

∂z

∣∣∣∣
z=f

= ε2 ∂f
∂x
∂θ

∂x

∣∣∣∣
z=f

− Biϑ
√

1 + ε2g. (2.15d)

These include the dimensionless free-surface profile, f (x, t) = s(x)+ h(x, t), and
temperature, ϑ = θ |z=f , together with the dimensionless surface curvature pre-factor,
g = (∂f /∂x)2. In addition, they contain the following additional dimensionless groups:
Capillary number, Ca = μU0/σ0; Marangoni number, Ma = ΘΔ(−∂σ/∂Θ); Biot
number, Bi = αH0/κ .

The fluid pressure is obtained by integrating equation (2.13c) between z and z = f (x, t)
with the upper limit of integration given by (2.15b), leading to

p = p0 + 2ε(f − z) cotβ − ε2 ∂u
∂x

− ε2 ∂

∂x
(u|z=f )− ε3 ∂

∂x

⎡
⎢⎣(1 − Maϑ)

Ca

∂f
∂x√

1 + ε2g

⎤
⎥⎦

+ ε3Re
∫ f

z

[
∂w
∂t

+ ∂

∂x
(uw)+ ∂

∂z
(w2)

]
dz − ε4 ∂

∂x

∫ f

z

∂w
∂x

dz, (2.16)

a complete derivation of which is provided in the online supplementary material available
at https://doi.org/10.1017/jfm.2021.920.

2.2. Reduced asymptotic model
Solving the full equation set (2.13)–(2.15) represents a daunting task due to the a priori
unknown location of the free surface. Accordingly, an asymptotic model of reduced
dimensionality is derived following the modelling approach of Ruyer-Quil & Manneville
(2000). Proceeding in this way is superior to the gradient expansion of Benney (1966)
because it captures the distortion of the primary parabolic flow as deviations manifest.

Gravity-driven film flow is well suited to analysis via a long-wave expansion due to
the predominance of surface tension with regard to the film stability, in that long waves
are commonly the most unstable modes (Oron, Davis & Bankoff 1997). Therefore, it is
reasonable to assume quantities vary slowly in time and in the x-direction, which is to say
derivatives with respect to x and t are small. The smallness of space–time derivatives in
the present scaling is represented by the shallowness parameter, ε < 1, with the order of
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such terms in the long-wave expansion given by the power of the scaling factor, εn. In
contrast, gradients with respect to the z-coordinate can be considered large. Accordingly,
and on the assumption that u and θ are infinitely differentiable with respect to z, the fluid
velocity and temperature are expanded as infinite series which take the form

u =
∞∑

j=0

aj(x, t)φj(z), θ = 1 +
∞∑

j=0

bj(x, t)φj(z), (2.17a,b)

where {aj, bj} denote unknown expansion coefficients and φj = (z − s)j+1 are basis
functions selected to automatically satisfy the substrate boundary conditions (2.14); thus,
expansions (2.17) represent power series in z centred around the substrate position, s(x).
An expansion of the vertical flow velocity is unnecessary since an expression for w in
terms of u can be found by expressing the continuity equation (2.13) in the form

w = −
∫ z

s

∂u
∂x

dz. (2.18)

An expansion of the fluid pressure is likewise redundant since an algebraic expression –
(2.16) – exists.

Representing u and θ as power series in z enables a reduction in dimensionality
because substituting the expansions (2.17) into the governing equations (2.13) converts
each equation into an infinite sum of φj; this can be represented mathematically by

R(−1)(x, t)+ R0(x, t)φ0(ẑ)+ R1(x, t)φ1(ẑ)+ · · · + RJ(x, t)φJ(ẑ)+ · · · = 0, (2.19)

in which the φj depend on the reduced variable ẑ = (z − s) whilst the coefficients Rj
are functions of (x, t). A reduction in dimensionality follows because: (i) (2.19) must
be satisfied across the whole domain of Ω = {x ∈ [0, 1], ẑ ∈ [0, h]}; and (ii) {1, φj}
constitute the monomial basis of ẑ and are therefore linearly independent. Consequently,
(2.19) can only be satisfied if Rj(x, t) = 0 for j = −1, 0, 1, . . . , J, . . . ,∞. This leads to a
reduced equation set made up of the residuals Rj(x, t) for j = −1, 0, 1, . . . , J, . . . ,∞ and
the free-surface boundary conditions (2.15) which are functions of (x, t) but independent
of z. The reduced equations are satisfied by solutions to the expansion coefficients {aj, bj}.

Needless to say, solving an infinite number of residual equations would be impractical,
and so truncations of expansions (2.17) are required; thus, the solutions to u and θ sought
via this approach are approximate rather than exact. Nevertheless, it is at least possible to
find asymptotically equivalent solutions within the framework of a long-wave expansion.
The smallness of derivatives with respect to (x, t) means approximating such terms using
truncations of expansions (2.17) leads to asymptotic solutions which are equivalent to the
exact solutions within a bounded parameter space. The truncations needed to approximate
space–time derivatives are found from a gradient expansion of the fluid velocity and
temperature, taking the form (u, θ) = (u0, θ0)+ ε(u1, θ1)+ ε2(u2, θ2)+ · · · .

The first step is to find (u0, θ0). A potential starting point are the analytical solutions for
the case of ‘a flat film flowing down a planar, uniformly heated incline’, found by setting
ε = 0 in (2.13)–(2.15), and attributed to Nusselt (1916), who first found such an expression
for the velocity profile through an isothermal flat film; they read

uNu = (z − s)(s + 2h − z), θNu = 1 +
(

1
1 + Bih

− 1
)
(z − s)

h
. (2.20a,b)

Equations (2.20) represent exact solutions which are only strictly valid when ε = 0;
indeed, setting (u0, θ0) = (uNu, θNu) leads to a Benney expansion in terms of the film
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Film flow down uniformly heated corrugated inclines

thickness (h). The derivation of a reduced asymptotic model which accurately resolves the
film dynamics beyond the trivial case requires expansions whose forms are invariant with
respect to ε – consider the self-similarity function in a Blasius boundary layer (Blasius
1908) – and necessitates a multi-modal parametrisation of the reduced equations (Roberts
1996).

A better starting point is to identify which of the expansion coefficients {aj, bj} can
enter at leading order in the gradient expansion, and use these expansion coefficients
{aj, bj} to represent the amplitudes of the primary flow and heat transfer, i.e. (u0, θ0).
This is accomplished by deriving a set of conditions from the governing equations for the
heated film case which isolate the individual expansion coefficients so their order may be
inferred from other terms present in the equations (Ruyer-Quil & Manneville 2000). Since
expansions (2.17) are power series in z, {aj, bj} can be isolated by differentiating equations
(2.13b,d) n − 2 times with respect to z and only with respect to z; this gives

εRe
∂n−2

∂zn−2

[
u
∂u
∂x

+ w
∂u
∂z

+ ∂u
∂t

]
= ∂nu
∂zn , (2.21a)

εRe Pr
∂n−2

∂zn−2

[
u
∂θ

∂x
+ w

∂θ

∂z
+ ∂θ

∂t

]
= ∂nθ

∂zn , (2.21b)

where it has been assumed Re ∼ Pr ∼ O(1) and all terms of ∼O(ε2) and higher have
been discarded. At this point it is only necessary to determine which {aj, bj} are of at least
first order in the long-wave expansion. Considering all powers of z, the infinite expansions
(2.17) yield the following conditions when substituted into (2.21):

R

⎡
⎣n−2∑

k=0

⎛
⎝ ∞∑

j=0

ajφj−n+k+2

n−k−2∏
i=0

( j − i + 2)
( j + 2)

⎞
⎠
⎛
⎝ ∞∑

j=0

∂

∂x
[rjφj−k]

k∏
i=0

( j − i + 2)
( j + 2)

⎞
⎠

−
n−2∑
k=0

⎛
⎜⎝ ∞∑

j=0

∂

∂x
[ajφj−n+k+3]

( j + 2)

n−k−2∏
i=0

( j − i + 3)
( j + 3)

⎞
⎟⎠
⎛
⎝ ∞∑

j=0

rjφj−k−1

k+1∏
i=0

( j − i + 2)
( j + 2)

⎞
⎠

+
∞∑

j=0

∂rj

∂t
φj−n+2

n−2∏
i=0

( j − i + 2)
( j + 2)

⎤
⎦ =

∞∑
j=0

rjφj−n

n∏
i=0

( j − i + 2)
( j + 2)

, (2.22)

for (i) rj = aj with R = εRe, and (ii) rj = bj with R = εRe Pr.
The right-hand side of (2.22) is proportional to {an−1, bn−1} because the repeated

product only leaves terms of {aj, bj} satisfying the inequality j − n + 2 > 0, simplifying to
j ≥ n − 1 as { j, n} ∈ Z+. Meanwhile, the left-hand side of (2.22) is of at least first order
in the long-wave expansion due to the presence of space–time derivatives. Stipulating
that both sides of (2.22) be of equivalent orders requires {an−1, bn−1} to be of at least first
order. Equations (2.21)–(2.22) hold for n > 2: constants of integration appear when n ≤ 2;
implying all {aj, bj} for j ≥ 2 are of at least first-order; leaving only {a0, a1, b0, b1} to be
candidates of order unity, ∼O(1), and to represent the amplitudes of the primary flow and
heat transfer, i.e. (u0, θ0).

On the conjecture that {a0, a1, b0, b1} are the leading expansion coefficients, attention
is directed to expressing {a0, a1, b0, b1} in terms of physically measurable parameters and
making sure the power series (2.17) satisfy all of the boundary conditions (2.14)–(2.15).
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Consequently, a variable transformation of the following form is sought:

(u,w, θ) → (q, h, ϑ), (2.23)

where q is the streamwise flow rate, h is the film thickness and ϑ is the free-surface
temperature. The flow rate (q) is a controllable physical quantity, whilst the film
thickness (h) and free-surface temperature (ϑ) already appear in the free-surface boundary
conditions (2.15). The variable transformation can be easily accomplished by finding the
expressions which relate {aj, bj} to (q, h, ϑ); in addition to providing physical context,
the resulting expressions describe how the velocity expansion coefficients {aj} and the
temperature expansion coefficients {bj} linearly depend upon one another, respectively.

The fluid velocity and temperature are related to the streamwise flow rate and
free-surface temperature, respectively, by

q =
∫ f

s
u dz, ϑ = θ |z=f . (2.24a,b)

Substituting expansions (2.17) into definitions (2.24) leads to the following relationships:

q =
∞∑

j=0

hj+2

( j + 2)
aj, ϑ − 1 =

∞∑
j=0

hj+1bj, (2.25a,b)

which form the first set of conditions relating {aj, bj} to (q, h, ϑ).
The decision to centre the power series about s(x) ensures the substrate boundary

conditions (2.14) are automatically satisfied by expansions (2.17); however, the free-surface
boundary conditions (2.15) are not. Substituting expressions (2.17)–(2.18) into (2.15)
yields supplementary conditions which complement those in (2.25). Approximating the
kinematic condition (2.15a) using (2.17)–(2.18), and simplifying via condition (2.25), leads
to the integral form of the kinematic condition

∂h
∂t

+ ∂q
∂x

= 0, (2.26)

describing the relationship between film thickness and flow rate. Equation (2.26) is
universal for non-volatile, incompressible film flow and can be derived by integrating
the continuity equation (2.13a) between z = s(x) and z = f (x, t), with the lower and
upper bounds of the integration given by (2.14a) and (2.15a), respectively, followed by
simplifying via the Leibniz integral rule and streamwise flow rate definition.

Since both the z-momentum equation (2.13c) and the normal stress condition (2.15b)
are eliminated from the equation set (2.13)–(2.15) following a substitution of the fluid
pressure – (2.16) – into the x-momentum – (2.13); only the shear stress (2.15c) and heat
flux (2.15d) boundary conditions remain. With reference to the variable transformation of
(2.23), boundary conditions (2.15c,d) can be re-written as

∂u
∂z

∣∣∣∣
z=f

=
2ε2 ∂f

∂x
∂u
∂x

∣∣∣∣
z=f

1 − ε2g
+
ε2
[
∂2q
∂x2 − u|z=f

∂2f
∂x2

]
1 + ε2g

−
ε

Ma
Ca

∂ϑ

∂x√
1 + ε2g[1 − ε2g]

, (2.27a)

∂θ

∂z

∣∣∣∣
z=f

=
ε2 ∂f
∂x
∂ϑ

∂x
1 + ε2g

− Biϑ√
1 + ε2g

, (2.27b)
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Film flow down uniformly heated corrugated inclines

utilising ∂w/∂z = −∂u/∂x via the continuity equation (2.13a), w|z=f from the kinematic
condition (2.15a) and the total spatial derivatives defined along the free surface, namely

∂ϑ

∂x
= ∂θ

∂x

∣∣∣∣
z=f

+ ∂f
∂x

∂θ

∂z

∣∣∣∣
z=f ,

(2.28a)

∂

∂x
(u|z=f ) = ∂u

∂x

∣∣∣∣
z=f

+ ∂f
∂x

∂u
∂z

∣∣∣∣
z=f ,

(2.28b)

∂

∂x
(w|z=f ) = ∂w

∂x

∣∣∣∣
z=f

+ ∂f
∂x

∂w
∂z

∣∣∣∣
z=f

. (2.28c)

Substituting expansions (2.17) into the left-hand side of (2.27a,b) (within the framework
of the long-wave expansion, space–time derivatives on the right-hand side of (2.27) are
approximated via recursion using truncations of expansions (2.17)) yields

∞∑
j=0

( j + 1)h jaj =
2ε2 ∂f

∂x
∂u
∂x

∣∣∣∣
z=f

1 − ε2g
+
ε2
[
∂2q
∂x2 − u|z=f

∂2f
∂x2

]
1 + ε2g

−
ε

Ma
Ca

∂ϑ

∂x√
1 + ε2g[1 − ε2g]

, (2.29a)

∞∑
j=0

( j + 1)h jbj =
ε2 ∂f
∂x
∂ϑ

∂x
1 + ε2g

− Biϑ√
1 + ε2g

, (2.29b)

respectively, which form the second set of conditions relating {aj, bj} to (q, h, ϑ).
Thus far, the presumption from (2.22) is that {a0, a1, b0, b1} are the leading expansion

coefficients, and four relationships linking {aj, bj} to (q, h, ϑ) have been derived – (2.25)
and (2.29); with an additional condition linking the film thickness and flow rate in (2.26).
Therefore, solving for {a0, a1, b0, b1} in (2.25) and (2.29) returns expressions for them in
terms of (q, h, ϑ, aj, bj) for j ≥ 2, which read

a0 = 3q
2h3 (2h)+ 1

2

∞∑
j=2

( j + 4)( j − 1)
( j + 2)

h jaj

− 1
2

⎡
⎢⎢⎢⎢⎣

2ε2 ∂f
∂x
∂u
∂x

∣∣∣∣
z=f

− εMa
Ca

∂ϑ
∂x√

1 + ε2g
1 − ε2g

+
ε2
[
∂2q
∂x2 − u|z=f

∂2f
∂x2

]
1 + ε2g

⎤
⎥⎥⎥⎥⎦ , (2.30a)

a1 = − 3q
2h3 − 3

4h

∞∑
j=2

j( j + 3)
( j + 2)

h jaj
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+ 3
4h

⎡
⎢⎢⎢⎢⎣

2ε2 ∂f
∂x
∂u
∂x

∣∣∣∣
z=f

− εMa
Ca

∂ϑ
∂x√

1 + ε2g
1 − ε2g

+
ε2
[
∂2q
∂x2 − u|z=f

∂2f
∂x2

]
1 + ε2g

⎤
⎥⎥⎥⎥⎦ , (2.30b)

b0 = (ϑ − 1)
h

+

⎡
⎢⎣ (ϑ − 1)

h
−
ε2 ∂f
∂x
∂ϑ

∂x
1 + ε2g

+ Biϑ√
1 + ε2g

⎤
⎥⎦+

∞∑
j=2

( j − 1)h jbj, (2.30c)

b1 = −1
h

⎡
⎢⎣(ϑ − 1)

h
−
ε2 ∂f
∂x
∂ϑ

∂x
1 + ε2g

+ Biϑ√
1 + ε2g

⎤
⎥⎦− 1

h

∞∑
j=2

jh jbj, (2.30d)

where (q, h, ϑ,Ma,Ca,Bi) ∼ O(1) and {aj, bj} ∼ O(εn) for j ≥ 2 and n ≥ 1.
This is advantageous because: (i) replacing {a0, a1, b0, b1} in the expansions of (u, θ)

– (2.17) – with the identities above allows the power series to satisfy not only the
substrate boundary conditions but also to algebraically satisfy those at the free surface
– leaving only the x-momentum (2.13b) and energy (2.13d) equations to be satisfied;
and (ii) the leading truncations of the gradient expansion, (u0, θ0), can now be found.
The identities of {a0, a1} are asymptotically equivalent, in the long-wave limit, to the
amplitude of the parabolic velocity profile derived by Ruyer-Quil et al. (2005); meanwhile,
the identities of {b0, b1} can be compared with the temperature expansions of Trevelyan
et al. (2007) and Cellier & Ruyer-Quil (2020). In the work of Trevelyan et al. (2007), the
expansion coefficients were not assigned any order with respect to ε but an emphasis was
placed on the cubic temperature coefficient to ease comparison with a Benney expansion
of the fluid temperature; accordingly, a temperature expansion with the same form as
(5.10b) in Trevelyan et al. (2007) can be retrieved by solving for b2 instead of b1 in
(2.30c,d). Unfortunately, the single-variable heat transfer model proposed by Trevelyan
et al. (2007) is inconsistent with the long-wave expansion because it was derived following
the Galerkin method; a consistent evolution equation for ϑ can be obtained by following
either the current approach or that of Cellier & Ruyer-Quil (2020). In a similar fashion,
a temperature expansion with the same form as Cellier & Ruyer-Quil (2020) can be
retrieved by introducing the evaluation of the energy equation (2.13c) at the free surface as
a supplementary boundary condition; the latter can be written as

∂2θ

∂z2

∣∣∣∣
z=f

=
εRe Pr

[
∂ϑ

∂t
+ u|z=f

∂ϑ

∂x

]
+ ε2

[
∂2f
∂x2

∂θ

∂z

∣∣∣∣
z=f

+ 2
∂f
∂x

d
dx

(
∂θ

∂z

∣∣∣∣
z=f

)
− ∂2ϑ

∂x2

]

1 + ε2g
.

(2.31)

Substituting the power series (2.17b) into the left-hand side of (2.31), with {b0, b1} given
by (2.30c,d), and solving for b2 returns a temperature expansion with the same form as
Cellier & Ruyer-Quil (2020). Equation (2.31) is left out of the current analysis because
the space–time derivatives composing the right-hand side indicate it is purely a first-order
contribution; the present objective is to find (u0, θ0).
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Film flow down uniformly heated corrugated inclines

To write the expansions at leading order, expressions (2.30) are substituted into the
power series (2.17) and all terms of order ∼O(ε) and higher are discarded; this yields

u0 = 3q
2h3 (z − s)(s + 2h − z), (2.32a)

θpara = 1 + (ϑ − 1)
h

(z − s)+ 1
h

[
(ϑ − 1)

h
+ Biϑ√

1 + ε2g

]
(z − s)(s + h − z), (2.32b)

in which surface curvature (ε2g) has been retained, so its effect on the heat transfer through
the free surface is accurately captured, but thermo-capillarity has been excluded as the
Marangoni effect is purely a deviant mechanism in uniformly heated film flow. The leading
temperature expansion (2.32b) is labelled θpara because it is parabolic and thus a departure
from the linear temperature expansion used by Kalliadasis et al. (2003a,b), Ruyer-Quil
et al. (2005), D’Alessio et al. (2010) and Sterman-Cohen & Oron (2020).

A long-standing assumption in the modelling of heated film flow has been that the
leading approximation to the temperature expansion must be linear because the Nusselt
temperature distribution – (2.20b) – is linear. This line of thinking would demand the
parabolic correction in (2.32b) be of first order with respect to ε and reduce the leading
temperature expansion to the linear form offered by Ruyer-Quil et al. (2005). There is
merit in this assumption because the parabolic coefficient b1 does tend to zero in the case
of a ‘flat film flowing down a planar, uniformly heated incline’ (due to the free-surface
temperature approaching its flat-film solution), or expressed mathematically

lim
ε→0

ϑ = 1
1 + Bih

+ O(ε), lim
ε→0

[
(ϑ − 1)

h
+ Biϑ√

1 + ε2g

]
+ O(ε) = 0. (2.33a,b)

Nevertheless, there are two issues with this assumption: (i) the parabolic correction in
(2.32b) contains only quantities which are of order unity, (h, ϑ,Bi) ∼ O(1); and (ii) a
linear temperature approximation at leading order produces inaccurate predictions except
when the free-surface temperature (ϑ) remains close to its flat-film solution. To resolve this
quandary, it must be understood why the modelling approach of Ruyer-Quil & Manneville
(2000) is superior to the traditional approach of Benney (1966).

The superiority of the current modelling approach stems from the fact that expressions
(2.32) are approximations to the general solutions of the fluid velocity and temperature
at leading order; in contrast, the Nusselt solutions – (2.20) – are particular solutions
corresponding to the special case of ε = 0. Consequently, expressions (2.32) are applicable
at any value of ε whereas (2.20) are strictly only valid when ε = 0. An important test is to
check whether the general solutions – (2.32) – reduce to the particular solutions – (2.20) –
when the special case of ε = 0 is met.

Writing the momentum (2.13b) and energy (2.13c) equations with ε = 0, returns

∂2u
∂z2 = −2,

∂2θ

∂z2 = 0, (2.34a,b)

which when evaluated using expressions (2.32), with ε2g = 0; finds q and ϑ to equal

qNu = 2
3

h3, ϑNu = 1
1 + Bih

. (2.35a,b)

Expressions (2.35) are the flat-film (or Nusselt) solutions to the flow rate and free-surface
temperature, respectively; substituting these solutions into expressions (2.32), with ε2g =
0, reduces the leading expansions to the Nusselt solutions – (2.20) – as required.
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Of course, the trivial case (ε = 0) is not the point of interest; the aim is to find
particular solutions for when ε /= 0. The general solutions are applicable at any value
of ε and can therefore be used to transform the x-momentum (2.13b) and energy (2.13d)
equations into an infinite set of residual equations which are of reduced dimensionality
and which automatically satisfy the boundary conditions (2.14)–(2.15). The infinite set of
residuals can then be truncated via a gradient expansion, (u, θ) = (u0, θ0)+ ε(u1, θ1)+
ε2(u2, θ2)+ · · · where ε < 1, to a finite set whose solutions are asymptotically equivalent
to those of the full equation set (2.13)–(2.15). In contrast, the Nusselt solutions are
only valid when ε = 0 and proceeding to set (u0, θ0) = (uNu, θNu) is tantamount to
assuming the powers of ε are linearly independent in the x-momentum (2.13b) and energy
(2.13d) equations since it leads to each of the coefficients of εn being equal to zero,
i.e. {0} + ε{0} + · · · = 0. Assuming the powers of ε to be linearly independent is in
direct contradiction to the gradient expansion which approximates the fluid velocity and
temperature through a summation of the powers of ε and thus relies upon them being
linearly dependent. In fact, if the powers of ε are treated as being linearly independent in
the gradient expansion then this would necessitate (un, θn) ≡ 0 for n ≥ 1 and (u, θ) =
(uNu, θNu); equivalent to setting ε = 0 and providing some explanation as to why the
Benney expansion is only consistent in a narrow neighbourhood about the Nusselt
solutions.

Obviously, the powers of ε must always be treated as linearly dependent; the leading
expansions – expressions (2.32) – allow for this whereas the Nusselt solutions – (2.20)
– do not. Interestingly, this detail facilitates the existence of leading-order contributions
which are balanced entirely against a summation of higher-order terms; this is completely
in keeping with the long-wave expansion which only assumes space–time derivatives are
small, thus a large contribution to the film dynamics can be equal to the sum of many
smaller contributions; such a leading-order contribution would vanish in the limit of
ε → 0. The concept of evanescent leading-order contributions has been touched upon
previously in the literature: Ooshida (1999) theorised the existence of a drag–inertia
regime which makes a large contribution to the velocity field but only when the fluid
inertia is non-negligible – to explain why the Nusselt solution is an inadequate description
of the flow dynamics beyond the trivial case; and Cellier & Ruyer-Quil (2020) introduced
nonlinear relaxation modes to the temperature expansion designed to satisfy Newton’s
law of cooling in the long-wave limit whilst simultaneously vanishing in this same limit.
In either case, retaining these evanescent leading-order contributions has been shown to
drastically increase the predictive capability of the models in question.

The discussion above explains how the parabolic correction in expression (2.32b) can be
of leading order with respect to ε despite vanishing in the limit of ε → 0; to showcase this
behaviour the temperature predictions of two models are compared in § 3, the first assumes
b1 ∼ O(ε) whilst the second allows b1 ∼ O(1). Perhaps the most paradoxical behaviour
of b1 is seen in the problem of film flow down planar inclines, s(x) = 0 ∀x; where the
evaluation of the energy equation at the substrate, ∂2θ/∂z2|z=s = 0, reveals b1 = 0 ∀ε.
However, it is easily seen from (2.30d) that b1 is itself an infinite expansion, made up of
terms belonging to different orders of the long-wave expansion. Therefore, at nth order,
higher-order terms in (2.13c) must be approximated by b̃1 where b1 = b̃1 + O(εn), not b1
itself. This means that even when b1 = 0, it is possible for b̃1 /= 0. As a matter of fact
one should anticipate b̃1 /= 0 when ε /= 0. Consider (2.33), the square-bracketed term in
(2.33b) approaches zero in the limit of ε → 0 because ϑ approaches its flat-film solution
in (2.33a). At first-order, b̃1 is given by the square-bracketed term of (2.33b), thus the
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Film flow down uniformly heated corrugated inclines

only way b̃1 can equal zero is if ϑ = ϑNu. When ε /= 0, ϑ /=ϑNu which inevitably means
b̃1 /= 0.

The leading expansions – expressions (2.32) – were derived on that basis that
{a0, a1, b0, b1} are the leading expansion coefficients, however, since the powers of ε
are linearly dependent, it is possible formulate leading-order approximations from any
permutation of the expansion coefficients {aj, bj}. Accordingly, expression (2.32b) is the
lowest-degree polynomial approximation of the temperature field to leading order and
thus reveals the heat transfer through a heated film to be characteristically nonlinear. It
is impossible for a linear temperature expansion to encapsulate all of the thermodynamics
in heated film flow when ε /= 0 because the general solution must satisfy a total of three
boundary conditions and a linear approximation can only ever satisfy two. Alternative
leading temperature approximations would be the single-variable temperature expansion
of Trevelyan et al. (2007) – (5.10b) of their paper with i ≤ 1 – which uses a cubic
correction; or the first temperature ansatz proposed by Cellier & Ruyer-Quil (2020) – (17)
of their paper – which uses a polynomial correction.

With the necessity of the parabolic temperature profile – expression (2.32b) –
established, focus is now directed at reducing the dimensionality of the complete
governing equations which contain terms up to fourth order. A substitution of the fluid
pressure (2.16) and vertical velocity (2.18) expressions, eliminate both the continuity
(2.13a) and z-momentum (2.13c) equations; leaving only the x-momentum (2.13b) and
energy (2.13d) equations. Therefore, it is the reduced forms of (2.13b,d) that accompany
(2.26) in forming the reduced asymptotic model.

In the ideal scenario, every term involving (u, θ) would be approximated to ∼O(εn)
so the reduced model is asymptotically equivalent to the equation set (2.13)–(2.15) at
nth order in the long-wave expansion; Ruyer-Quil & Manneville (2000) refer to this as
the complete model. However, a complete model becomes cumbersome at second order
as the gradient expansion stipulates that truncations of the expansions (2.17) at ∼O(εn)
include all {aj, bj} up to j ≤ 4n + 1. This results in the space–time derivatives of {aj, bj}
for j ≥ 2 appearing at ∼O(ε2); the behaviour of these derivatives is unknown making their
algebraic elimination impossible. As a result, a complete model at second order, or higher,
consists of more than three equations in terms of the physically ambiguous {aj, bj} for
j ≥ 2. Naturally, it is desirable to eliminate all {aj, bj} via a simplification. The easiest and
most straightforward step is to simply discard all the derivatives of {aj, bj} for j ≥ 2, along
with the products of {aj, bj} for j ≥ 2 with any other derivatives. This leads to what has
become known as the simplified model (Ruyer-Quil & Manneville 2000) and is justifiable,
even in the context of undulating substrate and moderate Reynolds number, because the
flow remains primarily parabolic and the film dynamics is chiefly described by the leading
velocity expansion (Wang 1984; Ruyer-Quil et al. 2005).

The fourth-order simplified model presented here is derived by approximating
higher-order terms in (2.13b,d) using the leading expansions (2.32). With the leading terms
in (2.13b,d) – the double derivatives with respect to z which introduce only linear terms in
{aj, bj} – obtained using the complete expansions (2.17), this leads to

[A0 − 2a1] + [A1 − 6a2]φ0 + [A2 − 12a3]φ1 + [A3 − 20a4]φ2 + [A4 − 30a5]φ3

+ [A5 − 42a6]φ4 + [A6 − 56a7]φ5 −
∞∑

m=8

[m(m + 1)am]φm−2 = 0, (2.36a)
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[B0 − 2b1] + [B1 − 6b2]φ0 + [B2 − 12b3]φ1 + [B3 − 20b4]φ2 + [B4 − 30b5]φ3

−
∞∑

n=6

[n(n + 1)bn]φn−2 = 0; (2.36b)

the expressions for {Am,Bn} are provided in the online supplementary material in terms of
(s, ã0, ã1, b̃0, b̃1) – with aj = ãj + O(ε) and bj = b̃j + O(ε). Setting the coefficients of φj
to zero – as per (2.19) – and solving for {aj, bj} for j ≥ 2, returns

a7 = A6/56, am = 0, for m ≥ 8, (2.37a[i,ii])

a6 = A5/42, bn = 0, for n ≥ 6, (2.37b[i,ii])

a5 = A4/30, b5 = B4/30, (2.37c[i,ii])

a4 = A3/20, b4 = B3/20, (2.37d[i,ii])

a3 = A2/12, b3 = B2/12, (2.37e[i,ii])

a2 = A1/6, b2 = B1/6, (2.37f [i,ii])

from which the identities of {aj, bj} for j ≥ 2, valid to first order in the long-wave
expansion, can be ascertained in terms of (s, ã0, ã1, b̃0, b̃1) – see Appendices A and B.
With the coefficients of φj set to zero, (2.36) can be re-written as

2h
3

A0 + 2q
h2 +

∞∑
j=2

j( j + 3)
( j + 2)

h jaj =
3ε2 ∂f

∂x
∂

∂x

[q
h

]
− εMa

Ca
∂ϑ
∂x√

1 + ε2g
1 − ε2g

+
ε2
[
∂2q
∂x2 − 3

2
q
h
∂2f
∂x2

]
1 + ε2g

,

(2.38a)

h
2

B0 + (ϑ − 1)
h

−
ε2 ∂f
∂x
∂ϑ

∂x
1 + ε2g

+ Biϑ√
1 + ε2g

+
∞∑

j=2

jh jbj = 0, (2.38b)

in which {a1, b1} have been replaced by their complete identities from (2.30). Substituting
{aj, bj} for j ≥ 2 from Appendices A and B; {A0,B0} from the supplementary material; and
replacing {ã0, ã1, b̃0, b̃1} with asymptotically equivalent expressions in terms of (q, h, ϑ)
– found by truncating equations (2.30) at ∼O(1) – yields

εRe
[
∂q
∂t

− 9
7

q2

h2
∂h
∂x

+ 17
7

q
h
∂q
∂x

]
+ ε3Re

[
29
56
∂q
∂t

(
∂h
∂x

)2

+ 107h
336

∂q
∂t
∂2h
∂x2 + 73q2

128
d3s

dx3

+ 29
32

(
∂q
∂x

)2 ds
dx

+ 509
672

(
∂q
∂x

)2
∂h
∂x

− 187q
1344

∂2q
∂x2

∂h
∂x

+ 277q
128

∂q
∂x

d2s

dx2 − 15q
64

∂2q
∂x2

ds
dx

+ 163q2

448h
∂2h
∂x2

ds
dx

− 185q2

896h
∂h
∂x

d2s

dx2 + 9q2

7h
d2s

dx2
ds
dx

− 11h2

56
∂3q
∂x2∂t

+ 17q
7h

∂q
∂x

(
ds
dx

)2
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+ 1205q2

2688
∂3h
∂x3 − 601hq

1008
∂3q
∂x3 − 683h

1008
∂2q
∂x2

∂q
∂x

+ 297q
224h

∂q
∂x
∂h
∂x

ds
dx

+ 4633q
2688

∂q
∂x
∂2h
∂x2

− 555q2

896h
∂2h
∂x2

∂h
∂x

+ 11
8
∂q
∂t
∂h
∂x

ds
dx

+ ∂q
∂t

(
ds
dx

)2

+ 5h
12
∂q
∂t

d2s

dx2 + 115q2

672h2

(
∂h
∂x

)3

− 11h
56

∂2q
∂x∂t

∂h
∂x

− 163q2

224h2

(
∂h
∂x

)2 ds
dx

− 253q
672h

∂q
∂x

(
∂h
∂x

)2

− 9q2

7h2
∂h
∂x

(
ds
dx

)2
]

+ ε4

[
15
4h
∂q
∂x

(
ds
dx

)3

+ 5q
2h2

(
ds
dx

)4

− 30q
7h2

(
∂h
∂x

)4

+ 61
14h

∂q
∂x

(
∂h
∂x

)3

− q
4
∂h
∂x

d3s

dx3

− 7
∂q
∂x

d2s

dx2
ds
dx

− q
4
∂3h
∂x3

ds
dx

− 5h
3
∂2q
∂x2

d2s

dx2 + 49q
4h

∂h
∂x

d2s

dx2
ds
dx

− 107qh
336

∂4h
∂x4

− 5qh
12

d4s

dx4 − 5h
3
∂q
∂x

d3s

dx3 + 113q
28h

∂2h
∂x2

(
∂h
∂x

)2

+ 19q
4h

(
∂h
∂x

)2 d2s

dx2 − 23
4
∂2q
∂x2

∂h
∂x

ds
dx

+ 3q
7
∂3h
∂x3

∂h
∂x

+ 45q
8h

d2s

dx2

(
ds
dx

)2

+ 7q
8
∂2h
∂x2

d2s

dx2 − 107h
84

∂q
∂x
∂3h
∂x3 − 19

4
∂2q
∂x2

(
ds
dx

)2

− 13
7
∂2q
∂x2

(
∂h
∂x

)2

+ 12q
h
∂2h
∂x2

∂h
∂x

ds
dx

+ 29
2h
∂q
∂x

(
∂h
∂x

)2 ds
dx

− 53q
4h2

(
∂h
∂x

)2 ( ds
dx

)2

+ 53q
56

(
∂2h
∂x2

)2

− q
2

(
d2s

dx2

)2

− 17
14
∂q
∂x
∂2h
∂x2

∂h
∂x

+ 11h
28

∂3q
∂x3

∂h
∂x

− 14q
h2

(
∂h
∂x

)3 ds
dx

− 13
4
∂q
∂x
∂h
∂x

d2s

dx2 − 3q
2

d3s

dx3
ds
dx

− 181h
168

∂2q
∂x2

∂2h
∂x2 + 59

4h
∂q
∂x
∂h
∂x

(
ds
dx

)2

+ 11h2

56
∂4q
∂x4

−13
4
∂q
∂x
∂2h
∂x2

ds
dx

+ 59q
8h

∂2h
∂x2

(
ds
dx

)2

− 5q
4h2

∂h
∂x

(
ds
dx

)3
]

+
ε

5
4

Ma
Ca

∂ϑ

∂x√
1 + ε2g[1 − ε2g]

+ ε2

[
5q
h2

(
ds
dx

)2

+ 15q
8h

d2s

dx2 + 15
4h
∂q
∂x

ds
dx

+ 33
4h
∂q
∂x
∂h
∂x

− 31q
4h2

(
∂h
∂x

)2

+ 33q
8h

∂2h
∂x2

−13
4
∂2q
∂x2 − 5q

4h2
∂h
∂x

ds
dx

− 15
4

∂f
∂x

∂

∂x

[q
h

]
1 − ε2g

− 15
8

2
3
∂2q
∂x2 − q

h
∂2f
∂x2

1 + ε2g

⎤
⎥⎥⎦+ ε

5h
3
∂f
∂x

cotβ

+ 5q
2h2 − 5h

3
− ε3 5h

6
∂2

∂x2

⎡
⎢⎣(1 − Maϑ)

Ca

∂f
∂x√

1 + ε2g

⎤
⎥⎦ = 0, (2.39a)

εRe Pr

[
Bih√

1 + ε2g

(
1
5
∂ϑ

∂t
− 11

50
ϑ

h
∂q
∂x

+ 6
25

qϑ
h2
∂h
∂x

+ 6
25

q
h
∂ϑ

∂x

)
+ 3

25
(ϑ − 1)

h
∂q
∂x
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+33
25

q
h
∂ϑ

∂x
+ ∂ϑ

∂t

]
+ ε3Re Pr Bihϑ

[1 + ε2g]3/2
∂f
∂x

[
1
5
∂2q
∂x2 − 6

5
q
h
∂2f
∂x2

]

+ ε2

[
4(ϑ − 1)

5h
d2s

dx2 + 12(ϑ − 1)
5h2

(
ds
dx

)2

+ 2(ϑ − 1)
5h2

(
∂h
∂x

)2

+ 2(ϑ − 1)
5h

∂2h
∂x2

+ 8(ϑ − 1)
5h2

∂h
∂x

ds
dx

+ ∂2ϑ

∂x2 + 8
5h
∂ϑ

∂x
ds
dx

+ 4
5h
∂h
∂x
∂ϑ

∂x
− 12

5h

∂f
∂x
∂ϑ

∂x
1 + ε2g

⎤
⎥⎦

+ ε2 Bi√
1 + ε2g

[
6ϑ
5h

(
∂h
∂x

)2

+ 16ϑ
5h

∂h
∂x

ds
dx

+ 12ϑ
5h

(
ds
dx

)2

− 3ϑ
5
∂2h
∂x2 − 2ϑ

5
d2s

dx2

−6
5
∂h
∂x
∂ϑ

∂x
− 4

5
∂ϑ

∂x
ds
dx

− h
5
∂2ϑ

∂x2

]
+ ε4 Bi

[1 + ε2g]3/2

[
hϑ
5
∂f
∂x
∂3f
∂x3

+6ϑ
5

(
∂h
∂x

)2
∂2f
∂x2 + 2ϑ

∂h
∂x

ds
dx
∂2f
∂x2 + 4ϑ

5

(
ds
dx

)2
∂2f
∂x2 + 2h

5
∂f
∂x
∂2f
∂x2

∂ϑ

∂x

]

+ ε4 2Bihϑ
5

1 − ε2g
[1 + ε2g]5/2

(
∂2f
∂x2

)2

+ 12
5h2

[
ϑ − 1 + Bihϑ√

1 + ε2g

]
= 0, (2.39b)

which together with (2.26) constitutes the fourth-order simplified model utilised in § 3. To
be clear, the prefix simplified used here refers to the fact that space–time derivatives of
{aj, bj} for j ≥ 2 have been neglected in the above formulation.

Accordingly, the simplified model is only asymptotically equivalent with the full
equation set – (2.13)–(2.15) – to first order in the long-wave expansion. From a physical
standpoint, the expansion coefficients {aj, bj} for j ≥ 2 describe deviations of the fluid
velocity and temperature away from the primary flow and heat transfer. As such, these
deviations are retained in the simplified formulation; however, their spatial and temporal
evolution is lost. This makes the simplified formulation well suited for analysing film
stability down flat plates when any deviation from the primary parabolic flow signals
instability; however, beyond first order in the long-wave expansion, inaccuracies can be
expected. Even so, it is known the flow rate, film thickness and free-surface temperature
still dictate the flow dynamics at moderate Reynolds number and so such inaccuracies are
often small and inconsequential (Ruyer-Quil et al. 2005). In the particular case of film flow
down wavy substrate, retaining terms up to fourth order makes the present formulation
applicable to problems involving large substrate amplitude when the effects of vertical
inertia and viscosity are significant – provided the ratio of the substrate amplitude to the
substrate wavelength remains small enough for the primary flow to remain parabolic, i.e.
A/L ∼ O(ε). As in the isothermal flow case (Veremieiev & Wacks 2019), but without
formally establishing the necessity of a parabolic temperature profile, (2.39) can be arrived
at using weighted residuals. The procedure for this being: (i) higher-order terms involving
(u, θ) are approximated by the leading expansions (2.32); (ii) the double derivatives with
respect to z are evaluated using the complete expansions (2.17) with {a0, a1, b0, b1} given
by (2.30); (iii) weighting of the momentum equation (2.13b) by the Nusselt parabolic
velocity profile, w̃u = (z − s)(s + 2h − z), and of the energy equation (2.13c) by the
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Nusselt linear temperature profile, w̃θ = (z − s); and finally (iv) integrating the equations
between z = s(x) and z = s(x)+ h(x, t).

To distinguish the underpinning of the current analysis, (2.26) and (2.39) are referred
to henceforth as the reduced asymptotic model (RAM) based on a parabolic temperature
profile through the film, or RAM–θpara for short.

2.3. Linear stability analysis
An essential requirement of the proposed RAM–θpara is that it returns the critical Reynolds
number for the case of a ‘flat film flowing down a planar, uniformly heated incline.’ The
accompanying analysis, see Appendix C, leads to the following expression:

Re − 5
4

cotβ + 15
16

Ma
Ca

Bi
(1 + Bi)2

= 0, (2.40)

equivalent to that obtained by Goussis & Kelly (1991) and who were the first to do
so. Expression (2.40) is derived in the long-wave limit; thus, it is only valid when the
wavenumber of the most unstable mode tends to zero as Re → 0 (Kalliadasis et al. 2003a).
It is similarly recovered by assuming the leading temperature expansion is linear – see
Scheid et al. (2005) – because nonlinear behaviour is neglected in the linearised theory.

The stability of film flow down heated wavy substrate is explored using the Floquet
theory approach of Trifonov (2014), extended to the thermal problem of interest here.
Perturbing and linearising the RAM–θpara (2.26) and (2.39), yields

∂ ĥ
∂t

+ ∂ q̂
∂x

= 0, (2.41a)

k=2∑
k=0

αk(x)
∂k+1q̂
∂t∂xk +

k=4∑
k=0

[
βk(x)

∂kĥ
∂xk + γk(x)

∂kq̂
∂xk + ξk(x)

∂kϑ̂

∂xk

]
= 0, (2.41b)

ζ0(x)
∂ϑ̂

∂t
+

k=3∑
k=0

[
ηk(x)

∂kĥ
∂xk + μk(x)

∂kq̂
∂xk + νk(x)

∂kϑ̂

∂xk

]
= 0, (2.41c)

where (q̂, ĥ, ϑ̂) are infinitesimal disturbances to the steady-state solutions (qs, hs, ϑs) and
ϕk = {αk, βk, γk, ξk, ζk, ηk, μk, νk} are linearised periodic coefficients – the latter can be
found in the online supplementary material.

It is important to note that Squire’s theorem (Squire’s theorem states that
two-dimensional instabilities are the least stable modes) is not always valid in the
presence of thermo-capillarity (Kalliadasis et al. 2003a); furthermore, long waves are
also not necessarily the most unstable in film flow down wavy substrate (Pollak & Aksel
2013). This means three-dimensional disturbances of all possible wavenumbers should
be considered. However, since the present formulation is strictly only applicable to small
Ma, when Squire’s theorem still applies, only two-dimensional instabilities are considered
here. The disturbances are modelled by a sum of Floquet wave harmonics, which take the
form

q̂ = e−iωt e2πiQx
m=F∑

m=−F

q̄m e2πimx, (2.42a)
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ĥ = e−iωt e2πiQx
m=F∑

m=−F

h̄m e2πimx, (2.42b)

ϑ̂ = e−iωt e2πiQx
m=F∑

m=−F

ϑ̄m e2πimx, (2.42c)

where ω is the angular frequency, Q ∈ [0, 1] is the Floquet parameter (i.e. wavenumber),
F ∈ Z is the number of Floquet harmonics and (q̄m, h̄m, ϑ̄m) are the disturbance
amplitudes. The periodic coefficients ϕk(x) depend upon the steady-state solutions which
must be found numerically prior to a stability analysis. The exception is the steady-state
flow rate (qs) which according to (2.26) will be constant. A suitable approximation for qs
is found by assuming the liquid film is thick enough for the flow rate to remain close to the
flat-film solution, i.e. the Nusselt solution (Scholle, Wierschem & Aksel 2004); putting
h = 1 in (2.35a) yields qs = 2/3.

Substituting (2.42) into (2.41) and applying a Fourier transform

f̂ (n) =
∫ 1

0
f (x) e−2πinx dx for n = −F, . . . ,F, (2.43)

leads to the generalised eigenvalue problem (A − cB)x̂ = 0 involving the phase velocity
c = ω/(2πQ) and the eigenvector x̂ = (q̄n, h̄n, ϑ̄n)

T.
Focusing on the temporal stability, Q ∈ R with c ∈ C; the problem then reads

m=F∑
m=−F

δm,n

[
−ch̄m +

(
1 + m

Q

)
q̄m

]
= 0, (2.44a)

m=F∑
m=−F

[
−c(2πiQ)

k=2∑
k=0

(2πi)k(Q + m)kα̂k,n−mq̄m +
k=2∑
k=0

(2πi)k(Q + m)kξ̂k,n−mϑ̄m

+
k=4∑
k=0

(2πi)k(Q + m)k[β̂k,n−mh̄m + γ̂k,n−mq̄m]

]
= 0, (2.44b)

m=F∑
m=−F

[
−c(2πiQ)ζ̂0,n−mϑ̄m +

k=3∑
k=0

(2πi)k(Q + m)kη̂k,n−mh̄

+
k=1∑
k=0

(2πi)k(Q + m)kμ̂k,n−mq̄m +
k=2∑
k=0

(2πi)k(Q + m)kν̂k,n−mϑ̄m

]
= 0, (2.44c)

for n = −F, . . . ,F; where δm,n is the Dirac delta function, ϕ̂k,n−m = ∫ 1
0 ϕk(x) e−2πi(n−m)x

dx are the Fourier expansion coefficients and the entries of the matrices Am,n and
Bm,n are constructed using the periodic coefficients ϕk(x). In the work reported here,
the eigenvalues c were found using Matlab’s built-in subroutine eig and the stability
determined by the eigenvalue with the largest positive imaginary part, i.e. the largest
growth rate; if there are no eigenvalues with a positive imaginary part then the film
is considered stable. Neutral stability is defined as when instabilities neither grow nor
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Film flow down uniformly heated corrugated inclines

decay in an exponential fashion (the centre manifold of the system); this ensues when the
eigenvalue of the most unstable mode is wholly real.

When performing the analysis, it is sufficient to consider only half the interval of the
Floquet parameter, Q ∈ [0, 1

2 ]. This is because of the symmetry, cn(−Q) = c∗
n(Q), and

periodicity, cn(Q + 1) = cn(Q), of the eigenvalues; hence, cn(
1
2 + Q) = c∗

n(
1
2 − Q).

3. Results and discussion

3.1. Steady-state comparisons
First a direct comparison between two RAMs is carried out: one assumes the leading
temperature expansion to be linear, referred to as RAM–θlin; the second allows the leading
temperature expansion to be parabolic, RAM–θpara – derived in § 2.2. RAM–θlin utilises
the exact same mass (2.26) and momentum (2.39a) residuals as RAM–θpara but assumes
b1 ∼ O(ε), leading to a distinct energy residual in which higher-order temperature terms
are approximated by the following linear profile:

θlin = 1 + (1 − ϑ)

h
(z − s). (3.1)

The double derivative with respect to z in (2.13d) is still approximated by the complete
temperature expansion (2.17b) with {b0, b1} given by their identities (2.30c,d); this ensures
Newton’s law of cooling, (2.15d), is satisfied by the energy residual. Thus, the linear
temperature profile, (3.1), yields the following energy residual:

εRe Pr
[

4
5
∂ϑ

∂t
+ 27

25
q
h
∂ϑ

∂x
+ 7

50
(ϑ − 1)

h
∂q
∂x

]
+ 12

5h2

[
ϑ − 1 + Bihϑ√

1 + ε2g

]

+ ε2

[
4
5
(ϑ − 1)

h
∂2h
∂x2 − 12

5
(ϑ − 1)

h2
∂h
∂x

ds
dx

+ 6
5
(ϑ − 1)

h
d2s

dx2 + 8
5h
∂h
∂x
∂ϑ

∂x

+ 12
5h

ds
dx
∂ϑ

∂x
− 8

5
(ϑ − 1)

h2

(
∂h
∂x

)2

− 4
5
∂2ϑ

∂x2 − 12
5h

∂f
∂x
∂ϑ

∂x
1 + ε2g

⎤
⎥⎦ = 0. (3.2)

As discussed in § 2.2, the present formulation is not best suited for modelling unsteady flow
because the space–time derivatives of deviations have been neglected. As such, a series
of steady-state solutions is presented with model validation provided by corresponding
numerical solutions to the full dimensionless form of the governing conservation equations
of mass, momentum and energy (2.13) subject to the attendant boundary conditions
(2.14)–(2.15). These, identified as N–SE subsequently, were acquired via finite-element
(FE) discretisation featuring triangular elements and a ‘mixed-interpolation’ formulation
with linear basis functions for the fluid pressure and quadratic basis functions for the fluid
velocities, temperature and the mesh coordinates required for the spinal method used to
determine the a priori unknown free-surface shape – for further details see Gaskell et al.
(2004), Scholle et al. (2008) and Veremieiev, Thompson & Gaskell (2015). The type
of interpolation utilised in the FE solver satisfies the Ladyzhenskaya–Babuşka–Brezzi
stability condition to ensure the pressure field is not polluted by spurious, unphysical
oscillations. Steady-state solutions to the reduced asymptotic models – RAM–θlin and
RAM–θpara – were obtained using the Matlab function fsolve and a central difference
discretisation of all spatial derivatives. Obviously, RAM–θlin and RAM–θpara will be in
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agreement when the heat flux through the film is uniform, i.e. when both ∂θ/∂x and
∂θ/∂z are constant; however, when the heat flux through the film is non-uniform, they
will differ because ∇θlin /=∇θpara. For uniformly heated substrate, the heat flux will be
non-uniform whenever the film thickness is non-uniform. This occurs when either: (i) the
flow is unsteady; or (ii) the underlying substrate is non-planar as is the situation here.

The problem involves eight parameters: ε, Re, Ca, β, A/H0, Pr, Ma and Bi. However, the
Capillary number, Ca, is not independent of the Reynolds number, Re, and so it is switched
for the Kapitza number, Ka, which is purely a function of the fluid properties. Since the
substrate amplitude, A/H0, and shallowness parameter, ε, are both characterised by the
Nusselt film thickness, H0, they can be redefined in terms of the more tangible substrate
wavelength, L, and capillary length, Lc, leading to a substrate amplitude, A/L = ε · A/H0,
and scaled wavelength, L/Lc. The Kapitza number and scaled wavelength are given by

Ka =
(
ρσ 3

0
gμ4

)1/11

=
(

sinβRe2

2Ca3

)1/11

, L/Lc = L√
σ0/ρg

=
√

2Ca/ sinβ
ε

, (3.3a,b)

respectively.
The results presented in figures 2 and 3 show the free-surface temperature, ϑs, and

profile, fs(x), predictions, respectively, for three different values of Ka and relate to
the parameter set of figures 3 and 4 from D’Alessio et al. (2010). Beginning with the
free-surface temperature predictions, it is clear that RAM–θpara, figure 2(b), performs
better in every case and achieves almost perfect agreement with the corresponding N–SE
solutions. In contrast, the RAM–θlin predictions, figure 2(a), tend to over-estimate the
variation in ϑs. This is attributable to θlin assuming the heat flux through the film to
be first and foremost constant in the z-direction, as in the flat-film case, whereas θpara
affords a degree of freedom to the heat flux inside the film. Accordingly, RAM–θlin
under-estimates the dissipation of heat within the film and consequently over-emphasises
the dependence of ϑs on the film thickness, in contrast to RAM–θpara which correctly
predicts how thermal conduction seeks to dissipate heat throughout the film and minimise
temperature fluctuations at the free surface. Kalliadasis et al. (2003a) assumed having the
energy residual satisfy Newton’s law of cooling, even if the assumed linear temperature
profile did not, would be sufficient to describe the fluid temperature across the free surface.
However, temperature deviations stem entirely from the fluid convection and streamwise
conduction, therefore it is the reduction in dimensionality of these terms which is critical
to achieving accurate free-surface temperature predictions beyond the flat-film case. The
linear temperature approximation – (3.1) – is unable to ensure a self-similar transformation
of these terms because it fails to satisfy Newton’s law of cooling; this decreases the
accuracy of RAM–θlin. In contrast, θpara achieves a self-similar transformation of both the
convection and streamwise conduction terms, explaining its superior predictive capability.

The accompanying free-surface profiles are shown in figure 3 with both models
achieving perfect agreement with the corresponding N–SE solutions; this is expected
for small Reynolds number, Re < 1, and substrate amplitude, A/L  0.2. The two
predictions agree because RAM–θlin and RAM–θpara share the same momentum residual;
furthermore, the Marangoni effect is not large enough in this case for any differences in
the steady free-surface temperature predictions to modify the film thickness predictions.

Figure 4 explores how RAM–θlin and RAM–θpara perform with increasing Pr, and A/L;
the top three rows contain free-surface temperature predictions for Pr = 14, 28, 56 whilst
the bottom row contains free-surface profile predictions for Pr = 14. As above, the analysis
was carried out for creeping flow, Re < 1; it is shown in later figures that the leading
temperature expansion is an insufficient description of the temperature field in film flow
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Figure 2. Steady-state free-surface temperature predictions obtained utilising (a) RAM–θlin and (b) RAM
–θpara for film flow over sinusoidally varying substrate for the case Re = 0.75, β = 63.4349◦, Pr = 7.0, Bi =
1.0 and A/L = 0.04 when Ka = 1.2249 (L/Lc = 8.19, Ma = 0.1) (dashed blue curve), Ka = 2.2953 (L/Lc =
2.59, Ma = 0.01) (dashed red curve) and Ka = 3.5602 (L/Lc = 1.158, Ma = 0.002) (dashed green curve).
The corresponding N–SE solution is shown as a solid black curve.
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Figure 3. Steady-state free-surface profile predictions obtained utilising (a) RAM–θlin and (b) RAM –θpara
for film flow over sinusoidally varying substrate for the case Re = 0.75, β = 63.4349◦, Pr = 7.0, Bi = 1.0
and A/L = 0.04 when Ka = 1.2249 (L/Lc = 8.19, Ma = 0.1) (dashed blue curve), Ka = 2.2953 (L/Lc =
2.59, Ma = 0.01) (dashed red curve) and Ka = 3.5602 (L/Lc = 1.158, Ma = 0.002) (dashed green curve).
The corresponding N–SE solution is shown as a solid black curve.

down wavy inclines for Re > 1. Here, RAM–θpara attains quantitatively accurate results
for heated film flow up to A/L = 0.2. This limit may be a consequence of modelling the
velocity and temperature fields as power series; Scholle et al. (2004) found that, for thick
films H ∼ L, an infinite series describing the velocity field failed to converge in the troughs
of the substrate corrugations when A/L > 0.2. Turning now to the effect of increasing Pr,
denoted (i–iii) in figure 4, the RAM–θpara free-surface temperature predictions are very
encouraging particularly when compared with those from RAM–θlin. The top row in figure
4 corresponds to Pr = 14, which is twice that of water (Prwater = 7); in subsequent rows
Pr is double the value of the row above. The inaccuracy of the RAM–θlin free-surface
temperature prediction is evident and increases with increasing Pr to the point where not
even weak agreement persists with the corresponding N–SE solutions. The RAM–θpara
predictions on the other hand, demonstrate excellent agreement with the corresponding
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Figure 4. Steady-state free-surface temperature predictions (top three rows) for film flow over sinusoidally
varying substrate obtained for (a–c) A/L = 0.05, 0.1, 0.2 and (i–iii) Pr = 14, 28, 56; with Re = 0.75,
β = 63.4349◦, L/Lc = 8.19, Ka = 1.2249, Ma = 0.1 and Bi = 1.0. Shown are the RAM–θlin predictions
(dot-dashed blue curve); RAM–θpara predictions (dashed red curve); corresponding N–SE solutions (solid
black curve). The free-surface disturbance predictions (bottom row) relate to the case Pr = 14 only; the
predictions for Pr = 28, 56 are not included because the smallness of Ma means the variation of Pr has
no noticeable effect on the shape of the free surface.

N–SE solutions up to Pr = 56 and A/L = 0.1. The results in figure 4 lend significant
credence to θpara because the methodology laid out in § 2.2 should be asymptotically
equivalent to first order and therefore accurate at moderate values of Pr.
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Film flow down uniformly heated corrugated inclines

To further reinforce that the leading temperature expansion needs to be nonlinear,
the temperature expansions according to RAM–θpara and RAM–θlin – which include
first-order contributions – are plotted against corresponding N–SE solutions in figure 5(a)
at two locations along the x-axis (x = 0 and x = 0.5) for the case Pr = 14 and A/L = 0.1.
Expanding the fluid temperature – as per (2.17b) – with {b0, b1} given by (2.30c,d); the
RAM–θpara result was generated from the expressions for {bj} with 2 ≤ j ≤ 5 given in
Appendix B and the RAM–θpara solutions for hs(x) and ϑs(x) from figures 4b and 4(b.i),
respectively; the RAM–θlin prediction was generated from the expressions for {bj} with
2 ≤ j ≤ 5 corresponding to θlin and the RAM–θlin solutions for hs(x) and ϑs(x) from
figures 4b and 4(b.i), respectively. The nonlinear behaviour is modest but contrasting
the N–SE solutions (solid black curves) against solutions according to the Nusselt linear
temperature distribution (dotted grey lines) – (2.35b) – clearly show the temperature profile
possesses a significant curve. The temperature expansion based upon θpara (the red and
green dashed curves) replicates the temperature field inside the film very well, whereas
the linear approximation θlin (the blue and magenta dot-dashed curves) is not as good. The
error associated with the RAM temperature predictions relative to corresponding N–SE
solutions through the film is plotted in figure 5(b), revealing the temperature expansion
based on θpara is around five times more accurate than the one based on θlin in the two
cases considered. Note the dimensionless error in figure 5(b) is equal to the per cent ofΘΔ,
where ΘΔ = Θs −Θa is the temperature difference between the substrate and ambient
gas.

The error associated with RAM–θpara and RAM–θlin across the entire flow domain,
is assessed in terms of the mean squared error (MSE) through the film relative to the
corresponding N–SE solutions, such that at any given point along the x-axis, MSE =
(1/Nẑ)

∑Nẑ
i=1[θRAM,i − θN-SE,i]2; with Nẑ being the number of mesh points along the

ẑ-axis. Figure 6 shows the temperature expansion based on θpara exhibits far less error
and variance than the one based on θlin. The error associated with θpara is largest in the
transition regions between the peaks and the troughs of the corrugated substrate; in these
regions, the concavity of the temperature field changes sign. The increased error in these
regions can be attributed to θpara failing to predict the change in concavity at the correct
position along the x-axis. In contrast, the largest source of error associated with θlin is
in over-estimating the concavity of the temperature field – see figure 5(a) – which is a
consequence of assuming b1 ∼ O(ε). In the present analysis, the parabolic temperature
coefficient b1 is associated with the dissipation of heat throughout the film; in restricting
the entry of b1 to first order in the long-wave expansion, RAM–θlin under-estimates how
much heat is being dissipated within the film and leads to an over-estimation of the
temperature field’s concavity. The MSE shows there are two points where θlin attains better
agreement with N–SE solutions than θpara but overall it is far worse.

The final set of steady-state solutions for the film thickness and free-surface temperature
are presented in figure 7 and examine the performance of the RAM model at moderate
Reynolds number, Re > 1. The inclination angle of the substrate, β, was reduced so
the estimated Recrit was comparable to the Re values considered; (2.40) yields Reflat

crit =
{7.00, 6.94} for Ka = {1.664, 1.8878} when β = 10◦, Ma = 0.1 and Bi = 1.0. These
results were specifically chosen to examine whether a moderate increase in the fluid
inertia has an effect on the accuracy of the predictions of RAM–θlin and RAM–θpara.
Accordingly, the parameter sets for figure 7 were chosen so only the coefficient in
front of the stream-wise and vertical inertia increased; Pr was decreased so the Péclet
number, Pe = Re Pr remained constant. The predictions further reveal how RAM–θpara
outperforms RAM–θlin and achieves good agreement with the corresponding N–SE
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Figure 5. (a) Plots of the predicted temperature profile through the film, for film flow over sinusoidally varying
substrate, where ẑ = z − s(x), obtained for Re = 0.75, β = 63.4349◦, L/Lc = 8.19, Bi = 1.0, Ka = 1.2249,
Ma = 0.1, Pr = 14 and A/L = 0.1; the θlin. Two x-locations are considered: x = 0 (red dashed, θpara, and
blue dot-dashed, θlin, curves) and x = 0.5 (green dashed, θpara, and magenta dot-dashed, θlin, curves). The
corresponding N–SE solutions and Nusselt linear temperature distributions – (2.20b) – are given by the solid
black curves and dotted grey lines, respectively. (b) Plot of the predictive error associated with θpara and θlin
relative to the N–SE solution.
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Figure 6. Plot of the MSE (= (1/Nẑ)
∑Nẑ

i=1[θRAM,i − θN-SE,i]2) vs x for a temperature dependence based on
θpara (dashed red curve) and θlin (dot-dashed blue curve), respectively, within films flowing over sinusoidally
varying substrate. Obtained for Re = 0.75, β = 63.4349◦, L/Lc = 8.19, Bi = 1.0, Ka = 1.2249, Ma = 0.1,
Pr = 14 and A/L = 0.1.

solution to the full problem. However, the results do highlight the sensitivity of the RAM
free-surface temperature prediction to changes in the independent parameters. In order to
achieve reasonable agreement with N–SE solutions for the free-surface temperature, the
film thickness prediction must be in excellent agreement with its N–SE counterpart. This
can be attributed to the fact that the leading-order flow rate and free-surface temperature
solutions – see (2.35) – are functions of the film thickness and whilst additional degrees
of freedom are introduced at first order, the dynamics of the film is still chiefly governed
by the film thickness. Good agreement is achieved between the RAM–θpara and N–SE
solutions for moderate Pr and small Re in figure 4 because the film thickness hs remains
mostly uniform. At moderate Re and small Pr, the free-surface shape deviates significantly
from the flat-film solution leading to a poorer prediction of the free-surface temperature.
This is unsurprising since the leading temperature expansion is only a relaxation of the
trivial case. Given most functional fluids have moderate to large Pr values, future models
may benefit from energy residuals which are asymptotically equivalent at higher order,
allowing accurate predictions to be achieved even when the flow has deviated significantly
from the flat-film solution.

The streamlines inside the flow according to the N–SE solutions (solid black
curves), and as predicted by RAM–θpara (dashed red curves) and RAM–θlin (dot-dashed
blue curves), are plotted together in figure 8: for (a) A/L = 0.1 and (b) A/L = 0.2.
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Figure 7. Steady-state free-surface temperature (top row) and profile (bottom row) predictions for film flow
over sinusoidally varying substrate, obtained for: (a,c) Re = 5.0, Ka = 1.664, Pr = 3; (b,d) Re = 10.0, Ka =
1.8878, Pr = 1.5; with β = 10◦, L/Lc = 15.17, A/L = 0.1, Ma = 0.1, Bi = 1.0. Shown are the RAM–θlin
predictions (dot-dashed blue curve), RAM–θpara predictions (dashed red curve), corresponding N–SE solutions
(solid black curve).

The RAM streamfunction predictions were generated using the velocity expansions –
(2.17a) with the expressions for {aj} with 2 ≤ j ≤ 7 from Appendix A, the corresponding
steady-state solutions for the film thickness, hs, and free-surface temperature, ϑs, and
the streamfunction equation, ψ = ∫ z

s u dz. Both RAM predictions show remarkably good
agreement with the N–SE solution for the case of A/L = 0.1; the agreement is weaker for
the case of A/L = 0.2, particularly in the trough of the substrate corrugation.

The RAM predicted temperature contours inside the film for the same parameter set
as figure 8 were generated using the temperature expansions based on θpara and θlin,
respectively; these are plotted in figure 9 together with corresponding N–SE solutions.
The results display the shift in concavity of the temperature field inside the film. In the
fluid above the peaks of the substrate corrugation the spacing between isotherms starts
small, becoming larger when moving towards the free surface; while in the corrugation
troughs the opposite occurs with the spacing between isotherms being largest in the
trough and smallest at the free surface. This occurs because fluid in the trough is being
heated from the sides, as well as from below, and so the fluid remains hotter in this
region. Above the corrugation peaks, the fluid is flanked by cooler fluid on either side,
accelerating the cooling process in these regions. Agreement between the N–SE solutions
and the corresponding RAM–θpara prediction for A/L = 0.1 is very good. Agreement is
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Figure 8. Steady-state streamfunction contours, ψ , for film flow over sinusoidally varying substrate: obtained
for (a) A/L = 0.1 and (b) A/L = 0.2; with Re = 5.0, β = 10◦, L/Lc = 15.17, Ka = 1.664, Ma = 0.1, Pr = 3,
Bi = 1.0. Shown are the N–SE solution (solid black curves), RAM–θpara prediction (dashed red curves),
RAM–θlin prediction (dot-dashed blue curves). Note that the RAM–θpara and RAM–θlin predictions are
indistinguishable as they lie one on top of the other. The flow is from left to right.

weaker for A/L = 0.2 but RAM–θpara nevertheless retains the qualitative behaviour of the
temperature field inside the film. In contrast, the RAM–θlin prediction features noticeable
errors for the case of A/L = 0.1 and diverges significantly in the trough of the substrate
corrugation for the case of A/L = 0.2. The results in figure 9(b) clearly illustrate how
starting the gradient expansion with an inadequate temperature assumption, i.e. θlin,
leads to irrecoverable errors at higher order. The accuracy of RAM–θlin is impeded by
its assumption that b1 ∼ O(ε); this causes imbalance in the gradient expansion and it
is unlikely this defect can be overcome by increasing the number of variables in the
temperature field. Regardless, extending RAM–θlin to higher order with a greater number
of variables would be redundant since θpara already offers improved accuracy without
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Figure 9. Steady-state temperature contours, θ , for film flow over sinusoidally varying substrate: obtained
for (a) A/L = 0.1 and (b) A/L = 0.2; with Re = 5.0, β = 10◦, L/Lc = 15.17, Ka = 1.664, Ma = 0.1, Pr =
3, Bi = 1.0. Shown are the N–SE solution (solid black curves), RAM–θpara prediction (dashed red curves),
RAM–θlin prediction (dot-dashed blue curves). Note that, unlike the streamfunction contours of figure 7, the
RAM–θpara and RAM–θlin predictions are easily distinguishable, especially so in the trough region. The flow
is from left to right.

the need of additional variables; the better option would be to extend RAM–θpara to
higher-order.

3.2. Flow stability
The stability of film flow down a uniformly heated, vertically aligned (β = 90◦) flat plate
is considered in figure 10; the curve of neutral stability as predicted by RAM–θpara is
compared with corresponding predictions from the complete and regularised second-order
weighted-residual models, and the Orr–Sommerfeld (O–S) solution obtained by Scheid
et al. (2005). The models derived by Scheid et al. (2005) assumed the leading temperature
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Figure 10. Curves of neutral stability in the Floquet domain (Re,Q) for film flow down a vertical flat
plate: obtained for β = 90◦, L/Lc = 0.063, Ka = 4.508, Ma = 0.2, Pr = 7, and Bi = (2Re)1/3. RAM–θpara
prediction (dashed red curve), accompanied by the regularised model (dot-dashed grey curve), the complete
model (dotted grey curve) and the Orr–Sommerfeld solution (solid black curve) from figure 1 of Scheid et al.
(2005).

expansion through the film to be linear: in their complete model the fluid velocity and
temperature were expanded to second order; in contrast, their regularised model arose from
truncating the temperature expansion at first order and applying a Padé approximant to the
velocity expansion, as such the energy residual of the regularised model is asymptotically
equivalent to (3.2). The flow in figure 10 depicts a transition from the thermo-capillary
instability mode to the hydrodynamic instability mode and is unstable for all Reynolds
numbers. Good agreement with the O–S solution is achieved by all the asymptotic models
at small Reynolds numbers when the thermo-capillary mode characterises the stability.
This is clear from the expanded view for Re ∈ [0, 15]. However, none of the asymptotic
models offer accurate predictions at large values of Re when inertia becomes the dominant
mechanism. RAM–θpara diverges from the complete and regularised models at large Re
because its description of inertia is only asymptotically equivalent to first order; the models
of Ruyer-Quil et al. (2005) feature second-order momentum residuals. Having said that,
RAM–θpara offers the best estimation of the minimum wavenumber/Floquet parameter
(Q) on the curve of neutral stability; this is the point at which the stability transitions
from the thermo-capillary to the hydrodynamic mode. This could be attributed to the
energy residual of RAM–θpara offering an improved description of the thermo-capillary
mode in this region. However, it is important to acknowledge the models on display in
figure 10 differ in more ways than just their choice of leading temperature expansion,
e.g. expression for the fluid pressure, re-writing of Newton’s law of cooling, form of the
momentum residual, etc.

Curves of neutral stability generated by RAM–θpara for films flowing over wavy
substrate are plotted in figures 11 and 12. The parameter set is based upon figure 15 of
D’Alessio et al. (2010) with figure 11(a) being an exact match; however, only half the
wavenumber interval is considered here due to the symmetry of the system, cn(

1
2 + Q) =

c∗
n(

1
2 − Q). The results in figure 11(a), Pr = 7, show the same qualitative behaviour seen

in D’Alessio et al. (2010); increasing A/L stabilises the flow dynamics and leads to a
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Figure 11. The RAM–θpara generated curves of neutral disturbance in the Floquet domain (Re,Q) for film
flow over sinusoidally varying substrate, obtained for (a) Pr = 7 and (b) Pr = 14; with β = 11.3099◦, L/Lc =
60/

√
2Re, Ka = (800Re5/729)1/11, Bi = 1.0, Ma = 0.02, 0.2 and A/L = 0.02, 0.04.

short-wave instability whilst increasing Ma destabilises the film. The destabilisation effect
of thermo-capillarity is independent of the fluid inertia in this part of parameter space;
the coefficient Ma/Ca remains constant across all values of Re for a given value of
Ma. However, the destabilisation effect of thermo-capillarity is clearly affected by A/L
as the same increase in Ma leads to a greater reduction in the critical Reynolds number
when A/L = 0.04 than when A/L = 0.02. Even so, increasing A/L leads to an overall
stabilisation of the film. In figure 11(b), the Prandtl number has been doubled to Pr = 14;
for small Ma the change is negligible as the Marangoni effect is too small and while the
increase in Pr does not lead to any significant change in the critical stability criteria for
larger Ma, it does cause a selection of wavenumbers to become stable points within the
domain. This can be attributed to the higher Pr leading to less variation in the free-surface
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Figure 12. The RAM–θpara generated curves of neutral disturbance in the Floquet domain (Re,Q) for film
flow over sinusoidally varying substrate, obtained for (a) Pr = 7 and (b) Pr = 14; with β = 11.3099◦, L/Lc =
60/

√
2Re, Ka = (800Re5/729)1/11, Bi = 1.0, Ma = 0.02, 0.2 and A/L = 0.1, 0.2.

temperature as was seen in figure 4, this in turn leads to a smaller Marangoni effect and
less destabilisation of the film.

To further explore the dependency of the thermo-capillary mode on substrate amplitude,
the problem is extended to large A/L in figure 12 with all curves of neutral stability
now exhibiting a short-wave mode. The results illustrate how the destabilisation effect
of thermo-capillarity becomes greater as A/L is increased. The curves of neutral stability
furthest to the left in the figures represent the most unstable cases; these correspond to
Ma = 0.2 in figure 12 when A/L is large, whereas in figure 11 when A/L was small they
corresponded to A/L = 0.02. The increased destabilisation effect of thermo-capillarity at
large A/L is likely a result of the free-surface temperature variation being greater in film
flow over large A/L, resulting in larger thermo-capillary stress across the fluid’s surface.
Similar to the small A/L case, increasing Pr for large A/L – figure 12(b) – has a noticeable
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Figure 13. The RAM–θpara generated curves of neutral disturbance in the Floquet domain (Re,Q) for film flow
over sinusoidally varying substrate, obtained for (a–c) β = 10◦, L/Lc = 13.746, Ka = 1.434, Pr = 7, A/L =
0.02, 0.05, 0.1, Bi = 1.0, and (d–f ) β = 10◦, L/Lc = 13.741, Ka = 1.069, Pr = 7, A/L = 0.05, 0.1, 0.2, Bi =
1.0. RAM–θpara predictions (dashed green, blue and red curves) for Ma = 0.0,−1.0, 1.0 are compared with
NS data (solid black curve) taken from figures 3(a) (a–d) and 3(a’) (e–h) of Trifonov (2014) for the case of
Ma = 0.0.

effect only when Ma is large. Increasing Pr tends to reduce free-surface temperature
variation and consequently the Marangoni effect, leading some wavenumbers (Q) to
become stable; however, overall there is less change in the neutral stability predictions
than was seen in the small A/L case. This suggests the effect of Pr and fluid convection on
the flow stability is lessened at large A/L.

The effect of heating and cooling is considered in figure 13 for when the
thermo-capillary stress does depend on the fluid inertia. RAM–θpara generated curves of
neutral stability for different Marangoni numbers are plotted together with digitised NS
generated data for the isothermal flow case taken from Trifonov (2014). The isothermal
RAM is accurate at small A/L and Re but its accuracy against the NS data decreases
as these parameters are increased. Since the NS data plotted is only for the isothermal
flow case, the thermal RAM–θpara predictions are speculative. Introducing heating to
the problem reduces the film stability and shifts the curve of neutral stability to the
left, which is in agreement with the principle understanding of the thermo-capillary
instability mode (Goussis & Kelly 1991). Cooling on the other hand, indicated by a
negative value for Ma, stabilises the film and shifts the curve to the right. However, large
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Figure 14. Normalised critical Reynolds number vs angle of inclination, β, for film flow over sinusoidally
varying substrate, obtained for Ka = 3.604, L/Lc = 4.982, Pr = 7, A/L = 0.167, Bi = 1.0. RAM–θpara
predictions (dashed blue, green and red curves) and are compared with experimental data from figure 12 of
Cao et al. (2013) and the NS solutions from figure 8(d) variant 1b of Schörner et al. (2018). The critical
Reynolds number is normalised with respect to the critical Reynolds number for a heated flat incline, the latter
was computed from (2.40).

values of Ma = ΘΔ(−∂σ/∂Θ) are required to produce any meaningful change in the
stability charts. It is important to remember the present formulation only models how
thermo-capillarity causes the flow dynamics to deviate from the primary parabolic flow,
it does not model the interaction between inertia and thermo-capillarity and how this
might cause deviations to evolve. Since the thermo-capillary and hydrodynamic instability
modes reinforce one another, it is possible smaller values of Ma could cause a significant
shift in the stability behaviour dependent upon how thermo-capillarity and inertia interact.
However, based upon the accuracy of RAM–θpara for the steady-state problem it can be
argued the qualitative behaviour predicted by the RAM is correct. The results suggest
substrate topography is more important to film stability than thermo-capillarity.

Finally, figure 14 considers the effect of the substrate inclination angle, β, on the
normalised critical Reynolds number for film flow down corrugated substrate; the critical
Reynolds number, Rewavy

crit , is normalised with respect to the corresponding value for a
flat plate, Reflat

crit, given by (2.40). The isothermal prediction (Ma = 0.0) is compared with
experimental data from Cao et al. (2013) and NS solutions from Schörner et al. (2018).
This result shows how the stabilising effect of the substrate undulations becomes greater
as β increases. The RAM–θpara isothermal prediction show good agreement with the NS
solutions and only underestimates the stability criteria when β < 10◦.

When a temperature gradient is introduced across the liquid film, RAM–θpara predicts
a significant shift in the relationship between the critical Reynolds number and β. In the
heated case (Ma = 0.06), the relative stabilisation effect of substrate undulations increases
for larger β, while in the case of cooling (Ma = −0.012), the effect of topography is
less important at large β. In either case, it can be seen that the presence of topography
has a minimal effect on stability at small inclination angles, β < 10◦. The results reveal
how heating/cooling characterises the stability at low angles of inclination when the
critical Reynolds number is given approximately by (2.40), while topography becomes
the defining factor regarding stability at large angles of inclination.
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4. Conclusions

The RAM as presented, stems from the modelling approach of Ruyer-Quil & Manneville
(2000). It embodies a parabolic temperature profile though the film obtained using a
method of polynomial expansions, proving the temperature field must be nonlinear to
ensure both a consistent transformation of the governing equation and for the heat flux
boundary condition at the free surface to be satisfied universally.

The cases explored for steady film flow over heated, corrugated substrate show a
degree of freedom must be afforded to the heat flux through the film when approximating
higher-order terms, to ensure Newton’s law of cooling (2.15) is satisfied at the free surface
and allow the temperature there to be captured accurately. Furthermore, comparison of
the reconstructed internal flow structure, in terms of streamlines and isotherms, with
corresponding N–SE solutions of the governing equations – continuity, momentum and
energy – and attendant boundary conditions, reveals explicitly that the steady-state
heat flux becomes non-uniform when the film thickness is no longer synonymous with
a flat-film solution. The nonlinear behaviour of the temperature field in these cases
stems from thermal conduction and the diffusion of heat across the film; the parabolic
contribution enters at the leading order of the temperature expansion in the absence of
fluid convection. The improved description of thermal conduction results in a superior
prediction of the convective heat transfer, illustrated by the good agreement shown with
corresponding N–SE solutions for moderate Prandtl (and Péclet) number; conversely, an
assumed linear temperature profile is shown to perform poorly over a range of parameters.

Flow stability has been explored via curves of neutral stability. For film flow down
a vertically aligned plate, when the steady state is given by the flat-film solution, the
parabolic temperature profile achieves good agreement with the O–S solution and, as
to be expected, with the regularised and complete second-order models derived by
Ruyer-Quil et al. (2005) and Scheid et al. (2005) centred on the linear temperature
approximation. Stability results for film flow down wavy substrate are found to be in
agreement with the qualitative behaviour of the thermo-capillarity mode described by
Goussis & Kelly (1991), and with stability results from D’Alessio et al. (2010). Those
considering the stabilisation/destabilisation merit of topography and thermo-capillarity
are affected considerably by the choice of parameter space. When the Marangoni effect is
independent of the fluid inertia, the stability results show topography is the deciding factor
at small values of A/L; at larger values, when short waves are the most unstable modes,
thermo-capillary effects play a much greater role in determining the stability of the system.
In contrast, when the Marangoni effect depends in the fluid inertia, the destabilising
effect of thermo-capillarity is weaker overall for moderate surface tension, Ka ∼ O(1).
Due to the lack of existing numerical and experimental data, the quantitative accuracy of
these results remains an open question. Arguably, although showing good agreement with
experimental and NS data for the case of isothermal (Ma = 0) film flow, all that can be
safely attributed to them is that substrate topography plays the greater role in determining
the stability of film flow over wavy substrate, compared with thermo-capillarity which
plays a more secondary role, except when the substrate amplitude is large and a significant
temperature difference is present.

At the outset, the desire was to keep the scope and content of the work reported here
as uncomplicated as possible, in order to demonstrate the superior results attained by a
parabolic leading temperature expansion compared with the widely utilised linear one. The
natural next steps would be deriving formulations beyond first order, exploring travelling
wave solutions, carrying out comparisons against more complex models and investigating
problems in which fluid convection has a greater effect on the temperature field.
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Appendix A. RAM–θpara/θlin – first-order velocity deviations

Deviations to the primary velocity distribution, in terms of (s, ã0, ã1) – where aj = ãj +
O(ε) – and valid to first order in the long-wave expansion, are given by
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d2s

dx2

]
+ ε4

6

⎡
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− ã1

2
d2s

dx2

]]
+ ε4

12

⎡
⎣2ã1
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0

3
d3s

dx3

]
, (A3)

a5 = εRe
ã1
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− ã0

2
∂2ã1

∂x2
ds
dx

− ã1

2
∂2ã0

∂x2
ds
dx

+ 2
3
∂ ã0

∂x
∂ ã1

∂x
ds
dx

− 2ã0

3
∂ ã1

∂x
d2s

dx2

− ã1

2
∂ ã0

∂x
d2s

dx2 + ã2
1

ds
dx

d2s

dx2 − ã0ã1

2
d3s

dx3

]
− ε4

360
∂4ã1

∂x4 , (A4)

a6 = ε3Re
210

[
ã0

3
∂3ã1

∂x3 + ã1

2
∂3ã0

∂x3 − 1
2
∂ ã0

∂x
∂2ã1

∂x2 − 1
3
∂ ã1

∂x
∂2ã0

∂x2

−2ã1
∂2ã1

∂x2
ds
dx

− 7ã1

3
∂ ã1

∂x
d2s

dx2 + 4
3

(
∂ ã1

∂x

)2 ds
dx

− ã2
1

d3s

dx3

]
, (A5)

a7 = ε3Re
1008

[
ã1
∂3ã1

∂x3 − ∂ ã1

∂x
∂2ã1

∂x2

]
. (A6)

Appendix B. RAM–θpara – first-order temperature deviations

Deviations from the primary temperature distribution, in terms of (s, ã0, ã1, b̃0, b̃1) –
where {aj, bj} = {ãj, b̃j} + O(ε) – and valid to first order in the long-wave expansion, are
given by

b2 = εRe Pr
6

∂ b̃0

∂t
+ ε2

6

[
∂2b̃0

∂x2 − 4
∂ b̃1

∂x
ds
dx

− 2b̃1
d2s

dx2

]
, (B1)

b3 = εRe Pr
12

[
∂ b̃1

∂t
+ ã0

∂ b̃0

∂x
− b̃0

2
∂ ã0

∂x

]
+ ε2

12
∂2b̃1

∂x2 , (B2)

b4 = εRe Pr
20

[
ã1
∂ b̃0

∂x
+ ã0

∂ b̃1

∂x
− b̃1

∂ ã0

∂x
− b̃0

3
∂ ã1

∂x

]
, (B3)

b5 = εRe Pr
30

[
ã1
∂ b̃1

∂x
− 2

3
b̃1
∂ ã1

∂x

]
. (B4)

The deviations from the primary temperature distribution according to θlin – (3.1) – are
recovered by setting b̃1 = 0 and b̃0 = (ϑ − 1)/h + O(ε) in expressions (B1)–(B4).

Appendix C. RAM–θpara – critical Reynolds number of a thin film flowing down a
uniformly heated flat incline

The critical stability condition for a uniformly heated flat plate, first derived by Goussis &
Kelly (1991), can be obtained from a linear stability analysis of the RAM θpara, truncated
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at ∼O(ε) in the long-wave expansion, after making the following substitutions:

h = hs + ĥ(x, t), q = qs + q̂(x, t), ϑ = ϑs + ϑ̂(x, t), (C1–C3)

where (q̂, ĥ, ϑ̂) are infinitesimal disturbances to the steady-state solutions, which read

hs = 1, qs = 2
3

h3
s , ϑs = 1

1 + Bihs
, (C4–C6)

for film flow down a flat plate. Retaining terms up to ∼O(ε) in (2.26) and (2.39) yields
the first-order model. The nonlinear terms are expanded using a Taylor series set about
(hs, qs, ϑs) after which all products of (q̂, ĥ, ϑ̂) are discarded; this yields

∂ ĥ
∂t

+ ∂ q̂
∂x

= 0, (C7)

εRe

[
∂ q̂
∂t

− 4
7
∂ ĥ
∂x

+ 34
21
∂ q̂
∂x

]
+ ε

[
5
3

cotβ
∂ ĥ
∂x

+ 5
4

Ma
Ca

∂ϑ̂

∂x

]
+ 5

2
q̂ − 5ĥ = 0, (C8)

εRe Pr

[
∂ϑ̂

∂t
+ 22

25
∂ϑ̂

∂x
+ Bi

(
1
5
∂ϑ̂

∂t
− 17

50
1

1 + Bi
∂ q̂
∂x

+ 4
25

1
1 + Bi

∂ ĥ
∂x

+ 4
25
∂ϑ̂

∂x

)]

+ 12
5

[
(1 + Bi)ϑ̂ + Bi

1 + Bi
ĥ
]

= 0. (C9)

Letting the disturbances take the form of a single wave – see (2.42) – leads to

ch̄0 = q̄0, (C10)

−i2πεQRe
[

c
q̄0

h̄0
− 34

21
q̄0

h̄0
+ 4

7

]
+ i2πεQ

[
5
3

cotβ + 5
4

Ma
Ca

ϑ̄0

h̄0

]
+ 5

2
q̄0

h̄0
− 5 = 0,

(C11)

− i2πεQRe Pr
[{

c
(

1 + 1
5

Bi
)

−
(

22
25

+ 4
25

Bi
)}

ϑ̄0

h̄0
+ Bi

1 + Bi

(
17
50

q̄0

h̄0
− 4

50

)]

+ 12
5

[
(1 + Bi)

ϑ̄0

h̄0
+ Bi

1 + Bi

]
= 0, (C12)

where c = ω/(2πQ) is the phase velocity. Whilst Ma  1, the most unstable mode will
be the one with the longest wavelength. Hence, an expression for c is acquired by applying
a small wavenumber expansion, Q → 0, to (C10)–(C12), namely

c = q̄0

h̄0
≈ c̄0 + 2πεQ · c̄1 + · · · , (C13)

q̄0

h̄0
≈ 2 + 2πεQ · i

2
5

[
4
3

Re − 5
3

cotβ + 5
4

Ma
Ca

Bi
(1 + Bi)2

]
+ · · · , (C14)

ϑ̄0

h̄0
≈ −Bi
(1 + Bi)2

− 2πεQ · iRe Pr

[
25
7

15
7 − Bi
(1 + Bi)2

]
+ · · · . (C15)
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The components of the complex phase velocity are then given by

c̄0 = 2, c̄1 = i
2
5

[
4
3

Re − 5
3

cotβ + 5
4

Ma
Ca

Bi
(1 + Bi)2

]
, (C16–C17)

which represent the real and imaginary parts of the phase velocity at ∼O(ε). Neutral
stability is attained when the imaginary part is equal to zero; setting c̄1 = 0 returns

Re − 5
4

cotβ + 15
16

Ma
Ca

Bi
(1 + Bi)2

= 0, (C18)

which is equivalent to the neutral stability condition found by Goussis & Kelly (1991).
Consequently, for specified values of β, Bi Ma  1 and Ca = Ca(Re), the critical
Reynolds number at which gravity-driven film flow becomes unstable due to the long-wave
hydrodynamic mode is given by the value of Re which satisfies (C18).

One should be aware the complete stability problem – (C10)–(C12) – possesses
three distinct roots, the additional roots correspond to an upstream mode and to a
thermo-capillary mode. However, within the framework of a long-wave approximation,
these roots are always stable. Hence, the stability is defined by the downstream mode
given by (C16–C17).
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