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THE NUMBER OF FACTORS IN A PAPERFOLDING
SEQUENCE

JEAN-PAUL ALLOUCHE

We prove that the number of factors of length it in any paperfolding sequence is
equal to 4k once k ^ 7.

1. INTRODUCTION

A factor of an infinite sequence u — (u(n))n>0 with values in A is a word on A
occurring as u(n)u(n + 1)- • -u(n + k — 1) for some n; fc is called the length of the
factor.

The study of factors of infinite sequences goes back at least to Thue [15,16] and has
interested mathematicians and computer scientists working in combinatorics, symbolic
dynamics, finitely generated groups, number theory, formal languages . . . .

Among the questions which have been addressed is the problem of computing for
a given finite sequence u its complexity function Pu, where Pu(k) is the number of
factors of length fc in u. We quote here some results:

• if for some k one has Pu(fc) < fc, then u is ultimately periodic (see [13]
for example),

• the sequences with minimal complexity which are not ultimately periodic
satisfy Pu(k) = k + 1; these are called Sturmian sequences (see [7] for
example),

• if u is an automatic sequence (in the sense of [5]), then one has -Pu(fc) ^
Ck for some constant C [6];

• if u is the Thue-Morse sequence, then Pu{k) has been computed [4, 10];
it depends upon the digits of the binary expansion of fc. More precisely
the sequence (Pu(fc + 1) — Pu(fc))fc>0 has only finitely many values and
is an automatic sequence;

• if u is an automatic sequence satisfying some technical requirements, then
(Pu(fc + 1) - Pu{k))k^0 is also automatic [14].
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24 J.-P. Allouche [2]

Very recently Shallit and the author proved in [2] that, for u a generalised Rudin-
Shapiro sequence in the sense of [1], (u counts the parity of the number of blocks
1 * • • • * 1 in the binary expansion of n), the function Pu(k) is ultimately affine. This
result is somewhat surprising when compared to the complicated case of the Thue-Morse
sequence.

We will prove here that the number of factors of length k of any paperfolding
sequence (see [8] for instance for a definition) is equal to 4k, provided k ^ 7. As a
corollary we obtain that all generalised Rudin-Shapiro sequences in the sense of [12]
(which except for the classical Rudin-Shapiro sequence are different from the sequences
studied in [2]) have an ultimately affine complexity.

2. A QUICK SURVEY OF PAPERFOLDING

We recall that a paperfolding sequence is the sequence of ridges and valleys obtained
by unfolding a sheet of paper which has been folded infinitely many times (see [3, 8,
11, 12]). In other words the sequence (w(ra))n>0 is a paperfolding sequence if and only
if

u(4n) = 0 (respectively 1),

u(4n + 2) = 1 (respectively 0),

u(2n + 1) is a paperfolding sequence.

Another way of generating these sequences is to view them as Toeplitz sequences
[9]: given an infinite binary sequence i = (t(n))n>0 (sequence of "folding instructions"),
one defines the paperfolding sequence u,- = {y-i(n))n>0 with folding instructions i by
successively "filling holes":

• first step, one writes down the sequence (i(O)i(On at the even places,

which gives

i(0) • 7(0) • i(0) • 7(0) • i(0) • 7(0) • • • •

• second step, one writes down the sequence (t(l)i(O)J at the even holes,

which gives

and so on; the limit obtained after an infinite number of steps is the
sequence u,-.
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Finally we mention the generation of a paperfolding sequence by "perturbed sym-
metry" (see [3]).

If a is a letter (0 or 1), we define the operator Ta by: for every word M, Ta(M) =

MaM (where M is obtained from M by reading M backwards, then replacing the O's

by 1 'sand the l ' s b y O's).

Given a sequence a^a^ • • • , one then obtains a paperfolding sequence by starting,

say, from 0, and successively applying the operators Ta •:

TO0(0) =

Note that the word obtained at each step is of length 2r — 1 for some r ^ 1.

3. O-FACTORS AND E-FACTORS IN A PAPERFOLDING SEQUENCE

In the sequel we say that a factor of the paperfolding sequence w; = (uj(n))n>0

(with folding instructions i) is an O-factor (respectively an E-factor) of UJ if it occurs
in Ui as Ui(n)ui(n + 1) • • • ttj(n + k — 1) with n odd (respectively n even). Note that a
factor can simultaneously be an O-factor and an E-factor (for instance the factor 0 and
the factor 1 are simultaneously O-factors and E-factors of any paperfolding sequence).

We take a sequence of folding instructions beginning with i(0) = a, i(l) = ft, and
write it as a/3j (so j is defined by j(n) = i(n + 2)).

Applying the Toeplitz process twice, we obtain:

(*) apa • a(3a. • apa • apa • apa • • • • .

We are now ready to state two lemmata:

LEMMA 1. The E-factors of length ^ 4 of a paperfolding sequence uapj are in
one of the following four disjoint classes:

apa •

5 • a/3

apa •

a • a/3
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The O-factors of length ^ 4 of a paperfolding sequence uapj are in one of the
following four disjoint classes:

/8a • a

• apa

PROOF: Inspection of (*) reveals that the E-factors (respectively the O-factors)
begin as written. Moreover the classes one obtains are disjoint regardless of a, /? and
the holes. D

LEMMA 2 . If a factor of a paperfolding sequence has length greater than or equal
to 7, then it cannot be simultaneously an o-factor and an e-factor.

PROOF: Once again inspecting (*) one sees that a factor of uapj of length greater
than or equal to 7 begins in one of the following ways:

1- apa • apa
2- pa • apa • • •
3- c* • apa • a
4- • p a • aP •••
5- apa • apa
6- ~p°L • apa •

7- a" • apa • a

8- •apa •ap~

The cited words of length 7 are different (whatever the values of a, P, and the
holes). In particular the E-factors (numbered 1, 3, 5, 7) and the O-factors (numbered
2 , 4 , 6 , 8 ) (!) are different. D

4 . A RECURRENCE RELATION FOR THE NUMBER OF O-FACTORS AND E-FACTORS

For Ui = (tt»("))n>o a paperfolding sequence with folding instructions i, one de-
fines:

gi(k) is the number of E-factors of length k in Ui,
h-i(k) is the number of O-factors of length k in Ui.

How can we obtain an E-factor of length 4fc in wa/9j ? Once again inspecting (*)
we see that an E-factor of length 4fc of uapj is of one of the following types:

1: apa • apa • apa •
2: a • apa • apa • aP
3: apa • apa • apa •
4: a • apa • apa • aP
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and these types are disjoint for 4fc ^ 4 (Lemma 1). Moreover if one considers the

subsequent steps in the Toeplitz process, one sees that the remaining holes are filled

exactly by the E-factors of UJ in Cases 1 and 2 and by the O-factors of Uj in Cases 3

and 4.

Hence:

Vfc ^ 1 <7a«(4fc) = 29j{k) + 2hj(k).

In the same way we compute the quantities gapj(4k + r) and hapj(Ak + r) for r =

0, 1, 2, 3 , obtaining the following proposition:

PROPOSITION . One has the following relations for k ^ 1 :

1) = 2gj{k) + 2hj(k),

1) = 9j(k) + gj{k + 1) + hj{k) + hj{k + 1),

2)= 9j(k) + gj(k + 1) + hj{k) + hj{k + 1),

2)= 9j(k) + 9j{k + 1) + hj(k) + hj{k + 1),

3) = gj{k) + 9j{k + 1) + hj{k) + hj{k + 1),

haf}j{4k + 3) = 2gj(k + 1) + 2hj(k + 1),

5. COUNTING THE FACTORS OF A PAPERFOLDING SEQUENCE

We are now able to prove the theorem:

THEOREM . For any paperfolding sequence u; = {ui{n))n>o > *-̂ e n u m ber of factors
of length k, PU{(k), is given by:

P u , ( l ) = 2, P. . (2) = 4, P. . (3) = 8, P. . (4) = 12, Pn<(5) = 18, PUi(6) = 23,

and for ail A; > 7, Pu.(Jb) = 4Jfc.

P R O O F : Define

The recurrence relations in the previous paragraph can be rewritten as:

VQ/3i(4fc + 4) = ArVj{k) Vfc^l,
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where the matrices Ar are given by

/ 2 2 0 0>

A2 =

2
2

Vl

i—
i

1
1

2
2
1

1
1
1

0
0
1

1
1
1

0
0
1

1
1

1—
1 A , =

0 2 2/

We then notice (still using (*) and considering all possibilities for a, (3, and the
holes) that, for every sequence of folding instructions j , one has:

gj(l) = hj{l) = 2, 9j{2) = hs{2) = 4, 9j(3) = 4, fc,-(3) = 8, 5 i(4) = fc,-(4) = 8.

Now we claim that for every sequence of instructions j , one has:

V* #5 1, Jfc even, Vj{k) =

,k o d d , V,-(Jfe) =

The proof that this is true for every sequence j and for every k in [1, 4n — 1]
follows easily by induction on n and is left as an exercise for the reader.

Finally, using Lemma 2, we obtain that, for every sequence of instructions i, one
has:

VJfc ^ 7 PUi(k) = gi{k) + hi(k) = 4k.

The values of PUi(k) for 1 ^ k ^ 6 are computed by hand using (*) for a final
time. D

6. THE NUMBER OF FACTORS OF THE GENERALISED RUDIN-SHAPIRO SEQUENCES

(a) The sequences we consider here were introduced in [12] and are denned as
follows: if Ui is a paperfolding sequence, one defines Wi by

u>,-(0) = 0
n-l

W{(n) = 2~] Ui(t) modulo 2, for n ^ 1.
t=o
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These sequences have the Rudin-Shapiro property that

N-l

n=0

We shall prove the following theorem (compare with the "other" generalised Rudin-
Shapiro sequences studied in [2]):

THEOREM 2 . For any generalised Rudin-Shapiro sequence fin t i e sense of [12])
Wi one has:

PWi(l) = 2, PWi(2) = 4, PWi(3) = 8, PW,(A) = 16, PWi{5) = 24, P ^ ( 6 ) = 36,

P U ) t (7 )=46,

and for all k > 8, PW{ (k) = 8fc - 8.

We first need a lemma:

LEMMA 3 . Let Ui = {v.i(n))n>0 be a. paperfolding sequence. If F = Ui(n)ui(n + 1)
n-l

• • • Ui(n + k — 1) is a factor of Ui of length k, such that 52 ui{t) = ° > then there exists
t=o

n' such that:

* F = Ui(n')ui(ri + 1) • • • Ui(n' + k - 1)
n'-l

* 52 ui{t) — 1 + ° modulo 2.
1=0

Here we use the definition of paperfolding by means of "perturbed symmetry". If

M is a factor of u^, then there exist two factors X and Y such that XMY is a left

factor of i*j (that is, beginning at place 0) of length 2* — 1 for some 5 ^ 1 .

Now applying perturbed symmetry operators three times we see that Ui begins

with:

XMYaYMXpXMYaYMXyXMYaYMXp~XMYaYMX

( a means 1 + a modulo 2).

M occurs four times. Denoting by B(X) the sum modulo 2 of the letters of X
one sees that:

* the first occurrence of M is preceded by a word of sum s(X),

* the second occurrence of M is preceded by a word of sum s(X) +

B{XMY) + B(YMX\ + a + P; but for every word Z, s(Z) + s(z\ =

length of Z modulo 2; hence this sum is equal to a(X) + 1 + a + P;
* the third occurrence of M is preceded by a word of sum s(X) + 1 + a +

* the fourth occurrence of M is preceded by a word of sum B(X) + 1 +/3
7 + length(XMy) + a + ~$ = s{X) + 1 + a + 7 .
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As one cannot simultaneously have

one of these sums is equal to 1, proving the lemma. U

PROOF OF THEOREM 2: (b) Let Ui = (ut(n))n>o be a paperfolding sequence with
sequence of folding instructions i, and let Wi be defined by:

io,-(0) = 0,

n - l

1=0

Let i^t(fc) be the set of factors of u; of length k and similarly define FWi(k). Now
define on FWi(k) (fc ^ 2) the map -0* by

(the sums being taken modulo 2).
If n is such that Wi(n +1) = e«, for 0 ^ t ^ fc — 1, we see that Ui(n +1) =

Wi{n + t) + Wi(n + i + 1) = e% -f- e<+i for 0 $J t ^ fc — 2, hence V"* maps i^^fc) to

Clearly f̂t is one-to-one. To see that t/ik is onto, we note that given
(ao, aj , • • • , aj(._i) in {0, 1} X FUi(k — 1), there exists n such that u,-(n +1) =
for 0 ^ t < fc-2.

Hence:

i(n + 2) = Wi(n) + ai + a2

u>,(n + fc - 1) = Wj(n) + ai + a2 H + ojt-i •

So if tw,(n) = ao , then Wi(n + t) = oo + Oi -(- a2 + • • • -f- at for every < in [0, k — 1], and
this gives an element in FWi(k) such that

V>*(u>i(n), w>i(n + 1), • • • , ^ ( n + fc - 1)) = (o0, o^ • • • , a*_i).

n-l

If now Wi(n) = 1 + ao, (that is 5Z ui(0 = 1+«()), then by Lemma 3 there exists an
1=0

n'-i

integer n' such that J2 u<(') = °o . that is, Wi(n') = a0 and u,(n' + <) = Uj(n + t) =
1=0

for 0 ^< < f c - 2 .
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Hence toj(n' + t) = ao + a i + • • • + a« for 0 ^ t ^ k — 1, and

V>jt(u>i(n'), Wi(ri + 1), ••• , Wi(n' + k - 1)) = (a 0 , o i , ••• , a f c_i) .

Thus finally ^ i is a bijection from FWi(k) onto {0, 1} x FUi{k — 1 ) , which proves that:

Pa.{k) = 2Pu.(k-l), for fc^2,

and our Theorem 2 is now nothing but a reformulation of Theorem 1. U
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