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A dilute magnetic emulsion under the combined action of a uniform external magnetic
field and a small amplitude oscillatory shear is studied using numerical simulations.
We consider a three-dimensional domain with a single ferrofluid droplet suspended in a
non-magnetizable Newtonian fluid. We present results of droplet shape and orientation,
viscoelastic functions and bulk emulsion magnetization as functions of the shear
oscillation frequency, magnetic field intensity and orientation. We also investigate how the
magnetic field induces mechanical anisotropy by producing internal torques in oscillatory
conditions. We found that, when the magnetic field is parallel to the shear plane, the
droplet shape is mostly independent of the shear oscillation frequency. Regarding the
viscometric functions, we show how the external magnetic field modifies the storage and
loss moduli, especially for a field aligned to the main velocity gradient. The bulk emulsion
magnetization is studied in the same fashion as the viscoelastic functions of the oscillatory
shear. We show that the in-phase component of the magnetization with respect to the
shear rate reaches a saturation magnetization, at the high frequencies limit, dependent
on the magnetic field intensity and orientation. On the other hand, we found a non-zero
out-of-phase response, which indicates a finite emulsion magnetization relaxation time.
Our results indicate that the magnetization relaxation is closely related to the mechanical
relaxation for dilute magnetic emulsions under oscillatory shear.
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1. Introduction

Knowledge of emulsion rheology is critical for many purposes, such as improving the
delivery of active pharmaceutical ingredients (Jaiswal, Dudhe & Sharma 2015), milk
homogenization (Bai et al. 2021) or improving the quality of cosmetic products (Kim,
Oh & Lee 2020). Despite emulsions usually being composed of Newtonian fluids, the
bulk material behaves as a single non-Newtonian fluid due to the droplets dynamics in the
microstructure, revealing a broad spectrum of behaviours, ranging from elastic to plastic.

Unlike some authors, who described the droplet dynamics in simple shear flows (Taylor
1932; Kennedy, Pozrikidis & Skalak 1994; Maffettone & Minale 1998; Vananroye, Van
Puyvelde & Moldenaers 2006; Ioannou, Liu & Zhang 2016), Palierne (1990) studied the
linear viscoelastic behaviour of dilute and non-dilute emulsions by using small amplitude
oscillatory shear flows. This model is recognized to accurately describe molten polymer
blends at high and low frequencies (Bousmina 1999). His theory also generalizes the
previous approaches of Fröhlich & Sack (1946), Oldroyd & Wilson (1950, 1953), Oldroyd
& Taylor (1955) and Kerner (1956).

Cavallo, Guido & Simeone (2003) and Wannaborworn, Mackley & Renardy (2002)
investigated the dynamics of single droplets in small amplitude oscillatory shear flows.
They reported that the droplet deforms following an ellipsoidal shape. Once the flow is
reversed, the droplet is compressed in the major axis and extended in the minor axis,
approaching a spherical shape between the shear cycles. In contrast to the large amplitude
oscillatory shear cases, the nature of droplet oscillation angle does not change as the
frequency increases (Guido, Grosso & Maffettone 2004).

Oliveira & Cunha (2015), using the boundary integral method (Siqueira et al. 2017;
Cunha et al. 2018a; De Siqueira et al. 2018) and an asymptotic solution based on the
small deformation theory (Vlahovska, Bławzdziewicz & Loewenberg 2009), reported a
rheological study on droplets of moderate to high viscosity ratios subjected to oscillatory
shear flows, showing that the system dynamics depends on the shear rate, oscillation
frequency and droplet relaxation time. They observed that, for a dilute emulsion, large
oscillation amplitudes might lead to non-harmonic responses of the shear stresses and
nonlinear behaviours.

Emulsions can be manipulated in many ways, but due to the high surface energy of the
interface, they are thermodynamically unstable (Maphosa 2018). One alternative to make
these structures stable is to use surfactants in an attempt to reduce the interfacial tension.
In turn, the transport of surfactants over the droplet surface leads to complex rheological
responses of the droplet (Pimenta & Oliveira 2021). Another technology that has gained
attention is known as Pickering emulsions, in which solid particles are used to stabilize
and tune the surface properties (Jiang, Sheng & Ngai 2020). In both cases, it is necessary
to introduce an additional substance into the system. Another different way to actively
control an emulsion arises for a ferrofluid as a disperse phase (Cunha et al. 2018b, 2020b;
Ishida & Matsunaga 2020; Abicalil et al. 2021).

The manipulation of emulsions in which the dispersed phase is composed of ferrofluid
droplets by the application of external magnetic fields has been extensively studied
in the past years due to the promising applications in medical treatments (Voltairas,
Fotiadis & Massalas 2001; Mefford et al. 2007; Liu, Li & Lam 2018), development
of externally controlled materials (Dierking et al. 2020; Spatafora-Salazar et al. 2021;
Ishida et al. 2022) and applications in Lab-on-a-chip devices (Varma et al. 2016; Ray
et al. 2017; Sen et al. 2017; Zhang et al. 2019). The interaction with external magnetic
fields permits an active control of the material’s rheology (Abicalil et al. 2021; Cunha
et al. 2018b, 2020b; Ishida & Matsunaga 2020), its manipulation in confined systems
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(Bijarchi et al. 2020, 2021; Roodan et al. 2020) and might be used for the design of actively
controlled heat transfer devices (Cunha et al. 2020a). Furthermore, recent studies have
proposed the use of ferrofluid droplets as liquid microrobots for targeted cargo delivery in
microsystems (Fan et al. 2020a,b; Chen et al. 2021; Ji et al. 2021).

Recently, Abicalil et al. (2021) expanded the works of Cunha et al. (2018b, 2020b)
and Ishida & Matsunaga (2020), and investigated magnetic emulsions in simple shear
flows. The authors analysed the droplet geometry, rheology, bulk magnetization and
magnetic torque for external magnetic fields applied in different directions. According
to such works, depending on the field orientation with respect to the flow, the effective
viscosity of the system can be either increased or decreased, as well as the first and
second normal stress differences. Moreover, although the ferrofluid droplet is assumed
to be superparamagnetic, the coupled shear and magnetic effects induce a misalignment
between the droplet magnetization and the applied magnetic field. As a consequence, the
system experiences an induced magnetic torque which leads to asymmetries in the bulk
stress tensor.

Several recent studies have addressed the issue of the droplet dynamics under a uniform
external magnetic field (Hassan, Zhang & Wang 2018; Jesus, Roma & Ceniceros 2018;
Hassan & Wang 2019), and others on the rheology and magnetization of ferrofluid
emulsions under simple shear (Cunha et al. 2018b, 2020b; Ishida & Matsunaga 2020;
Abicalil et al. 2021; Capobianchi et al. 2021). Additionally, considerable research attention
has been directed towards complex structures formed by magnetizable suspended particles
under simple shear or oscillatory shear (Rosa & Cunha 2019, 2020; Cunha & Rosa 2021).
To the best of the authors’ knowledge, no such studies have explored the role of the external
magnetic field in the rheology and magnetization of dilute emulsions subjected to a small
amplitude oscillatory shear (SAOS).

In this work, we present a numerical analysis of the rheology and magnetization
of a ferrofluid droplet under the combined action of a magnetic field and a SAOS.
We consider a three-dimensional domain with a single ferrofluid droplet suspended in
a non-magnetizable Newtonian matrix fluid, compatible with the dilute regime. The
presented numerical approach uses the projection method to solve the Navier–Stokes
equations with body force terms to account for interfacial and magnetic forces, the
magnetostatic Maxwell equations to solve the magnetic field throughout the domain
and the level set method for interface capturing. Although it is well known that droplet
interactions are an essential part of the study of concentrated emulsions, the study of dilute
emulsions reveals fundamental mechanisms of the nature of these materials. Thus, several
authors (Raja, Subramanian & Koch 2010; Ghigliotti, Biben & Misbah 2010; Vlahovska
2011; Mandal et al. 2018; Poddar et al. 2019; Guido & Shaqfeh 2019) have studied the
rheology of dilute emulsions, mainly considering a single droplet dispersed in volumetric
fractions of up to 5 % (Guido & Shaqfeh 2019).

We studied the effects of a uniform external magnetic field on the behaviour of a
dilute emulsion of ferrofluid droplets, under oscillatory shear flows. We explored the
morphological characteristics of the droplet between the limits of low and high oscillation
frequencies in order to describe the viscoelastic properties and the ability of the magnetic
field to produce anisotropy. Furthermore, we studied the oscillatory magnetic torque
produced by the misalignment angle between the emulsion’s bulk magnetization and the
external magnetic field. We found that the magnetic field can considerably modify the
behaviour of the storage and loss moduli as functions of the oscillation frequency, even
changing the flow dynamics when the external field is oriented perpendicular to the shear
plane. Finally, we show how the complex interactions between surface tension, shear stress
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and magnetic field produce a finite magnetic relaxation time, even though the ferrofluid
inside the droplets is superparamagnetic.

The remainder of this work is organized as follows: in § 2, we present the problem
statement, including the governing equations and the non-dimensional parameters that
govern the model problem. Section 3 presents the numerical methodology used to solve
the governing equations. Results and discussions are presented in § 4, with concluding
remarks presented in § 5.

2. Problem statement

The problem under consideration consists of a ferrofluid droplet suspended in a
non-magnetizable viscous fluid. The system is confined in a channel between two parallel
plates. The upper and lower plates oscillate in opposite directions with angular velocity ω,
creating an oscillatory shear flow in the system with shear-rate amplitude γ̇0. Moreover,
the ferrofluid droplet interacts with an external uniform magnetic field H0, which can be
parallel to either the main flow direction (x), the main velocity gradient direction (y) or the
main vorticity direction (z). The continuous phase has magnetic permeability μ0, assumed
to be equal to that of free space, while the dispersed phase has magnetic permeability ζμ0,
where ζ = μd/μ0 is the magnetic permeability ratio. Both phases have the same viscosity
η and density ρ. The droplet’s surface is assumed to be free of tensioactive substances,
such that it has a constant surface tension coefficient σ .

The computational model consists of a rectangular domain of dimensions Lx, Ly
and Lz, in which the droplet is initially spherical with radius a and placed at the
centre. The boundaries normal to the y-direction represent parallel plates oscillating in
opposite directions with angular velocity ω, such that the upper wall has a velocity
u = γ̇0 cos (ωt)Ly/2, while all other boundaries are assumed to be periodic. A schematic
illustration of the problem is presented in figure 1 for the external magnetic field in the
main velocity gradient direction.

The magnetic problem is assumed to be quasi-stationary, such that no electric currents
are induced. Therefore, in the absence of electric fields, Maxwell’s equations reduce
to ∇ · B = 0 and ∇ × H = 0, where B is the induction field and H is the magnetic
field. Here, we assume the ferrofluid as superparamagnetic (Rosensweig 2013), such that
magnetization is given by M = χH , with a constant magnetic susceptibility χ . In this
way, the magnetic induction can be written as B = μ0(H + M). Defining the permeability
function ζφ(x) such that ζφ(x) = 1 in the continuous phase and ζφ(x) = 1 + χ inside the
droplet, we may extend the relation B = μ0ζφH to the entire domain. Since the magnetic
field is irrotational, it can be written as the gradient of the magnetic potential field ψ , such
that H = −∇ψ . As B is solenoidal, the magnetic potential field is given by

∇ · (ζ(x)∇ψ) = 0. (2.1)

In a continuous perspective, the hydrodynamic problem for the immiscible two-fluid
system is governed by the incompressible Navier–Stokes equations, accounting for the
magnetic and capillary forces as body forces per unit of volume, represented as F m and
F i, respectively. Thus,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + ∇ · (2ηD)+ F i + F m, (2.2)

∇ · u = 0, (2.3)

where u is the velocity field, t is time, P is the pressure and D = (∇u + ∇uT)/2 is the
strain-rate tensor. The introduction of the level set function φ(x), which is a signed distance

955 A3-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1019


Ferrofluid emulsions in oscillatory shear and magnetic field

u = γ·
0 cos(ωt)Ly/2

u = –γ·
0 cos(ωt)Ly/2

ηc
μ0

ζμ0

φ(x) = 0z

y
B L

x

Lz

Ly

θ

Lx

H0

Figure 1. Schematic illustration of the problem for the external magnetic field, H0, parallel to the main
velocity gradient direction (y). The domain is of finite size Lx × Ly × Lz. The magnetic permeabilities of the
continuous and the ferrofluid phases are, respectively, μ0 and ζμ0. A shear flow is imposed on the system by
the top and bottom walls moving in opposite directions with velocity u = γ̇0 cos (ωt)Ly/2. The droplet surface
is determined by the level-set function φ(x) = 0. The droplet is shown in a deformed state with major and
minor axis lengths L and B, respectively. The droplet’s inclination angle is θ .

function to the fluids’ interface (as further discussed in § 3.1), allows the magnetic and
capillary forces to be described as (Sussman et al. 1998; Cunha et al. 2018b)

F i = −σκ(φ)δ(φ)|∇φ|n̂, (2.4)

and

F m = μ0(ζφ(φ)− 1)H · ∇H , (2.5)

where κ is the local mean curvature, δ is the Dirac delta function and n̂ is the unit normal
vector, pointing outwards of the droplet surface.

We normalize the formulation using a for length, ηa/σ for time (droplet relaxation
time), σ/η for velocity, σ/a for pressure and tension and |H0| for magnetic field and
magnetization. The tilde notation is used to represent non-dimensional variables. While
(2.3) remains the same in non-dimensional form, (2.2) is rewritten as

∂ũ
∂ t̃

+ ũ · ∇̃ũ = −Ca
Re

∇̃P̃ + Ca
Re

∇̃ · (2D̃)

− Ca
Re
κ̃(φ)δ̃(φ)|∇̃φ|n̂

+ Ca Camag

Re
(ζ̃φ(φ)− 1)H̃ · ∇̃H̃ . (2.6)
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As the characteristic dimensionless groups governing the problem, we have: the
Reynolds number, Re = ργ̇0a2/η, which measures the ratio between inertial and viscous
effects; the capillary number, Ca = γ̇0aη/σ , corresponding to the ratio between viscous
and capillary forces; and the magnetic capillary number, Camag = μ0H2

0a/σ , as the ratio
between magnetic and capillary forces.

The oscillatory motion, as illustrated in figure 1, is applied to both plates normal
to the y-direction, in opposite directions, according to the non-dimensional equation
Ũ = ±Ca cos(ω̃t̃)L̃y/2. The shear strain produced in the system by the plate displacement
is γ̃ = γ̃0 sin (ω̃t̃), where γ̃0 = Ca/ω̃ is the strain amplitude. Both pressure and velocity
fields are taken as periodic at the boundaries normal to the x and z-directions. The uniform
external magnetic field is applied according to the chosen direction (x, y or z) by imposing
Neumann boundary conditions to the magnetic potential on all domain boundaries, such
that ∇̃ψ = −H̃0.

For the remainder of this text, all presented variables are non-dimensional and the tilde
symbol is suppressed to alleviate the notation.

3. Methodology

Following the Helmholtz–Hodge decomposition (Bhatia et al. 2013) and the original
projection method developed by Chorin (1968) and Témam (1969a,b), we use a
second-order semi-backward difference formula as described by Badalassi, Ceniceros &
Banerjee (2003). This semi-implicit method works quite well for diffusion-dominated
equations. It consists of adding and subtracting the diffusive term in the current time,
treating one term implicitly and the other explicitly. The first step consists of solving the
following equation for u∗, ignoring the pressure field:

1
2�t

(
3u∗ − 4un + un−1

)
− Ca

Re
∇2u∗ = −Ca

Re
∇2û

−û · ∇û + Ca
Re

∇ · (2D̂)+ F i(φ̂)+ F m(φ̂, Ĥ),

⎫⎪⎪⎬
⎪⎪⎭

(3.1)

where the hat symbol (ˆ) corresponds to an approximation of un+1 using the second-order
formula û = 2u − un−1. The second step projects u∗ onto the space of divergence-free
velocities according to

un+1 = u∗ − 2Ca�t
3Re

∇
(

pn+1
)
, (3.2)

where the virtual pressure pn+1 is calculated taking the divergence of (3.2), leading to the
Poisson equation

∇2pn+1 = 3Re
2Ca�t

∇ · u∗. (3.3)

Combining (3.1), (3.2) and (3.3) we obtain an equation for the pressure in the form

Pn+1 = pn+1 − ∇ · u∗. (3.4)

All cases reported here were performed using a regular, staggered marker and cell
(Harlow & Welch 1965) grid, with centred second-order finite differences for all terms
in (2.1) and (3.1), except for the advective term, which uses a conservative upwind
discretization, where the biased derivatives are calculated using a second-order essentially
non-oscillatory scheme with upwinding (Osher & Sethian 1988). While (3.1) and (3.3)
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are solved with a fast Poisson solver based on Fourier analysis and Gaussian elimination
(Dodd & Ferrante 2014; Costa 2018), (2.1) is solved using a conjugate gradient algorithm
with multigrid preconditioning (McAdams, Sifakis & Teran 2010).

3.1. Level-set method
Osher & Sethian (1988) proposed the level-set method based on the implicit description
of surfaces so that the interface has a codimension one (Osher & Fedkiw 2003). The
level-set function can be chosen to be any Lipschitz continuous function, although a
signed distance function improves geometrical parameters and properties such as mass
conservation (Gibou, Fedkiw & Osher 2018). In this way, the level-set function, φ(x),
is defined as a signed distance function from the interface, taken as positive for points
outside the droplet, and negative for points inside of it. In the level-set method, the distance
function is assumed to be a material property, conserved by the fluid particles. In this
sense, as in the continuum mechanics framework, the particles in the interface are always
the same ones, and the droplet surface can be implicitly tracked by finding the Eulerian
points where φ(x) = 0. Since φ is conserved by the material particles, the evolution of the
interface is given by

∂φ

∂t
+ u · ∇φ = 0. (3.5)

Following this construction, the unit normal vector is calculated as n̂ = ∇φ/|∇φ|, and
the local mean curvature as κ = ∇ · n̂.

In the level-set method, a sharp interface is replaced by a smoothed one with a finite
thickness of 2ε, where ε is defined according to the size of a grid cell (ε = 1.5�x). In this
way, the fluid properties can be determined according to a smoothed Heaviside function,
such as the continuous magnetic permeability: ζφ(φ) = ζ + (1 − ζ )Hε(φ), where Hε is
given by

Hε(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if φ < −ε,
1
2

[
1 + φ

ε
− 1

π
sin(πφ/ε)

]
, if |φ| � ε,

1, if φ > ε.

(3.6)

The smoothed Dirac delta function can then be defined as δε(φ) = dHε(φ)/dφ.
As the interface moves according to (3.5), the level-set function does not retain its

original properties and progressively deviates φ from the actual signed distance function.
In this way, φ must be regularly recomputed (reinitialized) for all particles outside of the
interface. We perform this reinitialization using the method of Peng et al. (1999) combined
with the mass conservation correction algorithm developed by Sussman & Fatemi (1999).
The reinitialization is performed at each time step by evolving the equation

∂φ

∂τ
+ s(φ)(|∇φ| − 1)− λf (φ) = 0, (3.7)

in an artificial time, τ . The volume-preserving correction parameters, λf (φ), and the signal
function, s(φ), are defined, respectively, as

s(φ) = φ√
φ2 + |∇φ|2�x2

, (3.8)
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and

λ =

∫
Ω

δ(φ) (s(φ)(|∇φ| − 1)) dV
∫
Ω

δ(φ)f (φ) dV
, (3.9)

in which f (φ) = δ(φ)|∇φ| and Ω represents each individual grid cell, allowing the
algorithm to locally correct variations in the droplet’s volume. Furthermore, the steady
solution of (3.7) assures that |∇φ| = 1, so φ recovers the actual signed distance function.

To solve (3.5) and (3.7), we use a fifth-order weighted essentially non-oscillatory scheme
for spatial discretization (Jiang & Peng 2000), and a third-order strong stability-preserving
Runge–Kutta scheme (Shu & Osher 1988; Gottlieb, Ketcheson & Shu 2011) for temporal
evolution. Moreover, (3.5) uses an upwind scheme while (3.7) uses Godunov’s method for
spatial discretization (Gibou et al. 2018).

Note that, in the level-set framework, a surface integral over the interface Γ where φ = 0
can be evaluated as a volume integral over the entire domain V , with the aid of the Dirac
delta function, according to (Osher & Fedkiw 2003)∫

Γ

𝔉(x) dΓ =
∫

V
𝔉(x)δε(φ)|∇φ| dV, (3.10)

where 𝔉 is an arbitrary function.
In this work, this volume integral is approximated with a second-order quadrature, using

a 27-point stencil.

4. Results and discussions

In this section, we study the behaviour of a single ferrofluid droplet subjected to a
SAOS, under the action of a uniform external magnetic field. First, we analyse the impact
of the external magnetic field on both the droplet’s deformation and inclination. The
droplet’s deformation is measured following Taylor’s deformation parameter defined as
D = (L − B)/(L + B), where L and B are, the major and minor axes of the deformed
droplet, respectively, as shown in figure 1. The inclination angle, θ , is defined as the angle
between the major deformation direction and the x-axis. All geometrical measurements
taken throughout this work are related to the droplet shape projected in the shear plane,
i.e. the xy plane crossing the droplet’s centre. Then, we focus on the effects of the external
magnetic field on the storage and loss moduli, G′ and G′′, respectively; and the first and
second normal stress differences, N1 and N2, respectively. We also present a study on the
response of the emulsion’s magnetization to the oscillatory strain for different external
magnetic field conditions. In this investigation, we compute the magnetic susceptibility,
χ , the angle between the magnetization and the external field, θmag, and the magnetic
torque, τmag. These quantities are periodic under the oscillatory shear conditions, and
were tracked by their in-phase and out-of-phase components relative to the strain.

All the analyses presented in this work are obtained for a cubic domain of side 8.125,
with a mesh discretization of 104 × 104 × 104 cells and a time step of �t = 4 × 10−3.
This domain size corresponds to a volume fraction of β ≈ 0.78 %, characterizing a dilute
emulsion, i.e. both magnetic and hydrodynamic interactions between the droplets are
negligible. We set γ0 = Ca/ω = 0.1 and Re = 10−3, so that the dimensionless strain
amplitude is small and inertial effects are negligible, and the flow regime is compatible
with the linear viscoelasticity limit. The magnetic permeability ratio is constant and set as
ζ = 2 throughout this work.
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We evaluated the effects of time step, mesh refinement and domain size on the
results in order to ensure convergence, considering the case of ω = 10, Ca = 1.0 and
Camag = 16, for the magnetic field in the y-direction. In this analysis, we focused on
the pair of rheological parameters (G′,G′′), which are directly related to the geometric
parameters of the droplet. With �t = 1.0 × 10−3 as the reference case, we found
variations of (0.413 %, 2.270 %) when increasing the time step to 4.0 × 10−3, and
(0.978 %, 3.115 %) for�t = 8.0 × 10−3. Regarding the mesh refinement, and considering
a mesh of 208 × 208 × 208 cells as the reference case, we observed relative variations
of (0.710 %, 0.738 %) for a mesh of 104 × 104 × 104 cells, and (0.896 %, 2.661 %) for
a mesh of 64 × 64 × 64 cells. Lastly, for the study of confinement effects, we focused
on (G′/β, G′′/β) and found marginal variations of (0.39 %, 0.46 %) when doubling the
domain size from 8.125 to 16.25, while maintaining the same mesh refinement used
throughout this work. Other parameters such as droplet deformation and inclination angle
also displayed similarly negligible variations. Given the small variations observed for the
tested time steps and mesh discretizations, and considering that these were run for the most
critical values of ω and Camag considered in this work, we can conclude that the chosen
time step and mesh discretization have no considerable effects on the results presented
in the following analyses. Based on the domain size study, we can also conclude that
confinement effects are negligible.

4.1. Verification
The numerical methodology used in the present work is similar to that of Abicalil et al.
(2021), and has been validated in the aforementioned work for the case of ferrofluid
droplets in steady shear flows by comparisons with other results presented in the literature
(Ishida & Matsunaga 2020). In order to verify the accuracy of the method for oscillatory
shear flows, we provide a comparison with Palierne’s analytical solution for dilute
emulsions, which successfully describes the viscoelastic properties of a large variety
of non-Newtonian fluids (Bousmina 1999; Boudoukhani, Moulai-Mostefa & Hammani
2020; Liao et al. 2020). To this end, we analyse the storage and loss moduli, G′ and G′′,
for 0.1 � ω � 10 in the absence of magnetic fields. According to Palierne’s model, the
complex shear modulus for a homogeneous dilute emulsion is given by (Pal 2011)

G∗
e(ω) = G∗

c(ω)+ 5βG∗
c(ω)H

∗(ω), (4.1)

where G∗
c is the complex shear modulus of the continuous phase, and the second term on

the right-hand side accounts for the dispersed phase contribution. Under the assumptions
that both phases are Newtonian and λ = 1, they share same complex shear modulus ωi,
with i = √−1, and H∗(ω) reads

H∗(ω) = 28
175G∗

c(ω)+ 80
. (4.2)

Therefore, the contribution of the dispersed phase to the non-dimensional complex shear
modulus of the emulsion is 28βG∗

c/(35G∗
c + 16). Recall that all terms presented here are

in non-dimensional form according to the scales presented in § 2. To characterize the
linear viscoelastic properties of our model, we use the classical Maxwell’s approach in
non-dimensional form, according to

Syx(ω, t) = G′(ω)
Ca
ω

sin(ωt)+ G′′(ω)
Ca
ω

cos(ωt), (4.3)
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Figure 2. Elastic, G′, and loss, G′′, moduli as a function of the non-dimensional angular frequency, ω. Red
circles and squares represent, respectively, our results for G′ and G′′. The solid and dashed black lines refer to
Palierne’s model (Palierne 1990).

where Syx is the yx-component of the particle stress tensor S (Batchelor 1970), given by a
surface integral over the droplet surface as (Cunha et al. 2020b; Abicalil et al. 2021)

S = 1
V

∫
Γ

[
x

(
κ − Camag

2
(ζ − 1)H2

)
n̂
]

dΓ. (4.4)

Note that the particle stress tensor in (4.4) applies to non-steady regimes in the creeping
flow limit, given that vorticity propagates instantaneously throughout the domain. In this
way, any change in the boundary conditions is instantly perceived everywhere in the flow
(Oliveira & Cunha 2015), such that (4.4) can be used to compute the particle stress in
SAOS if the Stokes flow condition can be assumed in the droplet scale.

Due to the fact that G′ and G′′ decompose the time-dependent particle stress into an
in-phase and an out-of-phase component with respect to the shear, it is possible to obtain
both parameters by performing a fast Fourier transform on the periodic signal of Syx over
time.

Figure 2 compares our numerical results with Palierne’s model for an emulsion
composed of Newtonian fluids with the same viscosity and density. It can be seen that
there is an overall excellent agreement between both models, indicating the accuracy of our
methodology, including the use of Batchelor’s particle stress approach. We also found that
the crossing point between the curves for G′ and G" occurs at the frequency ωcp = 0.45,
corresponding to a relaxation time of td = 2.19, which is in good agreement with the
model reported by Graebling, Muller & Palierne (1993), where td = 2.20.

For ω < ωcp, the emulsion behaves mostly as a viscous fluid. In this regime, the
relaxation time is short in relation to the oscillation frequency, such that it has enough
time to accommodate the changes in shear rate caused by the oscillatory flow. At the limit
of ω → 0, the droplet approaches the steady-state condition for a simple shear flow of
equal instant shear rate. Thus, for low oscillation frequencies, the droplet’s response is
primarily dependent on the instantaneous shear rate, such that G′ � G′′. On the other
hand, for ω > ωcp, the droplet’s response is more dependent on the instantaneous shear
strain, since the relaxation time is longer than the oscillation periods, resulting in G′ 	 G′′.
For high-frequency values (ω > 2), G′ reaches a plateau region, with values approaching
0.006158.
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Figure 3. Droplet’s deformation, D, and inclination angle, θ , over time for the external magnetic field in the x
(solid lines) and y-directions (dash-dotted lines) as a function of oscillatory shear frequency and Camag. First
column for ω = 0.10, second for ω = 1.00 and the last one for ω = 10.00. Black lines represent the flow in the
absence of magnetic field, blue lines refer to Camag = 4.00, red to Camag = 10.00 and green to Camag = 16.00.

4.2. Droplet geometrical properties
In this subsection, we study the impact of the external magnetic field when applied in
the x, y and z-directions on the droplet’s deformation (D) and inclination angle (θ ). These
geometrical parameters were evaluated across several cycles, for ω = 0.10, 1.00 and 10.00,
representing regimes of low, intermediate, and high oscillation frequencies.

Figures 3 and 6 present the droplet’s deformation and inclination over time for different
cases, varying the magnetic field direction, oscillatory shear frequency and magnetic
capillary number. First, we focus on the droplet dynamics in the absence of external
magnetic fields. For ω = 0.10, in figure 3(a), the droplet exhibits a deformation pattern
following cyclic oscillations with a single mode, with frequency ω and amplitude of
≈0.01. Since the results presented in this work are for a constant oscillation amplitude,
lower oscillation frequencies result in lower shear rates. In this case, the droplet barely
deviates from the spherical shape. To understand the behaviour of the inclination angle in
the oscillatory shear, it is instructive to recall that, under low capillary number regimes,
the droplets incline up to 45◦ relative to the flow direction. In this manner, considering
that for low frequencies and small strain amplitudes the instant ratio between shear
stress and surface tension perceived by the droplet is compatible with a small capillary
number, we conclude that θ must be close to either 45◦ or 135◦, depending only on the
instant shear-rate direction. Keeping this in mind, the droplet’s inclination oscillates like a
binary wave (as illustrated in the movie in the supplementary material available at https://
doi.org/10.1017/jfm.2022.1019), sharply changing between 45◦ and 135◦ as displayed in
figure 3(a).

Changing from ω = 0.10 to 1.00, in figure 3(b), we observe a significant increase in
the droplet’s deformation amplitude, with the increased oscillation frequency resulting
in higher characteristic Ca. Unlike the previous case, for ω = 1 the shear stresses are
comparable to the surface tension, allowing deformation peaks of D ≈ 0.045. The binary
behaviour of θ remained similar to the former case despite the slightly wider variations
with 43◦ � θ � 137◦. One can observe that, in this case, regardless of the higher shear
rates imposed by ω, the short strain available for the droplet to deform prevents it from
reaching even higher deformation values. Moreover, the increased shear rates also cause
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the capillary forces to become progressively less significant. In this sense, we only observe
modest variations for D and θ when increasing the frequency from ω = 1.00 to 10.00
(figure 3c), when compared with the transition from ω = 0.10 to 1.00. In this case, the
peaks in D become ≈ 0.5, while the θ variations remained practically unchanged with
respect to the case ofω = 1.00. For high oscillation frequencies, the surface tension effects
produced by the capillary forces eventually become negligible when compared with the
large shear rates, such that the droplet’s deformation becomes dependent solely on the
applied strain, with peak deformations bounded by the strain amplitude.

The action of an external magnetic field on a ferrofluid droplet subjected to oscillatory
shear changes the droplet’s motion pattern, as illustrated in the movie in the supplementary
material. For the external magnetic fields applied in the x and y-directions, as can be seen
in figures 3(a), 3(b) and 3(c), the deformation behaviour is mostly insensitive to the field
orientation and the shear frequency. Thus, even for the smallest relative magnetic field
intensity considered, corresponding to Camag = 4.00, the magnetic effects dominate the
droplet’s deformation. In this way, once the stationary regime is reached, there are only
minimal oscillations in the droplet’s deformation, even for high shear-rate frequencies.
Interestingly, the amplitude of such oscillations is considerably smaller than in the cases
with no external field. However, one can still notice that such variations are slightly larger
for the field in the y-direction. In this case, as the field stretches the droplet to regions
of faster flow, the droplet experiences a stronger effective shear, with the opposite effect
occurring for fields applied in the x-direction (Cunha et al. 2018b; Abicalil et al. 2021). For
ω = 10.00 and magnetic fields in the y-direction, the deformation oscillates around D =
0.1369 ± 0.0059 for Camag = 4.00, D = 0.3254 ± 0.0034 for Camag = 10.00 and D =
0.4553 ± 0.0027 for Camag = 16.00, indicating a progressive action of the magnetic field
in the sense of decreasing the amplitude of D oscillations.

Focusing on the droplet’s inclination angle, in figures 3(d), 3(e) and 3( f ), the capillary
forces play no significant role when compared with the shear and magnetic effects,
while the deformation and inclination amplitudes are bounded by the small strain
amplitude, defined by γ0 and constant across all cases. For ω = 0.10, the droplet tends
to accommodate in the magnetic field direction, presenting small oscillations for all cases
of Camag. Similar to the droplet’s deformation when ω = 0.10, the shear stresses are too
weak to cause any significant changes in the droplet inclination. In any case, despite still
being small, the amplitude of the inclination angle oscillations is greater for the magnetic
field in the y-direction, since the droplet is subjected to stronger effective shear rates,
and decreases with Camag. For Camag = 4.00, this amplitude is of 3.33◦ for the field
in the y-direction, and of 1.96◦ for the field in the x-direction. For both ω = 1.00 and
10.00, the droplet’s inclination angle dynamics are pretty similar to each other. For the
magnetic field in the x-direction with Camag = 10.00 and 16.00, the magnetic effects
overcome the shear forces, and the droplet stays mostly aligned to the field direction,
presenting only weak oscillations, see figure 4(a). For Camag = 4.00, such oscillations
are more notable, presenting amplitudes of approximately 7.20◦ for both ω = 1.00 and
ω = 10.00. The oscillations become more pronounced when the field is in the y-direction.
The curves for the cases of Camag = 10.00 and 16.00 mostly overlay each other, presenting
amplitudes of approximately 6.16◦ for both ω = 1.00 and ω = 10.00, see figure 4(b).
For Camag = 4.00, we verify an oscillation amplitude of approximately 12.35◦ for both
ω = 1.00 and ω = 10.00. The similarities between the results observed for ω = 1.00 and
10.00 suggest a saturation of the droplet dynamics concerning the shear frequency. Such
comprehension will be of great importance when studying the rheology of the present
system in the following subsections.
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Figure 4. Oscillation amplitude for a droplet under an external magnetic field in the x-direction (a) and
y-direction (b) for Camag = 16.00 and ω = 10.00. The droplet is projected into all orthogonal planes alongside
the magnitude of the magnetic field in the xz and xy-planes, with the latter also containing the magnetic field
lines. The yz-plane shows the velocity field.

The application of magnetic fields in the z-direction has different implications since the
elongation of the droplet occurs perpendicularly to the shear plane. Figure 5(a) shows
the droplet shape for different values of Camag, from two perspectives. The primary
consequence is that, in the xy-plane, the droplet’s cross-section remains nearly circular.
Additionally, as Camag increases, this cross-sectional area decreases, in accordance with
the conservation of the droplet’s mass, given its elongation in the magnetic field direction.

The first key point to be analysed is the droplet’s inclination angle in figures 6(d), 6(e)
and 6( f ). Given that the droplet presents a near-circular cross-section in the shear plane,
similar to when there is no magnetic field, the droplet oscillates in a binary form regardless
of Camag and ω. It is possible to observe small spikes from the transition of one angle to
the other, also present in the no-field case. These correspond to outliers, arising from the
difficulty in determining the inclination angles as the cross-sections become smaller and
circular (when the flow direction is reversing). Thus, such spikes are more pronounced for
Camag = 16.

For ω = 0.10, it can be seen in figure 6(a) that smaller values of Camag lead to
higher deformation amplitudes, with D ≈ 0.011 for Camag = 0 (no magnetic field), and
D ≈ 0.0081 for Camag = 16. For ω = 1.00, figure 6(b) displays a similar dynamic, albeit
with significantly larger deformation amplitudes, such as D ≈ 0.048 for Camag = 0 and
D ≈ 0.043 for Camag = 16. In the case of ω = 10, it can be seen in figure 6(c) that
the curves collapse, becoming indistinguishable despite the different values of Camag,
with a deformation amplitude of D ≈ 0.051. Figure 5(b) shows this phenomenon for
Camag = 16 and ω = 10. We also expanded this study to ω = 12 to check for a possible
trend reversal and found that it only enhances the convergence of the curves. This result
suggests that, for high oscillation frequencies, the influence of magnetic effects on the
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Figure 5. Panel (a) shows the droplet shape for the external magnetic field in the z-direction for t = 91.64,
ω = 1.00 and Camag = 4, 10 and 16, as indicated by the legend. Panel (b) represents a three-dimensional
view of the velocity (yz-plane) and magnetic field projections (xz and xy-planes) together with the magnetic
streamlines around the droplet for Camag = 16 and ω = 10.
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Figure 6. Droplet deformation, D, and inclination angle, θ , over time for the external magnetic field in the
z-direction as a function of oscillatory shear frequency and Camag. First column for ω = 0.10, second for
ω = 1.00 and the last one for ω = 10.00. Black lines represent the flow in the absence of magnetic field, blue
lines refer to Camag = 4.00, red to Camag = 10.00 and green to Camag = 16.00.

droplet’s deformation becomes negligible. It is worth mentioning that this only applies to
the droplet’s deformation in the shear plane. The overall droplet shape is still dependent
on the magnetic field intensity, with larger values of Camag leading to larger droplet
elongations in the field direction. It is interesting to note, especially in figure 6(b), that
an increase in Camag shifts both curves to the left. This dynamic may originate from the
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fact that the droplet decreases its radius in the shear plane, also decreasing its effective Ca
and the relaxation times, as Camag increases.

4.3. Rheology of viscoelastic materials

4.3.1. Storage and loss shear moduli
In this section, we investigate the influence of both the external magnetic fields, defined
by the magnetic capillary number Camag and the field direction, and the angular frequency
ω on the emulsion’s linear viscoelastic properties. As a consequence of the geometric
dynamics reported in § 4.2, the droplet experiences changes in its storage and loss moduli.

The magnetic field in the x-direction acts reducing not only the droplet’s oscillatory
dynamics but also the effective shear effects. The primary consequence of the latter
is a progressive decrease in the amplitude of the particle shear stress, Syx, as Camag
increases. This behaviour can be observed through the in-phase (G′) and out-of-phase (G′′)
components in figures 7(a) and 7(b). It can be seen that, despite the vertical displacements
of the curves, the general behaviour as a function of angular frequency remains mostly
unchanged and similar to the case in the absence of magnetic fields. For ω → 0.1, the
long oscillation periods result in sufficient time for capillary effects to have a significant
influence on the droplet’s shape, in such a way that its deformation is mostly determined by
the instant shear rate, resulting in G′ � G′′ and therefore in a mostly viscous behaviour.
As the oscillation frequency increases, there is a gradual transition from this viscous to
an elastic behaviour, with the point at which G′ becomes greater than G′′ occurring at
ωcp ≈ 0.41, regardless of magnetic capillary number. At high oscillation frequencies, the
time required for the capillary effects to influence the droplet’s shape becomes much larger
than the oscillation periods, in such a way that capillary effects on the droplet’s shape
become negligible and, therefore, its deformation is governed by the instant shear strain.
This results in G′ 	 G′′, and, thus, in the emulsion displaying a mostly elastic behaviour.

For external magnetic fields in the y-direction, an opposite effect is observed regarding
changes in Camag. As the magnetic capillary number increases, the droplet is elongated
in the velocity gradient direction, therefore exposing it to a greater effective shear, and
causing it to display larger variations of θ . In contrast to the case of magnetic fields in the
x-direction, increases in Camag result in larger amplitudes of Syx, and therefore in increases
of both the in-phase and out-of-phase components, as seen in figures 7(a) and 7(b). Similar
to the case of magnetic fields in the x-direction, the droplet’s response is predominantly
dependent on the instantaneous shear rate at low oscillation frequencies, and on the shear
strain at high frequencies. Despite the increase in viscoelastic components, the transition
point in which G′ becomes larger than G′′ remains the same across the Camag range, similar
to what was observed for magnetic fields in the x-direction. Given that the percentage
difference between the droplet relaxation time for the cases with and without the magnetic
field is less than 9 %, we believe that the magnetic field does not change the droplet’s
effective relaxation time in both directions.

A different phenomenon happens when the magnetic field is in the z-direction. It can be
seen, in figures 7(c) and 7(d), that there is a mixed behaviour, with different responses to
variations in Camag depending on the oscillation frequency. For low angular frequencies,
with ω up to 0.1, both G′ and G′′ decrease with increasing Camag, albeit in a much less
pronounced form than what was observed for the other two directions cases, with changes
in G′′ mostly imperceptible. This is analogous to the behaviour in simple shear flows
previously reported in the literature (Ishida & Matsunaga 2020; Abicalil et al. 2021).
In contrast, for high oscillation frequencies (ω → 10), both G′ and G′′ increase with
increasing Camag.
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Figure 7. Linear viscoelastic properties, G′ and G′′, for an external magnetic field in the x, y, and z directions.
First column for G′ and second one for G′′. The first row represents the results for the x-direction (circle marks)
and y-direction (squared marks). The second row shows the results for the z-direction (triangle marks). Black
solid lines are for Camag = 0 (Palierne 1990), blue lines are for Camag = 4, red ones for Camag = 10 and green
ones for Camag = 16

Figure 8 shows the same phenomenon by means of particle shear stress component Syx
for ω = 0.1 (solid lines) and ω = 10 (dashed lines). For ω = 0.1, an increase in Camag is
associated with smaller amplitudes in the signal of Syx, while the opposite is observed for
ω = 10. Alongside the data presented in figures 7(c) and 7(d), this leads to the conclusion
that the decrease in amplitude of Syx caused by larger magnetic capillary numbers at
low oscillation frequencies is associated with the reduction in the viscoelastic properties.
Conversely, the increase in the amplitude of Syx with increases Camag for high oscillation
frequencies results in a greater interference of the droplet in the flow, resulting in the larger
viscoelastic moduli.

It is interesting to note that, in contrast to what was observed for magnetic fields in
the x- and y-directions, the presence of fields in the z-direction does lead to changes
in the droplet’s effective relaxation time. Based on the cross-over points in which G′
becomes larger than G′′, the droplet’s effective relaxation time was measured to be of
t ≈ 2.20, 1.90, 1.62 and 1.45, for Camag = 0, 4, 10 and 16, respectively. This is due to
the reduction in the droplet’s cross-sectional area, reported in § 4.2 and in the previous
paragraphs.

With regards to the changes observed in the viscoelastic moduli, these arise from
changes in a balancing act between different effects. As the droplet is stretched in the
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Figure 8. The yx component of the particle stress given by (4.4) for ω = 10.00 (dashed lines), relative to the
top and right axes, and ω = 0.10 (solid lines), relative to the bottom and left axes. Black, blue and red colours
correspond to Camag = 0, 4 and 16, respectively.

z-direction, its cross-sectional area is reduced, thereby subjecting it to a lower effective
shear and reducing its influence on the flow at the central shear plane. However, the
increase in length in the z-direction causes the droplet to interact with a larger fraction of
shear planes – its frontal area relative to the flow direction is increased. For low oscillation
frequencies, there is also an associated reduction in droplet’s deformation, as discussed in
§ 4.2. In this case, the balancing of these three effects leads to reductions in the viscoelastic
moduli as Camag increases, analogous to what is observed for simple shear flows (Abicalil
et al. 2021). For high oscillation frequencies, however, the droplet’s deformation becomes
indifferent to changes in the magnetic capillary number, a fact that tips the balancing
act between the three aforementioned effects in the opposite direction, resulting in the
observed increases in both viscoelastic moduli with increasing magnetic capillary number.

4.3.2. Normal stress difference
As implicitly seen in §§ 4.2 and 4.3.1, the magnetic field produces higher stresses at the
droplet tips than in the flattened regions. In this sense, we continue our discussion by
analysing the droplet anisotropy by means of the first and second normal stress differences,
respectively defined as N1 = Sxx − Syy and N2 = Syy − Szz.

Analysing (4.4), it is possible to see the influence of the magnetic field on the normal
stress differences. At the droplet interface, while the magnetic field stretches the droplet in
its direction, the surface tension tries to recover a spherical droplet shape. Furthermore, the
term H2 is maximized when the normal vector to the surface is aligned with the magnetic
field. At this condition, the magnetic field tends to overcome the surface tension effects
and N1 (or N2) may change signs.

Figure 9 presents N1 and N2 as a function of time for ω = 1.00. Results for ω = 0.10 and
10.00 are omitted due to their similarities with those of the presented case. In figure 9(a),
the presence of magnetic fields in the x-direction results in Sxx < Syy, an effect that is
accentuated as Camag increases, indicating the ability of the magnetic field to produce a
preferential orientation and cause anisotropy. As Camag increases, the oscillations in N1
decrease, since the droplet barely diverges from the magnetic field orientation, as shown
in § 4.2. Since Syy and Szz are not significantly affected by the magnetic field, N2 is largely
independent of magnetic field intensity.

In figure 9(b), it can be seen that there is a symmetrical behaviour between N1 and N2,
indicating that both Sxx and Szz were not strongly affected by the magnetic field in the
y-direction, i.e. the magnetic field only produced anisotropy in its respective direction.
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Figure 9. First (solid lines) and second (dashed lines) normal stress differences, scaled by the volume fraction,
for an external magnetic field in the x (a), y (b) and z (c) directions and ω = 1.00. Black, blue, red and green
colours are, respectively, for Camag = 0, 4, 10 and 16.

As seen in §§ 4.2 and 4.3.1, the presence of the droplet in a region of greater effective
shear, as a function of Camag, counterbalances the magnetic field effect. Consequently,
the peaks of N1 coincide with the lowest points of D, when the droplet is mostly aligned
with the magnetic field; conversely, the valleys of N1 coincide with the points of greatest
deformation, where the droplet is least aligned with the magnetic field.

The third case is shown in figure 9(c), for external magnetic fields in the z-direction.
In this case, N1 is mostly unaffected by the presence of the magnetic field, since the
anisotropies introduced by the field have no direct influence on Sxx and Syy. Although
values of N1 for magnetic fields in the x-direction are mostly opposite and equal in
magnitude to N2 for the present case, the magnetic field in the z-direction does not restrict
the droplet’s orientation in the shear plane. Thus, the droplet’s inclination angle changes
with the oscillations in the shear flow, thereby leading to changes in Syy as well and, in
turn, to the oscillations observed in N2.

These results indicate that external magnetic fields are capable of producing significant
anisotropies in emulsions subjected to SAOS flows, similarly to what was previously
reported for simple shear flows in two (Cunha et al. 2018b, 2020b) and three dimensions
(Ishida & Matsunaga 2020; Abicalil et al. 2021). In summary, magnetic fields in the
x-direction resulted in large negative values of N1, with no significant changes in N2;
magnetic fields in the y-direction resulted in large positive values of N1 and large negative
values of N2; and magnetic fields in the z-direction resulted in large positive values of N2,
with no significant changes in N1.
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Figure 10. Bulk magnetization scaled by the volume fraction for ω = 1.00 and Camag = 4 (blue lines),
Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines correspond to My for external magnetic fields
in the x-direction, and dashed lines correspond to Mx for magnetic fields in the y-direction.

4.4. Magnetization of dilute emulsion
In this section, we investigate the magnetization of the emulsion, under the combined
action of a SAOS flow and an external magnetic field. As reported by Abicalil et al. (2021)
for the case of simple shear flows, despite the superparamagnetic behaviour of the droplet,
there is a misalignment angle, θmag, between the bulk magnetization, 〈M〉, and the external
field, H0, which results in a magnetic torque, τmag.

4.4.1. Magnetization
We started this analysis by computing the non-dimensional bulk magnetization according
to (Abicalil et al. 2021; Cunha et al. 2020b)

〈M〉 = 1
V

∫
V
(ζε(φ)− 1)H dV, (4.5)

where the magnetization effects are restricted to the droplet, since ζε(φ) = 1 in the
continuous phase.

As seen in § 4.2, when the magnetic field is in the x-direction, the droplet remains
elongated with D approximately constant. Among the three components of the vector 〈M〉,
only My displays a periodic oscillation over time. Analogously, for magnetic fields oriented
in the y-direction, only the x component of 〈M〉 oscillates. For external magnetic fields in
the z-direction the magnetization does not oscillate.

Figure 10 presents the y component of the bulk magnetization for magnetic fields in
the x-direction (solid lines), as well as the x component of the bulk magnetization for
magnetic fields in the y-direction (dashed lines), for ω = 1.00. For external magnetic
fields in the x-direction, the droplet is confined in a region of weaker effective shear
and stays approximately aligned with the magnetic field, as shown in § 4.2. Since the
amplitude of θ decreases as Camag increases, the amplitude of My decreases as well,
even though the average values of |〈M〉|/β increase. Specifically, we have the average
values of |〈M〉|/β = 0.8, 0.86 and 0.89, while My/β reaches peaks of 0.006, 0.004 and
0.003, for Camag = 4, 10 and 16, respectively. Thus, My has little influence on the signal
of 〈M〉, which remains approximately a straight line. In the case of external magnetic
fields in the y-direction, the average values of |〈M〉|/β increase in a similar way and
approximately with the same values as for the case of magnetic fields in the x-direction.
However, it can be seen that the magnetization amplitude increases with increasing Camag,
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Figure 11. In-phase component of the bulk magnetization, χ ′, as a function of angular frequency for Camag =
4 (blue lines), Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines represent χ ′

y for the magnetic
field in the x-direction and dashed lines χ ′

x for the magnetic field in the y-direction.

presenting peaks of Mx/β = 0.012, 0.016 and 0.018 for Camag = 4, 10 and 16, respectively.
In this case, even though the amplitude of the droplet’s inclination angle also reduces with
increasing Camag, this reduction is far less significant than for the case of external magnetic
fields in the x-direction, in such a way that the increase in the droplet’s deformation
associated with higher values of Camag end up leading to increases in the amplitude of
Mx. Similarly, Mx has little influence on the signal of 〈M〉, which remains approximately
constant.

The magnetization signal can be analysed following a similar methodology to that
employed in § 4.3.1 for the particle shear stress. In this way, we have that

Mk = χ ′
k sinωt + χ ′′

k cosωt, (4.6)

where k designates the magnetization component. The component χ ′
k is in phase with the

shear strain and the component χ ′′
k is 90◦ out of phase, i.e. in phase with the shear rate.

Figures 11 and 12 present both the in-phase and out-of-phase components based on
(4.6). The first point to be discussed is the similarity with the viscoelastic properties in
§ 4.3.1. No significant differences in Mk were observed for ω � 1, indicating a saturation
plateau as a function of Camag. We also found a non-zero χ ′′, indicating that the periodic
response of 〈M〉 has an out-of-phase component in relation to the imposed periodic
shear. That means the magnetization displays a finite relaxation time, associated with the
emulsions’ mechanical response to the periodic shear. The frequency in which χ ′ and
χ ′′ are equal is ω = 0.41, which is precisely the same frequency in which G′ = G′′. That
is a strong indication that the mechanism of magnetization relaxation in dilute magnetic
emulsions originates from the periodic variations of the droplet shape and orientation in
the micro-scale (the same mechanism originating the mechanical viscoelastic response).
In this sense, the effective magnetic susceptibility, based on the periodic components and
given by χ =

√
χ ′2 + χ ′′2, is higher for high oscillation frequencies (with the emulsion

displaying a solid-like behaviour) than for lower oscillation frequencies (with the emulsion
displaying a liquid-like behaviour).
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Figure 12. Out-of-phase component of the bulk magnetization, χ ′′, as a function of angular frequency for
Camag = 4 (blue lines), Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines represent χ ′′

y for the
magnetic field in the x-direction and dashed lines χ ′′

x for the magnetic field in the y-direction.

It is worth mentioning that, for some of the high values of Camag (�10) explored in this
work, it is likely that ordinary ferrofluids would reach nonlinear regimes of magnetization.
To achieve such high Camag values and still maintain the linear regime in experiments with
currently feasible ferrofluids, one would need to drastically reduce the interfacial tension
to something of the order of 10−3 N m−1 by the use of surfactants, and prepare emulsion
samples with millimetre-sized droplets.

4.4.2. Angle between 〈M〉 and H0
Under the combined action of the shear flow and the external magnetic field, M and H0 are
not aligned, even for a superparamagnetic droplet. The angle, θmag, between M and H0,
depends on the droplet’s deformation, external magnetic field intensity, and the external
magnetic field direction.

Figure 13 shows θmag for ω = 1.00. In this case, θmag has a direct relationship with
the previously analysed magnetization components. Both Mx and My are used to express
this parameter, i.e. θmag = sin−1(My/|〈M〉|) and θmag = sin−1(Mx/|〈M〉|) for magnetic
fields in the x and y-directions, respectively. Thus, as the magnetic field in the x-direction
confines the droplet, and consequently the magnetization vector, θmag oscillations decrease
with increasing Camag, with amplitudes of θmag ≈ 0.48, 0.28 and 0.17 for Camag = 4, 10
and 16, respectively. In contrast, with the magnetic field oriented in the y-direction, the
amplitudes tend to increase with Camag, as the droplet experiences higher effective shear
rates and thus relatively smaller reductions in inclination angle oscillations. Specifically,
the amplitudes are of θmag ≈ 0.83, 1.04 and 1.17 for Camag = 4, 10 and 16, respectively.

The angle θmag can also be analysed similarly to the stress and susceptibility, using the
equation

θmag = θ ′
mag sinωt + θ ′′

mag cosωt, (4.7)

to decompose θmag into components in phase (θ ′
mag) and out of phase (θ ′′

mag) with the shear
rate.
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Figure 13. Angle between 〈M〉 and H0, θmag, in degrees, for an external magnetic field in the x (solid lines)
and y-directions (dashed lines), for Camag = 4 (blue lines), Camag = 10 (red lines) and Camag = 16 (green
lines).
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Figure 14. In-phase component of θmag, θ ′, as a function of angular frequency for Camag = 4 (blue lines),
Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines correspond to magnetic fields in the
x-direction, and dashed lines correspond to magnetic fields in the y-direction.

Since θmag is calculated as a function of the magnetization components, the results are
entirely similar to those of the magnetization, including the cross-over point, as can be seen
in figures 14 and 15. It is worth mentioning that, although the equation of θmag expresses a
nonlinear relation to 〈M〉, for small arguments we can rewrite it as θmag = My/|〈M〉| and
θmag = Mx/|〈M〉|.

4.4.3. Magnetic torque
A magnetic torque in the fluid arises because M and H0 are not perfectly aligned.
This magnetic torque is counteracted by an opposing hydrodynamic torque, ensuring
the conservation of angular momentum (Cunha et al. 2020b; Abicalil et al. 2021). This
induced hydrodynamic torque manifests itself as asymmetries in the particle stress tensor,
described in (4.4). In our study, we compute the non-dimensional magnetic torque, τmag,
normalized by σ/a, using the following expression (Rosensweig 2013; Cunha et al. 2020b;
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Figure 15. Out-of-phase component of θmag, θ ′′, as a function of angular frequency for Camag = 4 (blue
lines), Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines correspond to magnetic fields in the
x-direction, and dashed lines correspond to magnetic fields in the y-direction.
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Figure 16. Torque scaled by σ/a for external magnetic fields in the x (solid lines) and y-directions (dashed
lines), with Camag = 4 (blue lines), Camag = 10 (red lines) and Camag = 16 (green lines).

Abicalil et al. 2021)

τmag = Camag〈M〉 × H0, (4.8)

highlighting that τmag is proportional to both |〈M〉| and sin θmag (Abicalil et al. 2021).
Figure 16 presents the magnetic torque magnitude, τmag, scaled by β over time for the

magnetic field in the x (solid lines) and y-directions (dashed lines). It can be seen that the
peaks of magnetic torque for magnetic fields in the x-direction correspond to the valleys
for fields in the y-direction, i.e. they act in opposite directions. As shown in figures 3 and 4,
during the first half of its oscillation cycle, the droplet always assumes inclination angles in
the range 0◦ < θ < 90◦, regardless of magnetic field direction. Since the magnetic torque
acts in the direction of aligning the droplet to the magnetic field, this results in a clockwise
torque for magnetic fields in the x-direction, and counter-clockwise torques for magnetic
fields in the y-direction. For the second half of the oscillation cycle, both torques act in
opposite directions.
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Figure 17. In-phase, τ ′, component of the torque scale by σβ/a as a function of angular frequency for Camag =
4 (blue lines), Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines are for the magnetic field in
the x-direction and dashed lines are for the magnetic field in the y-direction.

It can also be seen in figure 16 that, for magnetic fields in the x-direction, increasing
Camag from 4 to 10 leads to an increase in torque amplitude, with the increase in
magnetization magnitude overcoming the reduction in the angle between 〈M〉 and H0.
However, further increasing in Camag to 16 does not significantly change the torque
amplitude, due to the increase in magnetization and reduction in θmag balancing each other
out. For external magnetic fields in the y-direction, increases in Camag lead to increases in
both magnetization and θmag, and therefore also to increases in torque amplitude.

Focusing on the signal of the non-dimensional magnetic torque, it can be decomposed
using the definition

τmag

β
= α

[
τ ′

β
sinωt + τ ′′

β
cosωt

]
, (4.9)

where τ ′ and τ ′′ are the in-phase and out-of-phase components with the strain, also
normalized by σ/a. As seen in figure 16, the magnetic field in the x-direction produces
a π rad phase shift in relation to the y-direction, which implies negative amplitudes in the
decomposition. Therefore, in order to compare the in-phase and out-of-phase components
for both magnetic field orientations, we adopt α = −1 when the magnetic field is in
x-direction and α = 1 for magnetic fields in the y-direction.

Both of the aforementioned torque components are presented in figures 17 and 18. It
can be seen that the overall behaviour, as a function of angular frequency, is similar to
those observed for the magnetization components and θmag, including the cross-over point
at the same oscillation frequency. Note that there is a progressive increase for the in-phase
component in the plateau region, with torques for the magnetic field in the x-direction
of approximately 0.03, 0.044 and 0.046 for Camag = 4, 10 and 16, respectively. In this
context, it is possible to see that the increment from Camag = 10 to 16 is not significant, as
the decrease in values of θmag balances the increase in magnetization magnitude. For the
magnetic field in y-direction, the plateau region corresponds to torques of approximately
0.05, 0.17 and 0.31 for Camag = 4, 10 and 16, respectively. Interestingly, the curves for
Camag = 16 and magnetic fields in the x-direction are nearly equal to those for Camag = 4
and magnetic fields in the y-direction.
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Figure 18. Out-of-phase, τ ′′, component of the torque scale by σβ/a as a function of angular frequency for
Camag = 4 (blue lines), Camag = 10 (red lines) and Camag = 16 (green lines). Solid lines are for the magnetic
field in the x-direction and dashed lines are for the magnetic field in the y-direction.

5. Concluding remarks

The present study reported a three-dimensional computational analysis of a magnetic
droplet suspended in non-magnetic matrix fluid, characterizing a dilute ferrofluid
emulsion, subjected to a SAOS flow and an external magnetic field. The domain
was discretized through the finite-difference method, using the level-set method for
interface capturing and a semi-implicit projection method to solve the Navier–Stokes
equations.

We evaluated the behaviour of the droplet as a function of the magnetic field orientation,
angular frequency, and the intensity of the magnetic field. In order to ensure a linear
regime of droplet dynamics and avoid the appearance of any higher harmonics, we set the
strain amplitude to γ0 = 0.1, constituting a SAOS flow. Based on these assumptions, it was
possible to evaluate the morphological, rheological and magnetization behaviours of the
emulsion, such as the droplet geometry, viscoelastic properties, normal stress differences
and magnetization characteristics such as bulk magnetization, the angle between 〈M〉 and
H0 and the magnetic torque.

With regards to the emulsion’s morphology, we found that droplet deformation is mostly
insensitive to the direction of the magnetic field, if it is either the x or y-directions,
with increasing Camag leading to increases in droplet deformation. The behaviour of the
droplet’s inclination angle, meanwhile, did vary significantly depending on the magnetic
field direction. For magnetic fields in the x-direction, the droplet is confined to regions
of lower effective shear, attenuating the flow’s effects on the droplet and reducing the
inclination angle amplitude. For magnetic fields in the y-direction, the droplet is stretched
alongside the main velocity gradient, subjecting it to a higher effective shear, and resulting
in larger inclination angle amplitudes. In both cases, increases in magnetic capillary
number reduce the inclination angle amplitudes.

A new phenomenon was observed when the magnetic field was in the z-direction.
In this case, the droplet is elongated in the direction perpendicular to the shear plane,
remaining nearly circular in the shear plane and consequently not significantly altering the
oscillations of θ . However, this effect results in a decrease in the effective relaxation time

955 A3-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1019


R.F. Abdo, V.G. Abicalil, L.H.P. Cunha and T.F. Oliveira

of the droplet, causing the deformation curves to converge into one for high oscillation
frequencies, despite higher magnetic capillary numbers leading to lower deformations for
low oscillation frequencies.

Based on this geometric dynamics, the viscoelastic properties are then a direct
consequence of these behaviours. For magnetic fields in the x and y-directions, the
emulsion displayed a mostly viscous behaviour for low frequencies, with G′′ � G′. For
high oscillation frequencies, G′ reached a plateau region, with G′ 	 G′′, the typical
behaviour of a Hookean solid, i.e. a mostly elastic behaviour. In addition, no significant
differences in the cross-over point between G′ and G′′ were found, suggesting that the
droplet’s effective relaxation time is insensitive to both the x and y magnetic fields.
Despite these similarities, the magnetic field in the x-direction decreases the magnitude
of both viscoelastic components as Camag increases, a direct consequence of the confining
effects the magnetic field has on the droplet. In the y-direction, given that the magnetic
field projects the droplet into a region of higher effective shear rate, both viscoelastic
components increase with Camag. For magnetic fields in the z-direction, there is a balance
between the influence of the droplet area in the shear plane and its projected area in
the flow. At low oscillation frequencies, the smaller deformations result in a decrease
in both viscoelastic components with increasing Camag. Meanwhile, at high oscillation
frequencies, the convergence of the droplet deformations result in increases in Camag
leading to increases in both viscoelastic moduli, a behaviour opposite to the one displayed
for low frequencies.

Regarding the normal stress differences, we found that the anisotropies produced by the
magnetic field depend only on its strength and direction.

The magnetization properties are a direct consequence of the droplet dynamics. In
the x-direction, the magnetic field leads the droplet to confinement effects that, although
increasing the bulk magnetization as Camag increases, reduce the effects on the periodic
component of the bulk magnetization vector, and consequently, θmag. Given that the
increase in bulk magnetization overcomes the reduction in θmag, there is the presence of a
magnetic torque, in the sense of aligning the droplet to the magnetic field, that increases
with Camag. In the y-direction, as the magnetic field increases in strength, the droplet is
elongated to a region of higher effective shear rate, increasing the magnitude of the bulk
magnetization, the periodic component of the magnetization vector and, therefore, the
angle between 〈M〉 and H0. Consequently, there is the presence of an increasing magnetic
torque with increases in Camag. It is essential to mention that the cross-over point of
all these properties was the same, revealing a deep dependence of 〈M〉, θmag and τmag
on the interfacial characteristics of the droplet. Furthermore, despite the droplet being
superparamagnetic, its interfacial dynamics causes it to display a finite magnetization
relaxation time.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.1019.
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