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Introduction. In Theorem 4 of [5] Stone stated that the
theory of Boolean rings was "'mathematically equivalent' to
the theory of Boolean spaces without, however, properly
defining the phrase '""mathematically equivalent'. It is the
main purpose of this note to establish a precise reformulation
of Theorem 4 in [5]. This is accomplished by introducing
special classes of maps between Boolean lattices, Boolean
rings and Boolean spaces respectively, and showing the
categories arising in conjunction with these maps to be
equivalent in the sense of Grothendieck [2]. Thus the notion
of equivalence of categories will replace the phrase "mathe-
matically equivalent' in [5]. In addition the well-known
axiomatic characterization of meet and complementation of
Boolean lattices with unit is discussed in analogous terms.

The author would like to thank Professor B. Banaschewski
for his help during the preparation of this paper. The content
of this paper is a summary of the Master's thesis of the author
written at McMaster University under the supervision of
Professor B. Banaschewski.

1. Definitions and notation. We recall that a Boolean
lattice is a relatively complemented, distributive lattice with
a zero element; a Boolean space is a zero-dimensional
locally compact Hausdorff space, and a Boolean ring is a ring
in which every element is idempotent.

Let B, C be Boolean lattices. A mapping f from B
into C is called a Boolean lattice homomorphism if f preserves
meets, joins and relative complements. If B, C have units
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e, €' respectively, a Boolean lattice homomorphism f from
B into C is called unitary if f(e) =e'. We call a Boolean
lattice homomorphism f from B into C proper if for any c
in C there exists a bin B with f(b)>c. It is clear that any
unitary homomorphism between Boolean lattices with unit is
proper. On the other hand any proper homomorphism between
Boolean lattices with unit is unitary.

Let E, F be Boolean spaces. A continuous map f from
E into F is called proper if the inverse image of every com-
pact set in F under f is compactin E. It is easily seen
that a map f from E into F 1is proper continuous if and only
if the inverse image under f of every compact open set in F
is compact open in E.

For any pair of elements x, y in a Boolean ring R, put
x <y if and only if there exists a z in R with x=yz. The
relation so defined in R is called the divisibility relation, and
it is easily seen that it partially orders R. Let R, S be

Boolean rings and let —<—R’ ES denote the divisibility relations

in R, S respectively. We call a ring homomorphism f from
R into S proper if for any s in S there existsa r in R
with f(r) _>_Ss. Again it is clear that the classes of proper ring

homomorphisms and unitary ring homomorphisms between
Boolean rings with unit coincide.

It is easily seen that the above definitions give rise to
categories. Throughout this paper K will denote the category
of Boolean lattices and proper Boolean lattice homomorphisms,
K,  the category of Boolean lattices and Boolean lattice homo-
morphisms, K2 the category of Boolean lattices with unit and

unitary Boolean lattice homomorphisms, L the category of
Boolean spaces and proper continuous maps, M the category
of Boolean rings and proper ring homomorphisms and M1 the

category of Boolean rings and ring homomorphisms. For any
category N, IN will denote the identity functor on N.

Finally we recall the definition given by Grothendieck [2]
for the equivalence of categories based on the notion of natural
equivalence between functors [1]. A category N is said to be
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equivalent (dually equivalent) to a category P if there exists a
covariant (contravariant) functor S from N into P and a
covariant (contravariant) functor T from P into N such that

there is a natural equivalence T = ((pX)X€ N between the

composite functor TS and IN and a natural equivalence
= (\.IJY)YE p between the composite functor ST and IP such
that

-1 -1

for any X in N and Y in P.

For any Boolean lattice B, §(B) will denote the Boolean
space associated with B, that is, the ultrafilter space of B,
and for any a in B, §)(a) will denote the set of ultrafilters
of B containing the element a. For any Boolean space E,
A-(E) will denote the Boolean lattice of compact open sets of
E and for any x in E, W(x) will denote the ultrafilter in
Z~(E) consisting of all those compact open sets of E containing
x. For any Boolean ring R, V(R) will denote the Boolean
lattice associated with R whose partial order is the divisibility
relation of R, and for any Boolean lattice B, A(B) will denote
the Boolean ring associated with B whose addition and multi-
plication are given by x+ y=(x~(xAy))V (y~(x Ay)) and
xy =x Ay, respectively, where the signs A, V and ~ have
the usual meaning.

2. Boolean lattices and Boolean spaces. Let f bea
proper homomorphism from a Boolean lattice B into a Boolean
lattice C. f then gives rise to a proper continuous map fQ

from ) (C) into ) (B) defined by fQ(U)=f'1(U) where U

is any ultrafilter in C. On the other hand, let E, F be
Boolean spaces and let f from E into F be proper continuous.
f then gives rise to a proper Boolean lattice homomorphism

fp from & (F) into & (E) defined by %X):f‘i(x) where

X is any compact open set of F.
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THEOREM 1. The correspondences B - ()(B), f fQ

and E »Zﬁ’(E), f - f_, are contravariant functors S from K

&
into L. and T from L into K respectively which establish
the dual equivalence of the categories K and L.

Proof. It is easy to see that S, T as defined are contra-
variant functors. For any Boolean lattice B, let iB denote

the isomorphism from B onto & ( () (B)) given by iB(a) =) (a).

Define a map I‘i which assigns to each B in K the map iB

from B into TS(B). Let B, C be in K and let f from B
into C be a proper homomorphism. We show that
- f
c )(a)
= ic(f(a)) = QU(f(a)), the compact open set in §2(C) determined
f(a). th th hand we h f -1 =
by f(a) On the other hand we have (( .Q.)z' 1B)(a)

=(fQ)$(_Q(a)) =fa(Q(a)) = QQU(f(a)). Also for each B in K

the map iB being an isomorphism has an inverse. Hence F‘l

iC.f:(f.Q)og"iB . For any a in B we have (i

is a natural equivalence between the functors TS and IK.

Similarly for each E in L let iE denote the homeomorphism
from E into (ST)(E) given by iE(x) = W(x). Consider the
map FZ which assigns to each E in L the map iE. Let

E, F bein L andlet f from E into F be a proper continu-
ous map. We show that (iF- f) = (f;G)Q -iE . Forany x in E
(1F- f)(x) = W(f(x)).-)1 On the other hand (fx-)Q 1E(x)

) (Wix) =f, {Y / xeYe ZH{E)} = W(f(x)). Since for

each E in L iE has an inverse, it follows that FZ is a

natural equivalence between the functors ST and IL. It
remains to show (i) S(i for any B in K and
) =it

E T(E)

map from (STS)(B) into S(B) given by (iB)_Q

for any ultrafilter U in B, where in accordance with our
notation W(U)={Q(a)/ Ue a)}. Thus i;si(W(U)) =U.

) =ist
B’ "S(B)
for any E in L. Now S(iB) =(iB).Q is a

(W(U)) = {BHW(U))

(ii) T(1
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-1
On the other hand iS(B) is also a mapping from (STS)(B) into
1

S{B) given by ié(B)(W(U))':U, for the sets W(U) give

precisely the ultrafilters in (TS)(B). Hence (i) is established;
one proves (ii) similarly. Thus the categories K and L are
dually equivalent and this completes the proof of the theorem.

3. Boolean lattices and Boolean rings. In a similar
manner as in Theorem 1 we establish in this section that the
category K1 is equivalent to the category Mi. Let B, C

be Boolean lattices and let f from B into C be a Boolean
lattice homomorphism. { then gives rise to a ring homomor-
phism fA from A(B) into A(C) defined by fA(x) =f(x). On

the other hand, let R, S be Boolean rings and let f from R
into S be a ring homomorphism. Then f gives rise to a
Boolean lattice homomorphism fB from V(R) into V(S)

defined by f_(x) = f(x).

v

THEOREM 2. The correspondences B - A(B), f - fA

and R - V(R), f —*fv are covariant functors S from K1

into M1 and T from M'1 into K1 respectively; this

establishes the equivalence of the categories K1 and Mi'

Moreover, the restrictions of S and T to the subcategories
K of K1 and M of Mi respectively establish that K is

equivalent to M.

Proof. One sees easily that (ST)(R) =A(V(R)) =R and
(TS}B) =V(A(B)) =B for any Boolean ring R and Boolean
lattice B. Moreover, it is clear that S, T as defined are
covariant functors. In view of the observation just made
it follows easily that ST =1 and TS=1_ . This gives

M1 Ki

immediately that the categories K1 and M1 are equivalent.

The remainder of the theorem follows from the fact that the
divisibility relation of A(B) is the same as the partial order
of B and the partial order of V(R) is the same as the
divisibility relation of R.
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Remark. Under the correspondence of Theorem 2 one
observes that the functor S carries free Boolean lattices B
with a set X of free generators into free Boolean rings
R =S(B) with a set X of free generators, and the functor T
carries free Boolean rings R with a set X of free generators
into free Boolean lattices B = T(R) with a set X of free
generators. This shows that free Boolean lattices can be
constructed by algebraic methods.

4. Boolean semi-groups. We call a commutative semi-
group G with zero element o a Boolean semi-group if the
following holds: for any a in G there existsa b in G with
1) ba=0, 2)bc =0 for any ¢ in G implies ac =c. The
element b whose existence is indicated in the definition will
be called a converse of a.

LEMMA. Every element in a Boolean semi-group G is
idempotent and possesses exactly one converse.

Proof. Take any a in G and let b be a converse of a.
Then by 1) ba = o and hence by 2) aa =a establishing that every
element in G 1is idempotent. We now establish that a is a
converse of b. Suppose there existsa ¢ in G with ac =o
but bc # ¢. Let z be a converse of bc. Consider the
element zc =y say. Now by =o and this implies (since b
is a converse of a)that ay =y. Hence acy =cy, thatis,
cy =o. Thus zcc=zc =y =0. But zc =0 implies bcc =bc =c,
since z is a converse of bc. This contradicts our assumption
that bc # c. Hence our supposition is false and a is a converse
of b. Next, suppose that u, v are converses of a. Then a
is a converse of u, v respectively and au=o0 implies vu=u.
Similarly av = o implies uv =v. Since G is commutative
we have u=uv =vu =v. Hence each element possesses
precisely one converse and this establishes the lemma.

In view of the lemma, we will denote the converse of a
by a' for each a in the Boolean semi-group G. For any
X, vy in G put x <y if and only if there exists a z in G
with x =yz. The relation <, again called the divisibility
relation, partially orders G.
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PROPOSITION. Any Boolean semi-group G is a
Boolean lattice with unit under the divisibility relation in
which x Ay =xy, x Vy=(x'y'")", and for any x the converse
x' of x is the complement of x. The element o of G is
the zero of the lattice and o' is its unit. Conversely any
Boolean lattice B with unit is a Boolean semi-group under
meet and complementation.

Proof. We give an outline of the steps of the proof, the
details of which can be obtained from Rosenbloom [3]. One
first establishes that x'" =x for any x in G and uses this
and the definition of the divisibility relation to show that
xy =inf {x,y}, (x'y')" =sup {x,y}. This will give G,
partially ordered by divisibility, to be a lattice with zero and
unit. Also we have for any x in G, x A x' =xx' =0 and
ol =(x Ax") =(x"AX'") =xV x'. Hence G 1is a comple-
mented lattice. To establish that it is distributive, one first
proves that x A(x'V y)=x Ay and uses this to obtain
x Aly Vz) A(x Ay) A(x A z) =o. Conversely let B be
any Boolean lattice with unit e. Then trivially the set B
under meet and complementation of the lattice B forms a
Boolean semi-group. This completes the proof of the
proposition.

Let G, H be Boolean semi-groups. A mapping f from
G into H is called a Boolean semi-group homomorphism if
1) f(xy) = {(x)f(y) for any x, y and 2) f(x') = (f(x))' for any x
in G. Let N_ denote the category of Boolean semi-groups
and Boolean semi-group homomorphisms. For any Boolean
semi-group G let V(G) denote the Boolean lattice with unit
associated with it and for any Boolean lattice B with unit let
S(B) denote the associated Boolean semi-group as in the above
proposition. Let f from G to H be a Boolean semi-group
homomorphism. Then f gives rise to a unitary Boolean
lattice homomorphism fv from V(G) into V(H) defined by

fv(x) =f(x). On the other hand let B, C be Boolean lattices

with unit and let f from B into C be a unitary Boolean
lattice homomorphism. Then f gives rise to a Boolean semi-
group homomorphism fS from S(B) into S(C) defined by
fs(x) = f(x).
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THEOREM 3. The correspondences B - S(B), f - fs
and G = V(G), f —~ fv are covariant functors X from KZ
into N2 and Y from NZ into K2 which establish the

equivalence of the categories K2 and NZ.

Proof. 1Itis clear that X, Y as defined are covariant
functors. We note further that V(S(B)) =B for any Boolean
lattice with unit and S(V(H)) =H for any Boolean semi-group
H. It thus follows easily that YX =1 and XY =1__ .

KZ NZ

This establishes the theorem.

REFERENCES

1. S. Eilenberg and S. MacLane, General theory of natural
equivalences, Trans. Amer. Math. Soc. 58 (1945),
231-294.

2. A. Grothendieck, Sur quelques points d'algebre
homologique, T8hoku Math. J. 9 (1957), 119-121.

3. P. Rosenbloom, The elements of mathematical logic,
New York, Dover Publications, Inc., 1950.

4. M. H. Stone, Theory of representations for Boolean
algebras, Trans. Amer. Math. Soc. 40 (1936), 37-111.

5. M. H. Stone, Applications of the theory of Boolean rings
to general topology, Trans. Amer. Math. Soc. 41 (1937),
375-481.

McMaster University

252

https://doi.org/10.4153/CMB-1964-022-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-022-6

