QUASIGROUPS ORTHOGONAL TO A GIVEN ABELIAN GROUP

BY
CHARLES C. LINDNER

In this note we prove the following theorem, which does not seem to appear explicitly in the literature.

Theorem. Let A be a finite abelian group and p the smallest prime which divides $|A|$. Then there are $p-1$ mutually orthogonal quasigroups of order $|A|$, one of which is A.

Proof. If $p=2$ there is nothing to prove. So we consider the case where $p \geq 3$. Let $i \in\{1,2, \ldots, p-1\}$. Then the mapping $\alpha_{i}: A \rightarrow A$ given by $a \alpha_{i}=a^{i}$ is an automorphism of A so that each element of A has a unique i th root.
We define groupoids $\left(A_{1}, o_{1}\right),\left(A_{2}, o_{2}\right), \ldots,\left(A_{p-1}, o_{p-1}\right)$ as follows. $A=A_{1}=$ $A_{2}=\cdots=A_{p-1}, o_{1}$ is the operation in A, which we will denote by juxtaposition, and $x o_{i} y=x^{i} y$.

Each $\left(A_{i}, o_{i}\right)$ is a quasigroup. For if $x o_{i} y=x o_{i} z$, then $x^{i} y=x^{i} z$ gives $y=z$, and if $y o_{i} x=z o_{i} x$, then $y^{i} x=z^{i} x$ gives $y^{i}=z^{i}$ which implies $y=z$, since each element in A has a unique i th root.

The quasigroups $\left(A_{1}, o_{1}\right), \ldots,\left(A_{p-1}, o_{p-1}\right)$ are mutually orthogonal. To see this let $x, y, z, w \in A$ with $x \neq z$ and $y \neq w$, and suppose that $x o_{i} y=z o_{i} w$ and $x o_{j} y=z o_{j} w$. We can assume $i<j$, so that $1 \leq j-i \leq p-1$. But then $x o_{j} y=z o_{j} w$ gives $x^{j} y=z^{j} w$ gives $x^{j-i}\left(x^{i} y\right)=z^{j-i}\left(z^{i} w\right)$. Since $x o_{i} y=z o_{i} w$ we have $x^{j-i}=z^{j-i}$-a contradiction since each element of A has a unique $j-i$ root. This contradiction completes the proof of the theorem.

Added in proof. The referee has pointed out to the author the availability of the ideas developed in [1] to produce a proof of the theorem in this note. In particular, in terms of the concepts in [1] we have shown that if A is a finite abelian group and p is the smallest prime divisor of $|A|$, then the set of mappings $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p-1}$ is a set of mutually orthogonal orthomorphisms.

Reference

1. D. M. Johnson, A. L. Dulmage and N. S. Mendelsohn, Orthomorphisms of groups and orthogonal latin squares. I. Canad. J. Math. 13 (1961), 356-372.

Auburn University,
Auburn, Alabama

