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QUASIGROUPS ORTHOGONAL TO A GIVEN 
ABELIAN GROUP 

BY 

CHARLES C. LINDNER 

In this note we prove the following theorem, which does not seem to appear 
explicitly in the literature. 

THEOREM. Let A be a finite abelian group and p the smallest prime which divides 
\A\. Then there are p—\ mutually orthogonal quasigroups of order \A\9 one of which 
is A. 

Proof. If p = 2 there is nothing to prove. So we consider the case where/?>3. 
Let i e{l , 2, ,/?—1}. Then the mapping a{:A-^A given by aa^a1 is an 
automorphism of A so that each element of A has a unique ith root. 

We define groupoids (Al9 ox)9 (A29 o2)9..., (Ap.l9 op.x) as follows. A=A1 = 
A2— • • • =y4p_i, 0i is the operation in A, which we will denote by juxtaposition, 
and xoiy=xiy. 

Each (Ai9 ot) is a quasigroup. For if xOiy=xotz, then xiy=xiz gives y=z, and if 
yOiX=zOiX, then yix=zix gives / = z { which implies y=z, since each element in A 
has a unique ith root. 

The quasigroups (Al9 o±)9..., (Ap-l9 op_i) are mutually orthogonal. To see 
this let x9 y9 z9 we A with x^z and y^w9 and suppose that xOiy=zOiW and 
xOjy=zOjW. We can assume /</ , so that 1 <j—i<p— 1. But then •m,j=z0j/u> gives 
xjy—z5w gives x/'f(if

<y)=zJ'"i(zV). Since x<9ij=z0iw we have xj~i—zj~i—a con
tradiction since each element of A has a unique j—i root. This contradiction com
pletes the proof of the theorem. 

Added in proof. The referee has pointed out to the author the availability of the 
ideas developed in [1] to produce a proof of the theorem in this note. In particular, 
in terms of the concepts in [1] we have shown that if A is a finite abelian group and 
p is the smallest prime divisor of \A\9 then the set of mappings al9 a29..., ap_1 is 
a set of mutually orthogonal orthomorphisms. 
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