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Introduction. The well-known results of Krull concerning the minimal prime 
divisors and the radical of an ideal in a commutative ring have been extended to 
the noncommutative case in a recent paper [5] by N. H. McCoy. In that paper 
systematic use was made of the concept of an w-system, a set M of elements of 
the ring such that if a G M and b Ç M then axb £ M for some element 
x of the ring. The m-system plays the same role in the noncommutative 
case that the multiplicatively closed system plays in the theory of Krull. 
For example, an ideal in a noncommutative ring is prime if and only if its com­
plement is an w-system. What follows is an attempt based on the methods of 
McCoy to extend more of the Krull-Noether theory of commutative rings to 
the noncommutative case. Different treatments of the noncommutative case 
have previously been published by Krull [2], and Fitting [1], Since the point 
of view of the present paper, however, is considerably different from that of 
either of these previous ones, little or no use has been made of their results. The 
results and methods of McCoy [5], on the other hand, have been used extensively. 

The concept of an isolated component ideal (Krull [3] and [4]) leads in the 
noncommutative case to upper and lower right (or left) isolated component 
ideals each of which retains some of the properties of the isolated component 
ideals of the commutative case. These upper and lower components and the 
relations between them are investigated in §§ 2, 3 and 4. The results of these 
sections follow without any assumptions of finite chain conditions. The effect 
of descending and ascending chain conditions is considered in §5 and the latter 
is assumed in the remainder of the paper.. Right primary ideals are defined in 
a manner which ensures, in the presence of either chain condition, that the 
radical of a right primary ideal is prime. The term radical is used throughout 
in the sense of McCoy [5]. Examples are given which show that not every 
ideal is representable as the intersection of a finite number of right primary ideals 
but any ideal which is so representable has a short representation and for short 
representations the same uniqueness theorems hold as in the commutative case. 
Thus in any two short representations of an ideal a as the intersection of right 
primary ideals the number of primary components is the same and the radicals 
of these coincide in some order. Moreover, the isolated primary components 
are uniquely determined and must occur in any such representation of a. 

1. Definitions and basic concepts. Let R be an arbitrary noncommutative 
ring. An ideal p in R is prime if ab C p implies either a C p or b C p, where a 
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and b are any ideals of R. It has been shown by McCoy [5'] that an ideal p 
is prime if and only if, for any elements a, b of R, aRb C p implies that either 
a or b belongs to p. 

DEFINITION 1.1. A set M of elements of R is called an m-system if for any two 
elements a and b of M, there exists an element x of R such that axb £ M. The null 
set is also defined to be an m-system (McCoy [5]). 

It is clear from the above remark and from the définition that an ideal is 
prime if and only if its complement in R is an m-system. 

DEFINITION 1.2. An element a of R is said to be right prime to an ideal a if 
xRa Ç a implies that x Ç a. An ideal b is right prime to a if it contains an 
element which is right prime to a. 

Elements and ideals left prime to a can be defined in the obvious way but the 
left hand definitions and theorems will usually be omitted. 

DEFINITION 1.3. If a and b are ideals in R, the ideal consisting of all elements 
x of R such that xRb C a for all b in b is called the right ideal quotient of a by b and 
is denoted by ab~*. Similarly b~ :a consists of all x in R such that bRx Ç a for all 
b in b. 

It is obvious that ab"1 and b-1a always contain a and that if 6 is right prime 
to a then ab"x = a. 

DEFINITION 1.4. If M is a non-null m-system, a set N of elements of R is 
called a right n-system associated with M (brieflly a right M-n-system) if N contains 
M and if for every m in M and every n in N there exists an element x of R such that 
nxm Ç N. If M is the null set the only right M-n-system is, by definition, the null 
set itself. 

We note that every m-system is a right (or left) n-system associated with 
itself. Moreover, the set-theoretic union of a finite or infinite number of right 
^-systems all of which are associated with the same m-system If, is again a 
right ^-system associated with M. However it may also be associated with a 
larger m-system, properly containing M. As an illustration of this let R be the 
ring of integers, p any prime, and M the m-system consisting of all integers 
prime to p. Let N{ be the set of all integers which are not divisible by p% 

(i = 2, 3, 4, . . .). Each N{ is an M-n-system. The union of all N{ is the set 
of all non-zero integers and is itself an m-system M. It is therefore an 
M-n-system where M "D M. We remark also that if, in a commutative ring, q 
is a primary ideal and p its associated prime, then M = C(p) (complement of p 
in R) is an m-system and N = C((\) is an M-n-system. 

2. Upper isolated component ideals. 
DEFINITION 2.1. If a is any ideal in R and M is an m-system which does not 

meet a (i.e. has no elements in common with a), the right upper M-component of a 
is defined to be the set of all elements x of R having the property that every right 
M-n-system which contains x meets a. 

The right upper ikf-component of a will be denoted by u(a, M). In order to 
show that u(a, M) is an ideal we shall require the following lemmas. 
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LEMMA 1. If a is any ideal and M an m-system which does not meet a then there 
exists a maximal right M-n-system N which does not meet a and N is uniquely 
determined by M and a. 

Proof. There exists at least one right M-n-system which does not meet a, 
namely M itself. The union N of all such right M -^-systems therefore satisfies 
the requirements of the lemma. 

LEMMA 2. Let M be any m-system and N any right M-n-system. Let a be an 
ideal which does not meet N. Then a is contained in a maximal ideal q* which 
does not meet N and q* has the property that if aRb C q* and b Ç M, then a Ç q*. 

Proof. Since the union of any linearly ordered set of ideals which do not 
meet N is an ideal which does not meet N, the existence of q* follows from Zorn's 
Lemma [6, p. 101]. 

Now suppose a is an element of R which does not belong to q*. Then (a, q*) 
properly contains q* and hence by the maximal property of q* must contain an 
element n of N. Thus 

n — ia + ra + ar' + £ riari + a 

where i is an integer, r, r'', rif rj are elements of R and q Ç q*. Now if b Ç M 
there exists an element x of R such that nxb Ç N where 

nxb = iaxb + raxb + ar'xb + XI r&r&b + gxfr. 

But if aRb C q* every element in the sum on the right hand side of this equation 
belongs to q*, and nxb belongs to both N and q*, contrary to the definition of q*. 
Hence if aRb C q* and b £ M we must have a Ç q*, as required. 

Lemma 2 states that every element of M is right prime to q*. It will be con­
venient to refer to this property by saying that q* has property (A) relative 
to M. We remark also that if an ideal has property (A) relative to M then its 
complement in R is a right Âf-w-system and conversely. 

LEMMA 3. Let a be an ideal and M an m-system which does not meet a. A set 
q of elements of R is a minimal ideal containing a and having property (A) relative 
to M if and only if C(q) is a maximal right M-n-system which does not meet a. 

Proof, (i) First suppose C(q) is a maximal right ikf-^-system which does not 
meet a. By Lemma 2, a is contained in a maximal ideal q* which does not meet 
C(q). Moreover, q* has property (A) relative to M and hence C(q*) is a right 
M-n-system which does not meet a. Since q* does not meet C(q) we have 
C(q) Q C(q*) and hence, from the maximal property of C(q), it follows that 
C(q) = C(q*) and q = q*. Thus q is an ideal with property (A) relative to M. 
Finally q is a minimal such ideal, for if q D q7 2 & where q' has property (A) 
relative to M then C(qr) is a right M-n-system which does not meet a and proper­
ly contains C(q), contrary to the maximal property of C(q). 
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(ii) Conversely, suppose q is a minimal ideal containing a and having property 
(A) relative to M. Then C(q) is a right M-n-system which does not meet a, 
and by Lemma 1 is contained in a maximal such right lf-w-system N. Hence 
by (i) proved above C(N) is a minimal ideal containing a and having property 
(A) relative to M and since C(q) C N, q 2 C(N) and by the minimal property 
of q, q = C(N) whence C(q) is a maximal right M-n-system which does not meet 
a. This completes the proof. 

THEOREM 1. The right upper isolated M-component u(a, M) of a is an ideal. 
Its complement in R is the uniquely determined maximal right M-n-system which 
does not meet a, and it (a, M) itself is the crosscut of all ideals containing a which 
have property (A) relative to M. 

Proof. Let M be an m-system which does not meet a and let N be the maximal 
right M-n-system not meeting a whose existence is assured by Lemma 1. By 
Lemma 3, q = C(N) is a minimal ideal containing a and having property (A) 
relative to M. Since the crosscut of any set of ideals containing a and having 
property (A) again has property (A) it follows that there is a unique minimal 
such ideal which must be equal to q and hence q is the crosscut of all ideals con­
taining a which have property (A) relative to M. It remains to prove that 
q = u(a, M). 

First, q Ç it (a, M). For if x € q then x does not belong to N, the maximal 
right ikf-^-system which does not meet a. Hence every M-n-system which 
contains x meets a and x (E it(a, M). On the other hand, it (a, M) C q. For 
if x Ç it (a, M) then x cannot belong to N and must belong to q. Hence 
it(ct, M) = q and the theorem is proved. 

COROLLARY 1. If a 2 b and M is an m-system which does not meet a then 
u(a,M) Du(6 , M). 

COROLLARY 2. If Mx, M2, are m-systems which do not meet a and if Mx 5 M2 

then u(a,Mi) 3 u(a, M2). 

Proof. Every ikfx-w-system is also an M2-n-system and hence the maximal 
Mx-n-system which does not meet a is contained in the maximal such M2-n-
system. Taking complements, 

it (a, Mx) 3 u ( a , Ma). 

If p is a prime ideal which divides a and if M = C(p), then it (a, M) will also 
be referred to as the right upper p-component of a and will also be denoted, when 
convenient, by it (a, p). 

3. Lower isolated component ideals. In this section we shall define a right 
lower isolated component of an ideal a, and we shall investigate its relationship 
to the upper isolated component discussed in the previous section. 

DEFINITION 3.1. If a is any ideal in R and M any m-system which does not 
meet a, the right lower isolated component of a coresponding to M, or briefly the right 
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lower M-component of a, is defined to be the set of all elements x of R such that 
xRm Ç a for some element m of M. 

The right lower M-component of a will be denoted by I (a, Af). It is clear 
that I (a, Af) is an ideal, for if x € I (a, Af) certainly, — xt and rx and xr belong 
to I (a, Af) for all r in R. Also if xxRmx C a and x2Rm2 Q a where m1} m2 belong 
to Af, then mxrm2 Ç M for some r in R and 

(x1 + x2)Rm1rm2 C x1Rm1rm2 + x2Rm2 C a. 

Hence xx + x2 Ç I (a, Af). 

THEOREM 2. If a is an ideal and M an m-system which does not meet a then 
u(a, Af) 2 I(a, Af) 2 a. 

Proof, lix £ ï(ct, M) then XJRW C a for some element m of Af. Hence every 
right Af-w-system which contains # meets a and x Ç u(a, Af). That I (a, Af) 2 a 
is obvious from the definition. 

THEOREM 3. (a) u[u(a, Af), Af] = u(a, Af), 

(b) l[u(a,M),M] = u(*,M), 

(c) u[I(a,ikT),ikT] = u(a,Af). 

Proof, (a) The complement in J? of u(a, ikf) is a right Af-n-system iV and 
hence is certainly the maximal such that does not meet u(ct, M). Hence by 
Theorem 1, C(N) = u(a, M) is the right upper Af-component of u(a, M). 

(b) The ideal I[tt(ct, Af), M] consists of all elements x of R such that xRm 
C u(a, M) for some m in AT. But since u(a, M) has property (A) relative to M 
this implies that x Ç u(a, Af). Hence I[u(a, AT), Af] Ç u(a, Af). Since, by 
Theorem 2, it (a, AT) ç ï[u(a, Af), Af], the equality follows. 

(c) If x Ç u[I(a, A/"), Af] then every right Af-n-system N which contains x 
meets I (a, Af), that is, N contains an element n such that nRm Ç a for some m 
in M. But since n £ N and m Ç Af, ?zra Ç iV for some r in f?. Hence iV meets a 
and x G u(ct, Af) and we have it [I (a, Af), Af] ç u(a, Af). But since a c I (a, AT), 
by Corollary 1, Theorem 1, it (a, Af) Ç tt[ï(a, Af), Af] and the equality follows. 

DEFINITION 3.2. For all ordinal numbers a we define the ideal Ia(a, Af) by in­
duction as follows: I1 (a, Af) = I (a, Af). If a is not a limit ordinal, I°(a, Af) 
= ï[Ia-1(a> Af), Af], while if a is a limit ordinal, Ia(a, M) is the union of all la (a, Af) 
for which a < a. 

It is clear that la(a, Af) 2 I'(a, Af) if a < a. 

THEOREM 4. For all ordinal numbers a, it (a, Af) 2 ïa(ct, Af). 

Proof. By Theorem 2 the result is known for a = 1. We assume the theorem 
for all ordinals less than a and proceed by induction. 

Case 1. If a is not a limit ordinal and so has an immediate predecessor 
a — 1 we have 
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l'(a, if) = ifl*-1 (a, i f ) , i f ] 

C u ^ - 1 (a, M), M] by Theorem 2, 

Ç u[u(a, Af), Af] by Corollary 1, Theorem 1, 

= it (a, M) by Theorem 3(a). 

Case 2. If a is a limit ordinal Ia(ct, M) is the union of all I*(a, M) for <r < a. 
Hence if x G Ia(a, ikf) then x G Ier (a, i f ) for a < a and x £ u(a, i f ) by the in­
duction assumption, and hence Ia(a, M) C u(a, i f ) . 

THEOREM 5. Tw a»y ordinal number a, la(a, i f) = la+1(a, M) if and only if 
I«(a, i f) = u(a, i f ) . 

Proof, (i) If la(a, i f ) = u(a, i f ) then la+1(a, i f) = l[u(a, i f ) , i f ] = u(a, i f ) 
by Theorem 3(b). 

(ii) If Ia(a, i f ) = Ia+1(a, i f ) , let x be any element of la+1(a, M) so that 
xRm ÇZ Ia(a, i f ) for some element m of if. But under the assumption Ia(a, M) 
= la+1(a, i f ) the condition xRm C la(a, i f) implies x Ç Ia(a, i f ) . Hence 
Ia(a, M) has property (A) relative to i f and since u(a, i f ) is the minimal ideal 
having this property we have Ia(a, M) = u(a, M). 

COROLLARY 1. There exists an ordinal number a, finite or transfinite, such that 
la(a, i f ) = u(a, i f ) . 

Since the la(a, i f ) are well ordered and the union of every subset of them is 
again an ^(ct, i f ) , by Zorn's lemma they are all contained in a maximal one, 
ta(ct, M). Necessarily Ia(a, M) = Ia+1(a, M) = u(a, M) by the theorem. 

COROLLARY 2. If the ascending chain condition holds in the residue class ring 
R/a then In(a, i f ) = it (a, i f ) for some finite n. 

COROLLARY 3. If the ascending chain condition holds in R/a and if'x G u(a, M) 
then for every element r of R there exists an element mr of M such that xrmr G a. 
The element mr is independent of r if and only if I (a, i f ) = u(a, M). 

Proof. By Corollary 1, f(ct, M) = it (a, M). Hence, if x G it (a, M) there 
exists an element m of M such that xRm C In_1(a, M). That is, for every rt 

in R there is an element m{r/) of M such that 

xrxmRm{r/) C ïn~2(ct, i f ) . 

Hence for every r3 in R there is an element m(r2) such that 

xrxmr2m(rx)Rm(r2) C ïn_3(a, i f ) . 

Carrying on in this way we find 

xrrmrjn{rx)rzm{r^) . . • rn-xm(rn_2)Rm(rn-x) C a. 

Now r2 can be chosen so that mr2m(rx) G M; rz so that wf2w(rx)r3m(r2) G i f 
and so on. Finally, choose rn so that mr2m(rx)r3m(rs) . . . (rn_2)rnw(rn_J G i f 
and the result follows. 
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Finally, if for all x in u(ct, AT), xrm G a where m is independent of r then 
xRm Ç a and x € I (a, M) and u(ct, AT) = I (a, AT). Conversely, if u(a, AT) 
= I (a, AT) then there exists an m independent of r and the proof of the corollary 
is complete. 

4. The commutative case. We shall now investigate the relationship of 
I (a, M) and u(ct, AT) to the isolated component ideals defined by Krull [4, p. 16] 
in a commutative ring. 

THEOREM 6. If a is an ideal in a commutative ring R, and M an m-system 
which does not meet a, the set a (AT) of all elements x of R for which xm G a for 
some element m of M, is an ideal. 

Proof. If xmx G a and ym2 G a where mx and m2 are elements of M, then if 
r is chosen so that mxrm* G AT we have 

(x — y)mjm2 = xmxrm2 — ym2mxr G a. 

and therefore x — y G a (M). Since obviously ex G a (AT) for all c in i^, a (AT) 
is an ideal. 

DEFINITION 4.1. 77^ ideal a (AT) defined in Theorem 6 is called the isolated 
M-component of a. 

The isolated component ideal of Krull was defined exactly as in Definition 4.1 
except that AT was restricted to be a multiplicatively closed system. Since 
every multiplicatively closed system is an w-system [5] our definition of a (AT) 
coincides with that of Krull whenever the latter applies, that is, whenever AT 
is multiplicatively closed. That u(ct, M) and l(a, M) may both be considered 
as generalizations of a (AT) to the noncommutative case may now be seen from 
the following result. 

THEOREM 7. If a is any ideal in a commutative ring R, and M is an m-system 
which does not meet a, then u(a, AT) = I (a, AT) = a (AT). 

Proof. If x G a (AT) then xm G ci for some element m of AT. Hence, since R 
is commutative, xRm Ç a. Therefore x G I (a, AT), and a (AT) C I (a, AT). 

Now if x G u(a, AT), every AT-w-system which contains x meets a. But the 
set of elements N = {x, AT, xm} containing x, AT, and all elements xm where 
m G AT, is an AT-w-system containing x. Hence N meets a and since AT does 
not meet a it follows that xm G ci for some element m of M. Therefore x G a (AT) 
and we have now u(ct, AT) Q a (AT) Q I (a, AT). But by Theorem 2, I (a, M) 
Ç u(a, AT) and the theorem follows. 

5. Chain conditions. For most of what follows it will be necessary to assume 
that the ring R satisfies the ascending chain condition for two sided ideals. 
Before imposing this restriction, however, we shall develop some consequences 
of the following weak form of the descending chain condition. 
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C O N D I T I O N A. For every ideal a which is not prime, the ring R/a satisfies the 
descending chain condition for two sided ideals. 

T H E O R E M 8. If $ is a minimal proper divisor of a then 3 - 1a is a prime divisor 
of a and is not right prime to a. 

Proof. If 3 - 1a = R, it is prime, and since êi?(ê - 1a) C a and 3 is a proper 
divisor of a it follows tha t 3 -1a is nrp to a. ( "n rp" means " n o t right prime.") 

If 3_1ct ^ R, suppose xRy C ^ a where x is not in S^ct. Then for every 
element s of 3, sRxRy Ç a, bu t for some element sf of 3, s'i?x not C a. Choose 
r in i? so tha t s'rx is not in ct and form the ideal {s'rx, a) which properly contains 
a bu t is contained in §. From the minimal property of 3 we have therefore 
3 = (s'rx, a) and every element s of § has the form 

5 = a + is'rx + r^Vx -f- s'rxr2 + X! r^'rxr^ 

where a Ç a, i is an integer and rlfra, rif ry are elements of i^. Since s'RxRy C a it 
is clear from the form of the above expression for 5 t ha t sRy C a and hence 
y Ç 3_1ct. Thus if x is not in 3_1a and xRy C g_1a then 3/ Ç ê_1a and hence 3 - 1a 
is prime. Since 3 contains an element s not in a and since s i^g^ct ) C a it is 
clear tha t ê_1a is nrp to a. 

COROLLARY. 7f condition A /z#/ûfo in i£ /&e« ê er̂ y w/m/ a ^ i? tes a minimal 
prime divisor which is not right prime to a. 

For condition A ensures the existence of a minimal ideal containing a and hence 
a prime p which is nrp to a. This prime must contain a minimal prime divisor 
of a which will also be nrp to a. 

T H E O R E M 9. If the ascending chain condition holds for two sided ideals in R 
then every ideal c in R has at most a finite number of minimal prime divisors [2]. 

Proof. If c is a prime ideal the theorem is obvious. If c is not prime there 
exist elements aly and b1 of R which do not belong to c such t ha t a1Rbl C c. 
Hence if c is contained in an infinite number of minimal primes p,- either ax or bx 

must belong to an infinite number of these. Suppose it is ax and let ctx = (ax, c). 
Then a, is a proper divisor of c, p,- 2 cti for an infinite number of primes pt-, and 
each of these pt- is a minimal prime divisor of ax. Hence ax cannot be prime. 
Therefore if c has an infinite number of minimal prime divisors i t has a proper 
divisor with the same property and continuation of this argument leads to a 
contradiction of the ascending chain condition in R. 

T H E O R E M 10. If the ascending chain condition holds for two sided ideals in R 
and pi, pa, . . . , p„ are the minimal prime divisors of an ideal c then 

pi&i.R . . . Rhm Q c 

where ix, i2, . . . , im is some finite permutation of the integers 1,2, . . . ,w with 
repetitions allowed. 
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Proof. The theorem is trivially true if c is prime. If c is not prime, there 
exist elements a and b not in c such that aRb C c C P* (i = 1,2, ... ,n). Hence 
for each i either a G pt- or b £ p». Form the ideals ĉ  = (a, c) and bi = (fr, c) 
both of which are proper divisors of c. Let p \ , p'2, . . . , p'r be the minimal 
prime divisors of ax and p'^, p"2, . . . , p" r be those of bx. Now suppose that 
both eu and bx have the property that we wish to prove of c, so that pf ̂ p,- tR . . . 
^p ' a £ ctx and p^i^p^'jR . . . R$kt Q bj and hence, since a1i?61 £ c, 

P ; ^ P ; ^ . . . ^ P ; ^ P ^ . . . ^ P 1 ; Ç C . 

Now each p'3- and p"*, being a prime divisor of c, contains a minimal prime of c, 
and hence ptli?piai? . . . Rpim £ c where p t l , . . . , p»w are minimal primes of c. 
Hence if the theorem is false for c it is false for a proper divisor of c, and a con­
tinuation of this argument leads to a contradiction of the ascending chain con­
dition in R. 

COROLLARY. / / the ascending chain condition holds for two sided ideals in R 
then every ideal a ^ R has a minimal prime divisor which is not right prime to a. 

Proof. If a is prime but ^ R then a itself is the required minimal prime. If 
a is not prime, by Theorem 10 we have 

(1) fciepj? ...Rp.Qa 

where p!,p2, . . . , p8 are (not necessarily distinct) minimal primes of a and s > 1. 
Hence there exists a shortest product of the form (1) which belongs to a; that is, 
there exists an 5 > 1 such that (1) holds but 

p,Rp2R . . . Rps-i not ç a. 

It follows that ps is nrp to a. 

6. Primary ideals. In this section we shall require the results of [5] concerning 
the radical of an ideal. The radical r(ct) of an ideal a is defined as the set of all 
elements x of R such that every m-system containing x meets a. McCoy has 
shown that r(ct) is an ideal and is equal to the intersection of all minimal prime 
divisors of a. 

DEFINITION 6.1. An ideal q is said to be right primary if all elements not in 
r(q) are right prime to q. 

Thus q is right primary if the conditions aRb Ç q and b $ r(q) together imply 
a e q. 

THEOREM 11. If either Condition A or the ascending chain condition holds in R 
then the radical of a right primary ideal is prime. 

Proof. Suppose q is right primary. By the corollaries to Theorems 8 and 
10, if q 7e- R it has a minimal prime divisor p which is nrp to q. Hence for every 
element p of p we have xRp Q q for some x not in q. Since q is right primary 
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this implies that p £ r(q) and hence p ÇI r(q). But since r(q) is the intersection 
of the minimal primes of q we have r(q) Ç p and the theorem follows. lî q = R 
then r(q) = i^ and the theorem holds in this case too. 

In rings which satisfy no finite chain conditions it seems possible that right 
primary ideals may exist whose radical is not prime. Such an ideal q, if it 
exists, must be such that all its minimal prime divisors are right prime to q and 
no product of the form pxRp2R . . . Rpn, where px,p2, . . . , pn are (not necessarily 
distinct) minimal prime divisors of q, can belong to q. Since, in a commutative 
ring, every minimal prime divisor of q is nrp to q [6, p. 112] our definition of a 
(right) primary ideal implies a prime radical in the commutative case even 
without chain conditions. In fact, in a commutative ring it reduces to the 
usual definition of a primary ideal by virtue of [6, p. 182, Theorem 59]. 

7. Ideals expressible as the intersection of right primary ideals. In this 
section we shall consider ideals which can be represented as the intersection of 
a finite number of right primary ideals and shall find what characteristics of 
such a representation are uniquely determined by the ideal in question. It will 
be assumed throughout the remainder of the paper that the ascending chain 
condition holds for the two sided ideals of R. A representation 

(2) a = qx H q2 Pi . . . Pi qr 

of an ideal a as the intersection of right primary ideals, q1} . . . , qr will be called 
an irredundant representation if no one of the ideals q{ contains the intersection 
of the remaining ones. 

THEOREM 12. / / (2) is an irredundant representation of an ideal a as the inter­
section of right primary ideals qx, . . . , qr, then an element x is right prime to a if 
and only if x Ç C(p.-) for i = 1, 2, . . . , r, where p,- is the radical of qt-. 

Proof, (i) If a is nrp to a then for some element x which is not in a, xRa Q a. 
But this implies xRa Ç qt- for i = 1, 2, . . . , r while x $ q,- for at least one value 
of j . Hence, since q,- is right primary, a Ç p/# It follows that if a G C(p») 
for all i then a is right prime to a. 

(ii) Conversely, suppose that a is an element of at least one of the primes p* 
and let it be p^ By Theorem 10 some product of the form 

aRaR . . . aRa 

is contained in qx. Since the representation a = qx P q2 Pi . . . P qr is irredun­
dant we can choose an element b which is contained in q2 P\ q3 Pi . . . C\ qr but 
not in qx. Then 

bRaR . . . aRa C a. 

Suppose the shortest such product which is contained in a has s factors a. Then 
s ^ 1 since b $ a. If 5 = 1 then bRa C a and therefore a is nrp to a. If 5 > 1 
then the product bRaR . . . aRa, with 5—1 factors a, contains an element V 
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which does not belong to a, while b'Ra C a, and again, a is nrp to a. This 
completes the proof. 

THEOREM 13. The intersection of any finite number of right primary ideals all 
of which have the same radical p is a right primary ideal with radical p. 

Proof. Let qx,C\„ . . . , qr be right primary ideals all having radical p and let 
q be their intersection. Since p is the only nimimal prime divisor of qt- we have 
by Theorem 10 that pRpR . . . pi?p is contained in each qt- and hence $RpR . . . 
pî p Ç q. Therefore, if px is any prime divisor of q we have px 3 $RpR . . . pj?p 
and hence px 3 p by the definition of a prime ideal. It follows that p is a unique 
minimal prime divisor of q and therefore p = r(q). Moreover, if aRb C q and 
a$Q( then aRb Ç qt. for each i while a $ qy for at least one j . Since q3- is right 
primary with radical p this implies that b Ç p = r(q) whence q is right primary 
with radical p. 

THEOREM 14. An irredundant intersection of a finite number of right primary 
ideals not all of which have the same radical is not a right primary ideal. 

Proof. Let q be an irredundant intersection of right primary ideals q^q,, 
. . . , qr whose radicals are p1?p2, . . . , pr. If q is right primary it has a unique 
minimal prime divisor p and all elements not in p are right prime to q. But by 
Theorem 12, if x is right prime to q, x is not contained in any of the primes 
p1?p2, . . . , pr. Hence C(p) Ç C(pt) and p 3 pt- for i = 1, 2, . . . , r. Since p is 
a minimal prime divisor of q it follows that each pt- is equal to p. Hence if 
px,p2, . . . , pr are not all equal q is not right primary. 

DEFINITION 7.1. An irredundant representation (2) of a will be called a 
short representation if none of the ideals obtained by taking the intersection of two 
or more of the ideals c\1}q2, . . . , qr are right primary. 

In view of Theorems 13 and 14 the irredundant representation (2) is a short 
representation of a if and only if no two of the radicals of qx,q2, . . . qr are equal. 

THEOREM 15. Let a = qx P\ q2 P\ . . . Pi qn be an irredundant representation of 
a as the intersection of right primary ideals, and let pt- be the radical of q{. If p is 
a prime ideal not equal to R which contains p!,p2, . . • pr but does not contain p r+1, 
. . . , pn, then u(a,p) = c\x C\ q2 C\ . . . C\ qr. 

Proof. If p 3 pt. then by Theorem 1, Corollary 2, 

u(a, p) Cu(a,p t-). 

But since qt- has property (A) relative to the m-system C(pt), Theorem 1 shows 
that it (a, p»-) Ç qt-. Hence 

(3) u(a,p) c q i n q , n . . . n q r . 
Now if r = n, (3) gives u(a, p) Ç a and since it (a, p) 3 a we have it (a, p) = a 

= q, Pi q2 P\ . . . P\ qn and the result is proved in this case. If r < n, since p 
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does not contain p,- for j > r, it follows that p does not contain q3 either; for since 
p,- is the only minimal prime of q, it is contained in every prime which contains 
q,. Hence there exist elements mx1m21 . . . mn_r such that m{ £ qr+» but m{ $ p 
(i = 1, 2, . . . , n — r). Now since m1,m2, . . . , w„_r all belong to the m-system 
M = C(p), there exist elements x„x2, . . . , xn_r_, such that the element m = 
mlx1m2x2m3 . . . xn_r_1mn_r is contained in ikT. Also it is clear that m G qr+1 

P\ qr+2 P\ . . . P\ qn. Hence if g Ç qx P\ q2 C\ . . . P\ qr we have gi?m C a where 
m £ M and therefore every right ikf-^-system w^hich contains g meets a. Hence 
g Ç u(a, p) and 

q, Pi q 2 n . . .P i qr C u(a, p), 

which with (3) gives the result stated in the theorem. 

THEOREM 16. If (2) is an irredundant representation of a as the intersection 
of right primary ideals q1Jq2, . . . , qr with radicals px, p2, . . . , pr, then the minimal 
prime divisors of a are exactly those primes which are minimal in the set px,p2, 
• • • , Pr-

Proof. For each i some product pji?pt- . . . Rpi is contained in qt-. Taking 
products over i = 1, 2, . . . , r, 

ptli^pt-2 . . . Rpim ç a 

where each pt- is one of the primes p15p2, . . . , pr. Hence every prime which con­
tains a contains the above product and therefore must contain one of the primes 
pMp,, . . . , pr. Hence every minimal prime containing a is a minimal prime of 
this set and conversely. 

THEOREM 17. If (2) is a short representation of a as the intersection of right 
primary ideals 0{X,(\2i . . . , qr, and if1^ ^ R is any minimal prime divisor of a, then 
u(a, p) is right primary and equal to one of the qt-. 

Proof. Since p is a minimal prime divisor of a, by Theorem 16 it is the radical 
of one of the ideals qt-, say qy. Since p is minimal it cannot contain the 
radical of any ideal qt- for i ^ j . Hence Theorem 15 gives u(ct, p) = q,-. 

COROLLARY 1. If plf p2, . . . , pm (all different from R) are the minimal prime 
divisors of a then in any short representation of a as the intersection of a finite number 
of right primary ideals, U(Q, px), . . . , u(a, pm) must occur among the right primary 
components. 

COROLLARY 2. A necessary condition that an ideal a be representable as the 
intersection of a finite number of right primary ideals is that u(a, pt) be right primary 
for all minimal prime divisors pt- of a. 

DEFINITION 7.2. If a is representable as the intersection of right primary ideals 
then the upper component ideals it (a, p) corresponding to the minimal prime divisors 
of a are called the isolated right primary components of a. 

'The restriction p s* R excludes only the case in which a is itself primary with radical R. 
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Thus the isolated right primary components of a are right primary ideals 
which occur as components in every short representation of a as the intersection 
of right primary ideals. 

It is now easy to give examples of rings satisfying the ascending chain condi­
tion in which not all ideals are expressible as the intersection of a finite number 
of right primary ideals. Let R be the ring of all polynomials in two noncommu-
tative indeterminates x and y with coefficients in a field K. Let a be the ideal 
(xy) which has two minimal prime divisors px = (x) and p2 = (3/), and is clearly 
not right primary. The radical of a is px P\ p2 or (xy, yx). Now if aRb C (xy) 
b $ (y) then a Ç (xy). Hence (xy) has property (A) relative to the m-system 
C(p2) and therefore it (a, p2) = a. Since u(a, p2) is not right primary Theorem 
17, Corollary 2, shows that a is not the intersection of a finite number of right 
primary ideals. 

Fitting's decomposition theorem [1] represents a as the intersection of two 
"primary left ideals", namely, 

(xy) = (x) Pi (y)t 

where (x) is the two sided ideal generated by x and (y) t is the left ideal generated 
by y. In the present paper, however, we consider only representations as inter­
sections of two sided right primary ideals. 

It can also be shown by examples that the necessary condition given in Theorem 
17, Corollary 2, is not sufficient. Let R be the same ring as above and let a = (x2, 
xy). Then a has a unique minimal prime divisor p = (x) and r(ct) = (x). But 
a is not right primary since xRy CI a while x $ a and y (£ r(ct). Now I (a, p), the 
set of all elements r such that rRm C a for some m in C(p), is easily seen to be 
equal to (x) and therefore it (a, p) 3 (x). But (x) has property (A) relative to 
C(p) and therefore it (a, p) = (x). Since it (a, p) is right primary the necessary 
condition of Corollary 2 is satisfied. By Theorem 17, in any short representa­
tion of a as the intersection of a finite number of right primary ideals, (x) must 
occur as one component. The other components must be sought among the 
other right primary divisors of a, namely, (x,y) (x2,y), (x,yn), (x2,xy,yn) and 
(x2,xy,yx,yn), n ^ 2. It is easy to verify that none of the possible finite inter­
sections is equal to a. 

We may note also that although a is not right primary it is left primary since 
aRb Ç (x2,xy) and a $ (x) together imply b Ç (x2,xy). 

THEOREM 18. If a = q, H\ q2 Pi . . . C\ qr is a short representation of a as the 
intersection of right primary ideals qlf q2, . . . , qr then a prime ideal p ^ R which 
divides a is the radical of one of the ideals qt- if and only if p is nrp to it (a, p). The 
ring R is the radical of one of the qt if and only if R is nrp to a. 

Proof, (i) Let the radicals of qM q2, . . ., qr be plt pa, . . . , pr. If p = pt- but 
p ^ i ? , then by Theorem 15, 

(4) u(a, p) = q„ H q2 H . . . H qt 
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where px, p2, . . . , pk are those primes among the p; which are contained in p. 
Now (4) is a short representation of it (a, p) and p is the radical of one of the ideals 
qx, q2, . . . , qk and contains the radicals of the rest of these. Hence by Theorem 
12, an element x is nrp to it (a, p) if and only if x G p. Hence if p = pt- then p 
is nrp to it (a, p). 

(ii) Now suppose p ^ a, p ^ R, and p is nrp to u(û, p). Since, by Theorem 
16, all minimal prime divisors of a are among the primes plt p2, . . . , pr, p must 
contain at least one of these. Suppose p contains px, p2, . . . , pk but not p*+1, 
. . . , pr. By Theorem 15, 

u(a, p) = qx n q2 H . . . H q, 

is a short representation of it (a, p), and since p is nrp to it (a, p) Theorem 12 gives 

P £ px e p2 e . . . e P*, 

where © denotes a set-theoretic sum. But since p 2 P.- (i = 1, 2, . . . , £) it 
follows that 

(5) p = p, 0 p2 © . . . © p,. 

In the sum (5) any prime p̂  which is contained in the sum of the remaining 
primes may be omitted. We may assume therefore that 

(6) p = px © p2 © . . . © pz, 

where / ^ k and no one of p15 . . . , pz is contained in the set-theoretic sum of 
the remaining ones. 

Now if / > 1 the product pxp2 . . . p ^ cannot be contained in pz, for if it were, 
since p* is prime, pz would contain one of the primes p2, p2, . . . , p ^ , contrary 
to the assumption of the minimal length of the sum (6). Hence we can choose 
elements p{ from p,- (i = 1, 2, . . . , / — 1) such that pxp2 . . . pt-x does not belong 
to pz. Moreover, we can choose an element pi of p* which does not belong to p,-
for i < I. Form the element x = p,p2 . . . p^x + pi. Being the sum of two 
elements of p, x Ç p and therefore x £ py for some value of j such that 1 ^ j ^ /. 
But this is impossible, for if j < I then ptp2 . . . px_x g py but pi $ py, while if 
j = h pi € pz but pxp2 . . . pi-, $ pz. This contradiction leads to the conclusion 
that / = 1 and hence p = p; for some value of i. 

(iii) Suppose R is the radical of one of the qi} and let it be qx. Since R is there­
fore the only minimal prime divisor of q1} Theorem 10 gives Rs ÇI q1# Choose an 
element q which is contained in q2 Pt q3 H . . . P\ qr but not in qx so that q $ a. 
Then qRs Ç a. Assume s is the least exponent for which this holds, so that 
s ^ 1, and choose an element qr in qRs~x such that qf is not contained in a. Then 
q'Rr Ç a for all elements r of R and therefore R is nrp to a. 

(iv) Conversely, suppose R is nrp to a so that for every element r of R there 
is an element ar not in a such that arRr Ç a. Hence for each i, arRr ÇI q{ while 
for at least one j , ar $ q,-. Thus, since q,- is right primary, r G p3 and 

R = Px © P2 © • • • © Pr-
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Now let 

(7) R = px e p2 e . . . e pz 

be the sum of minimal length which is equal toR. If / > 1 choose p1} p2} . . . , pi 
as above and we find the element pxpa . . . pi-x + pi belongs to none of the 
primes plf p2, . . . , p*, in contradiction to (7). Hence / = 1 and pi = R for one 
value of i. This completes the proof of Theorem 18. 

If an ideal a can be represented as the intersection of right primary ideals 
qx, q2, . . . , qr, Theorem 18 shows that the radicals of these right primary com­
ponents are uniquely determined since the criterion given to determine whether 
p is one of these radicals or not depends only on p and a. Similarly the number 
of right primary components in a short representation is also uniquely deter­
mined as the number of distinct primes among the radicals of q„ q2, . . . , qr. 
We may therefore summarize the results of this section as follows: 

THEOREM 19. Let R be a noncommutative ring in which the ascending chain 
condition holds for two sided ideals. If an ideal a in R can be represented as the 
intersection of a finite number of right primary ideals then a has a short represen­
tation as such. In any two short representations of a the number of right primary 
components is the same and the radicals of the two sets of primary components co­
incide in some order. Moreover, the isolated primary components are the same for 
all short representations. 

Although Theorem 19 shows that the well-known results of E. Noether carry 
over to the noncommutative case for those ideals which can be represented as 
the intersection of a finite number of right primary ideals, a necessary and suffi­
cient condition that such a representation exist is still unknown. The ascending 
chain condition is not sufficient to ensure this for all ideals as it is in a commuta­
tive ring. The necessary condition given by Theorem 17, Corollary 2, is not only 
not sufficient but is difficult to apply in a particular case owing to the difficulty 
of finding the ideals lt(ct, p). It is hoped to return to this problem in a later 
paper. 
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