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On the classification of crepant analytically extremal
contractions of smooth three-folds

Csilla Tamas

ABSTRACT

We discuss the problem of classifying crepant analytically extremal contractions X — Y
from a smooth 3-fold, contracting an irreducible normal divisor D in X to a point P in Y.
We prove that, if D has degree (—Kp)? > 5, the analytic structure of the contraction is
completely determined by the isomorphism class of the exceptional locus and its normal
bundle. This was previously known only for a smooth exceptional locus D.

1. Introduction

In the minimal model program, the study of certain types of birational contractions, called extremal,
is of central importance. In [Mor82], S. Mori studied and classified birational extremal contractions
p: X — Y of smooth 3-folds X where the canonical bundle of X is negative along the fibers of
the contraction. His classification includes the following result: the exceptional locus D = Exc(yp)
is an irreducible divisor. When Exc(y) contracts to a curve on Y, Exc(p) is a P'-bundle over the
base curve and Y is smooth. When Exc(y) contracts to a point ¢ € Y, it is either P2, P! x P! or
a singular quadric, with specified normal bundle, and X is the blowup of Y at ¢; in this case the
analytic structure of the neighborhood of Exc(¢p) is uniquely determined by the isomorphism class
of Exc(y) and its normal bundle in X. We call this feature the analytic rigidity of the contraction
(see Definition 2.2).

In this paper we attempt to give a similar description for birational extremal contractions of
smooth 3-folds in the K-trivial case, i.e. when the relative canonical bundle Kx/y is numerically
trivial (and hence the contraction is crepant); see § 2 for a precise definition. Our main result is the
following theorem.

THEOREM 1.1 (Main Theorem). Let X be a smooth projective 3-fold over C and let p: X — Y
be a K-trivial birational extremal contraction onto a normal projective variety Y, contracting a
divisor D C X to a point ¢ € Y. Suppose D is normal, and (—Kp)? > 5. Then the contraction ¢
is analytically rigid.

In this way we obtain the classification of K-trivial extremal contractions in terms of the
exceptional divisor D and its normal bundle N/ p/x in X in the case when D is normal with
d = (~Kp)? > 5, contracting to a point. As the exceptional locus is a normal rational (possibly
singular) del Pezzo surface D of degree d > 5 with normal bundle isomorphic to Op(Kp) (see § 2),
we obtain a finite list of possible contractions up to analytic isomorphism.
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Cs. TAMAS

As the analytic rigidity result shows, in order to know the analytic structure of the contraction,
it is sufficient to construct one example for each possible exceptional locus. No algebraic examples
are known except when D is a non-singular del Pezzo surface of degree 6 [Nam97|. In § 6 we present
an example of an embedding of a singular del Pezzo surface of degree 7 into a smooth projective
3-fold such that the canonical bundle of the ambient space is numerically trivial on D. By Fujiki’s
contraction theorem, D can be contracted analytically, giving us a K-trivial contraction in the
analytic category. Similar constructions can be carried out for each possible exceptional divisor D
(any normal rational del Pezzo surface of degree d > 5).

K-trivial extremal contractions have been studied by Gross [Gr97a] and Wilson [Wil97].
Their analysis of the case when the exceptional locus D is a divisor contracting to a point
includes a description of the (possible) exceptional loci, and the description of the analytic struc-
ture (and in particular establishing the analytic rigidity) when D is non-singular with (—Kp)? > 5.
The analytic rigidity for D non-normal or (—Kp)? < 4 is not known. In fact, while the cubic
hypersurface singularities 2% + y3 + 23 + 3 + ayzt = 0 and 2 + 3° + 22 + > = 0 are not iso-
morphic (see [MY82]), the exceptional locus of the blowup of the origin is the smooth cubic surface
o3 + 23 + 23 4+ 23 = 0 in both cases. On the other hand, if D is non-normal, we have (—Kp)? = 7,
and [Gr97b] gives a (local) example of a K-trivial contraction with exceptional divisor a non-normal
del Pezzo surface of degree 7.

Wilson also describes the possible contractions if the exceptional locus D contracts to a curve.
Small K-trivial birational extremal contractions of smooth 3-folds (i.e. when the exceptional locus
is a collection of curves) are three-dimensional flopping contractions; these were studied in [Kol91]
and [Rei83].

Even in the surface case, the condition of K-negativity or K-triviality is essential for
analytic rigidity. In [Lau73], Laufer gives a complete list of taut surface singularities (i.e. normal
two-dimensional singularities that are completely determined by the weighted dual graph I' of the
exceptional locus E of the minimal resolution). He also lists those singularities which are deter-
mined by the weighted dual graph and the analytic structure of E, and states that the singularities
obtained by contractions of curves of general type are not determined by I' and the analytic struc-
ture of E. For example the singularity 2?4 y? 4 2% = 0 is not isomorphic to % 4+ y% + 2% + f441 =0
(where fgi1 is a ‘general’ monomial of degree d + 1, d > 3), whereas they both have the same
exceptional curve and normal bundle.

We outline below the proof of the Main Theorem.

By [HR64, Theorem 3|, the proof of analytic rigidity is reduced to showing that any two
embeddings of D into smooth complex 3-folds with normal bundles isomorphic to Op(Kp) are
formally equivalent. Suppose now that we have two K-trivial extremal contractions ¢: X — Y
and ¢': X' — Y’ with isomorphic exceptional divisors D and D', and such that Np,x ~ Np//x:.
To prove the formal equivalence, we first show that if H'(D,7p ® Zp/Z%) = 0, then the two
embeddings D C X and D’ C X' are 2-equivalent, i.e. we have an isomorphism of the ringed
spaces (D, Ox /I%) and (D',Ox:/Z%,), where I denotes the ideal sheaf of D in X. Then we can
obtain a formal equivalence by showing that the obstruction spaces H'(D,7x ® IB/IBH) to
extending a v-equivalence (v > 2) to a (v + 1)-equivalence vanish for all » > 2. The vanishing
of both HY(D,Tp ® Ip/Z3) and H'(D,Tx @ I%/I}) is reduced to showing H'(D,7p) = 0 using
properties of del Pezzo surfaces. This last vanishing is then proved using an explicit description of
normal rational del Pezzo surfaces.

Remark 1.2. We should note that our results about formal equivalence hold over any algebraically
closed field of characteristic 0. However, over an arbitrary field there is no notion of analytic rigidity
(and in particular we do not have Theorem 3 of [HR64]). Over an arbitrary field, formal equivalence
implies only equivalence in the étale topology [Art69a, Theorem (4.6)].
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Conventions

i) We are working over the field of complex numbers C.

ii) We denote the tangent sheaf Homo,, (2},,Op) of an algebraic variety D by 7p. The rest of
our notations are standard in algebraic geometry.

2. Preliminaries

2.1 K-trivial extremal contractions

DEFINITION 2.1. Let X be a smooth projective n-fold over C and ¢: X — Y a birational morphism
onto a normal projective variety Y such that the exceptional locus D of ¢ is of codimension 1 and
such that dim ¢(D) = 0. We call the contraction ¢

P1) extremal if all the curves contracted by ¢ are numerically proportional, i.e. given two curves C'
and C’ contracted by ¢, there is a rational number r such that for any divisor F in X, we have
(E-C")=r(E-C),

P2) K-trivial if the canonical bundle on X is numerically trivial on all curves contracted by ¢,
ie. (Kx -C) =0 for any curve C contracted by ¢ to a point.

Note that the condition P1 implies that the exceptional locus D is an irreducible divisor
(Proposition 2.4), and hence ¢ contracts D to a point ¢ € Y.

DEFINITION 2.2. The contraction ¢ is called analytically rigid if its analytic structure is uniquely
determined by the isomorphism class of Exc(¢) = D and its normal bundle N p/x in X.
More precisely, suppose ¢’ : X’ — Y is another birational map on a smooth projective 3-fold X’ with
exceptional locus D', contracting D’ to a point ¢’ € Y. If D ~ D’ and we have an isomorphism
of normal bundles N, D/X =~ Np /x', then the analytic rigidity of ¢ means that there are open
(analytic) neighborhoods U of D in X and U’ of D’ in X’ over which the contractions ¢ and ¢’ are
analytically isomorphic, i.e. we have the following commutative diagram (in the analytic category).

DcC U =~ U DUD

Lo

1 € o) = ¢U) 3 ¢

Remark 2.3. A priori our definition P1 of an extremal contraction is different from the one generally
found in the literature, namely the ‘contraction of an extremal ray’. However, by Proposition 2.4
below, P1 and P2 imply that the birational map ¢ is the contraction of an extremal ray R with
respect to Kx + €D, for any 0 < ¢, where R := R, [C] for any curve C C D.

PROPOSITION 2.4. Let X be a non-singular projective variety of dimension n, and let p: X — Y
be a birational extremal contraction. Let D denote the exceptional locus of ¢ (with the reduced
structure). Suppose that codimx D = 1 and dimp(D) = 0. Then D is irreducible and —D is
@-ample. Furthermore, ¢ is the contraction of an extremal ray of the closure NE(X) of the cone of
effective 1-cycles on X.

Proof. Suppose there are two distinct irreducible components Dy and D5 of D, and codimyx Dy = 1.
Let Hy,Hy,...,H,_o C X be general hyperplane sections of X. Let H = ﬂ?:_f H;. Then H is a
smooth surface and H N Dy is an irreducible curve Cy on D;. Then

(D1 -Ch)x = (Dilg - C)g = (CH < 0
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by the negativity of self-intersection of contractible curves. Now, if Cy C Ds is a curve that is not
contained in D, we have that (D;-Cy) > 0. But this contradicts the fact that ¢ is extremal, because

C4 and Cy cannot be numerically proportional. Therefore, D is irreducible and for any curve C' C D
we have (D - C) < 0.

In order to show that —D is p-ample, we only need to show that the divisor —D|p is ample
on D [Gro61, Theorem III1.4.7.1]. Then, by Kleiman’s criterion of ampleness, it is enough to show
that (=D - Z) > 0 for any Z € NE(D).

The curves of D are numerically proportional on X, therefore Z = r(C; on X for some positive
rational number 7, since Z # 0 in NE(D). Therefore (=D - Z) = —r(D - C1) > 0, and hence —D is
relatively ample and the divisor —D|p is ample on D.

In order to show that ¢ is a contraction of an extremal ray, let A be an ample divisor on Y.
Then, by the contraction theorem of extremal rays [Mat01], the face (¢*A)* of 1-cycles intersecting
trivially with ¢*A in NE(X) contains an extremal ray R (i.e. an edge of the cone NE(X)) and we
have a contraction contr: X — Y’ of the extremal ray R.

But any curve C' in R is contracted by ¢, because (¢*A - C') = 0. Therefore C' is numerically
proportional to the curve C in D, and hence the extremal ray R is generated by C4. Therefore ¢
and contp contract the same curves. This implies ¢ = contg. ]

Now we consider again our situation: let X be a smooth projective 3-fold and ¢: X — Y a
K-trivial birational extremal contraction, contracting a divisor D to a point ¢ € Y. In fact, as our
result concerns only the analytic structure of ¢, we may drop the projectivity assumption on X,
and study crepant contractions of smooth 3-folds which are analytically extremal (i.e. have relative
Picard number 1).

2.2 Description of the exceptional divisor D

By the adjunction formula,
Op(—Kp) = Ox(=(Kx + D))|p = Ox(-D)|p, (2.1)

and hence Op(—Kp) is ample on D, because —D is g-ample. Also, D has only Gorenstein singu-
larities, being a (Cartier) divisor on a smooth 3-fold. Therefore D is a so-called del Pezzo surface
(i.e. Gorenstein with ample anticanonical bundle) of degree d = (—Kp)?. Note that we allow the
del Pezzo surface D to be singular.

By [Gr97a, Theorem 5.2], the possibilities for the exceptional divisor D are further restricted by
its degree and singularities; D is either
i) a normal and rational del Pezzo surface of degree 5 < d < 9, or
ii) a non-normal del Pezzo surface of degree d = 7, or
iii) a normal del Pezzo surface of degree d < 4 (rational for d = 4).
In order to obtain information about the normal bundle N, /x of D in X, note that the equiva-
lences (2.1) above also show that N, x is numerically equivalent to Op(Kp). In fact, we have that

Np/x ~ Op(Kp) (using that the Euler characteristic is a numerical invariant [Gro67b, Corollary 09]
and that x(Op) = 1 for del Pezzo surfaces [HW81]).

2.3 The singularity at g € Y

Because ¢: X —Y is K-trivial and extremal, the singularity ¢ € Y is a rational Gorenstein sin-
gularity (i.e. it is Gorenstein, and ¢.Kx = Ky). According to [Rei79], to an isolated rational
Gorenstein 3-fold point ¢ € Y one can attach a natural number k > 0 such that:
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i) if k=0 then ¢ € Y is a ¢cDV point;

ii) if k = 1 then ¢ € Y is a hypersurface singularity that is locally of the form 22 +y3+ f(y, z,t) = 0,
where f = yfi(z,t) + fa(z,t) and fi (respectively f») is a sum of monomials 2%t* of degree
a+ b > 4 (respectively > 6);

iii) if k = 2 then ¢ € Y is a hypersurface singularity that is locally of the form 2% + f(y, z,t) = 0,
where f is a sum of monomials of degree > 4;

iv) if £ > 3 then mult, Y = k and the embedding dimension of ¢ € Y is k + 1; in particular, for
k=3, q€Y isstill a hypersurface singularity, and for k = 4 it is a complete intersection.

Remark 2.5 [Rei79, Proposition (2.13)]. Reid implies that, if the exceptional locus of the map
p: X — Y is a del Pezzo surface of degree d, then the invariant k is equal to d. We also have that
X is the (weighted) blowup of Y at ¢ [Rei79, Theorem (2.11)]. In particular, when d > 3, X is the
blowup of Y at g¢.

2.4 Normal rational del Pezzo surfaces of degree > 5

DEFINITION 2.6. A two-dimensional (possibly singular) projective variety D is called a del Pezzo
surface if it has only Gorenstein singularities, and its anticanonical sheaf Op(—Kp) is ample. We call
the intersection number d = (—Kp)? the degree of the del Pezzo surface D.

Normal rational del Pezzo surfaces were classified by Hidaka and Watanabe in [HW81];
non-normal ones by Reid in [Rei94]. In this section we enumerate some facts that will be used
subsequently.

Let D be a normal del Pezzo surface of degree d and 7: D — D a minimal resolution of D.
Then D is either a cone over an elliptic curve, or it is rational. In the latter case, D is either P?
(d=9), P! xP! (d = 8), a singular quadric in P? (d = 8), or its minimal resolution D is the blowup
of 9 — d points ¥ in almost general position on P? [HW81].

Up to projective automorphisms of P? (and their extensions to the blowup spaces), there are 22
different configurations of at most four points in almost general position (including ¥ = (), when
D ~ P?), so there are 22 non-isomorphic rational del Pezzo surfaces of degree d > 5 other than
P! x P! or a singular quadric. The following is a well known lemma.

LEMMA 2.7. A normal rational del Pezzo surface D of degree d > 5 is either non-singular, or it can
have only the following singularities: Ay, 2A1, Ag, A1 Ao, Az or Ay.

Note that for d > 3, the anticanonical sheaf Op(—Kp) is very ample and its global sections
yield an embedding of D into P? as a subvariety of degree d. This embedding defines a projectively
normal variety and is defined by quadric equations except for the case d = 3 [HW81, Theorem 4.4].

ProprosITION 2.8 [HWS1, Proposition 4.2]. Let D be a normal del Pezzo surface. Then the following
hold:
i) the anticanonical system |—Kp| of D contains a non-singular elliptic curve;
ii) HY(D,0Op(vKp)) =0 for all v € Z;
iii) if deg D = d, then
(v+ 1)

dim H°(D,Op(~vKp)) = 2
0 if v < 0.

d+1 ifv>0,
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3. Analytic equivalence, formal equivalence and infinitesimal extensions

3.1 Analytic versus formal equivalence

A standard tool for showing analytic equivalence is a criterion due to Grauert [Gra62] and Hironaka
and Rossi [HR64] that reduces the problem of showing analytic equivalence of embeddings to that of
showing formal equivalence [HR64, Theorem 3]. A careful reading of the proof of [HR64, Lemma 9]
gives us the following lemma.

LEMMA 3.1. Let X be a non-singular complex manifold of dimension n and let D be a complex
subspace with ideal sheaf Ip. We assume that either D is reduced, or D is a (Cartier) divisor.
Suppose that there exists an integer vy > 2 such that H'(D, Ty ® I}{)/Zl”)“) =0 for any v > 1.
Then a v-equivalence (v > vy) of D with a complex subspace D’ of a complex space X', where X'
has the same dimension as X at all points of D', extends to a formal equivalence.

By v-equivalence we mean an isomorphism of the complex spaces (D, Ox /Z},) and (D', Ox//T},),
where Zp, respectively, Zpr is the ideal sheaf of D in X, respectively of D’ in X’. Formal equivalence
means an isomorphism of the completions:

X = lim(D, Ox /Tp) ~ X' = lim(D', Ox/Tp,).

Remark 3.2. For any v, the obstruction to extending a v-equivalence to a (v 4 1)-equivalence lies
in the cohomology group H'(D,Tx @ I%/I}).

In our case we are given a divisor D in a smooth 3-fold X, with given normal bundle Np /X
(which is isomorphic to Op(Kp)). In general, if we have an embedding of any scheme D into a
scheme X such that D has conormal sheaf £ in X, then we have the exact sequence

0—L— 0Oyp— Op—0,

where 2D is the 2-structure on D obtained from the embedding D C X. Therefore 2D is an in-
finitesimal extension of D by the sheaf L (i.e. £ can be considered as an ideal sheaf with square 0
on the scheme 2D, with Oyp/L ~ Op [Har77, Exercise I1.8.7]; see also [Gro64, § 18]). Below (see
Proposition 3.5) we show that, if H'(D,7p® L) = 0, then D uniquely extends to 2D with the given
conormal sheaf £. As we see in § 4, this condition is satisfied in our case and hence we may apply
Lemma 3.1 with vy = 2.

3.2 Certain local conditions

LEMMA 3.3. Let D be a (not necessarily reduced) divisor in a smooth n-fold X, and let L ~ Op(—D)
be the conormal bundle of D in X. Then the scheme 2D is locally uniquely determined by D and L.
More precisely, if we have another embedding D ~ D' C X' into a smooth n-fold X' such that
(ND//X/)* ~ L, then the schemes 2D and 2D’ are locally isomorphic.

Proof. As noted before, both 2D and 2D’ are infinitesimal extensions of D by £. The question is
local, so we may assume that X = Spec R, R a regular ring, D = Spec(R/f) (and hence 2D =
Spec(R/f?)) and 2D’ = Spec A, where the support of A is D, and at any point, the embedding
dimension of A is the same as the embedding dimension of D. So we have two infinitesimal extensions

of R/f by R/f:
0= R/fFSR/I2ERIF—0 and 0—R/F % AL R/F—0.
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The ring homomorphism R/f? — R/f factors through A [Har77, Exercise 11.8.6], and thus we
have the following commutative diagram.

0 R/f—2~Rr/f2 L~ R/f 0

)\l <pl H (3.1)

0 R/f — A F R/f 0

From here, we obtain an isomorphism of extensions

Bx

0—= R/f == R[T)/(f? f - A, T?) —> R/f —0

where ay(r) = 7T, Bx(r + sT) = B(r), and ® is a ring homomorphism defined by ®(r + sT') =
©(r) + a(s mod f); we regard A as an element of R.

As all infinitesimal extensions of non-singular affine schemes are trivial, it is sufficient to consider
the case when R is local of dimension n, D = Spec(R/f) is singular, and so embdim(R/f) = n.

By completion, we may assume R ~ C[[X1, X, ..., X,,]]. However, the embedding dimension of
Cl[X1, Xa,..., Xp, TN/ (f?, f — AT, T?) is n if and only if X is a unit. But then (3.1) implies that
the completion ¢ of ¢ is an isomorphism, and (as completion is faithfully flat) that p: R/f? — A is
an isomorphism. So, although the infinitesimal extension 0 — R/f — A — R/f — 0 is not unique,
the ring A is. O

Remark 3.4. The same statement is true if we only assume that D is a (n — 1)-dimensional scheme
which is locally a divisor in a smooth n-fold, and that there exists a scheme 2D in which D has
conormal bundle L.

3.3 Cohomological condition for the (global) uniqueness of Osp

In what follows, we show that, if we fix the local data given by an infinitesimal extension of D by L,
then the set of all (isomorphism classes of) extensions with the same local data is in one-to-one
correspondence with H(D, 7p ® L).

More precisely, let now (D,0Op) be a ringed space, £ a sheaf of Op-modules, and consider
the following local data: for any p € D, an infinitesimal extension 0 — L, 2, A, = B, — 0,
where L, = £, and B, = Op,. We say that an infinitesimal extension 0 — L LA LN Op —0
of D by L has the given local data (Ay, oy, Bp) if, for all p € D, we have isomorphism of extensions
as follows.

0 ﬁp AP BP 0

| | 52

0 L, Ap B 0

PROPOSITION 3.5. Suppose we have a ringed space (D,Op), a sheaf L of Op-modules, and an
infinitesimal extension (A, a, ) of D by L with local data (A, o, 8p). Then the set of isomorphism
classes of infinitesimal extensions of D by L having the local data (A, oy, 3,) is in one-to-one
correspondence with

HY(D,Der(Op, £)) = H' (D, Homp (), L)).
Remark 3.6. This result was stated (without details) in [Rei75].
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Proof of Proposition 3.5. Let 0 — £ % A LN Op — 0 be the given infinitesimal extension with
local data (A, ap, By). Cover D with affine open sets V; = Spec B;, and denote Ly, = L;, Aly, = A;.

Given another extension 0 — £ % A 5, Op — 0 with local data (A, oy, 5p), on V; we have the
following isomorphisms of extensions.

Bi

0 L; A; B; 0
|
0 Li —= Ay, A B; 0

On the intersections V;; = V; NV}, the morphisms ¢; and ¢; differ by a derivation: if we denote
Vij = gpj_l o ¢;, then ¢;;(a) = a + 0;;(B(a)), where 6;; € Derg(Bij, Lij). Thus the extension A gives
a (well-defined) cohomology class [{0;;}] € H'({V;},Der(Op, L)) ~ H'(D,Hom(Q}, £)).

Conversely, given a cohomology class [{0;;}] € H'({V;},Der(Op, L)), we obtain isomorphisms
of extensions ¢;;: (Alv;;, ij, Bij) — (Alvi;, aij, Bij). We define the infinitesimal extension A by

AV) = {(Si)iel € HA(Vz' NV): wi(silvi,nvy) = 5j|%j}- O

Remark 3.7. Similar proof shows that extensions of vD to (v+1)D are in one-to-one correspondence
with HY(D, Hom,p (5, £)).

COROLLARY 3.8. Let D be a (not necessarily reduced) divisor in a smooth n-fold X, and let L
be the conormal bundle of D in X. Suppose that H'(D,Tp ® L) = 0. Then Osp is unique up to
isomorphism.

4. Reducing the proof to the vanishing of H'(D,7 p)
We now return to the proof of the Main Theorem, restated as follows.

THEOREM 4.1 (Main Theorem). Let X be a smooth 3-fold over C and let ¢: X — Y be a crepant
analytically extremal contraction, with exceptional locus D a normal rational del Pezzo surface of
degree d > 5, contracting to a point ¢ € Y. Then the contraction ¢ is analytically rigid.

As we noted in § 2, a normal rational del Pezzo surface of degree d > 5 has only A,-type
singularities (Lemma 2.7), and Np,x ~ Op(Kp). If we denote by Zp the ideal sheaf of D in X,
then

IH)THH ~ (Ip/TH)®" ~ Op(—vKp). (4.1)

Based on the results of § 3, the proof of the Main Theorem is reduced to showing the vanishing
of the cohomology groups H'(D,7p @ Ip/T%) and HY(D,Tx ® I%/I}), for all v > 2. In this
section we show that H'(D,Tp) = 0 is a sufficient condition for achieving these vanishings, and we
defer the proof of the following theorem till § 5.

THEOREM 4.2. Let D be a normal rational del Pezzo surface of degree d > 5. Then
HY(D,Tp) = 0.

ProproOSITION 4.3. Let D be a normal rational del Pezzo surface of degree d > 5. Then we have

HYD,Tp ® Op(—vKp)) =0 for all v > 0.
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Proof. Let H € |—Kp| be a general hyperplane section; we can take it to be an irreducible, smooth
elliptic curve (Proposition 2.8) that avoids the singular points of D.

Note that 7p is locally free outside the singular points of D, and therefore tensoring
0—Op(—H)—O0Op —0g—0 (4.2)
by 7p @ Op(—vKp) we obtain
0—-7Tp®0p((1—-v)Kp) —Tp @ Op(—vKp) — Tp @ Op(—vKp)|g — 0. (4.3)
Next we consider the exact sequence
0— Zn /Ty — Qplm — Uy — 0,

where Ty is the ideal sheaf of H in D. Since H is an elliptic curve and deg(—Kp|x) = d = deg(D),
we obtain that

h(H,Tp ® Op(—vKp)|g) = (2v + 1)d,
hl(H, Tp® OD(—I/KD)|H) = 0.
Therefore, by induction, using the long exact sequence associated to (4.3) and the condition

HY(D,Tp) = 0, we obtain H'(D,7p ® Op(—vKp)) = 0 and H?>(D,Tp ® Op(—vKp)) = 0 for all
v > 0. This completes the proof of Proposition 4.3. ]

THEOREM 4.4. Under the assumptions of the Main Theorem, we have

HY(D,Tx @ T}H/T)Ht) =0, forallv > 2.

Proof. When D is non-singular, the theorem is an easy consequence of Proposition 4.3 and the
vanishing of the first cohomology of Op((1 — v)Kp) for any del Pezzo surface (Proposition 2.8).
We actually obtain the vanishing of H(D, Tx ® I%/Z%™) =0, for all v > 1.

So we concentrate on the case when D is normal rational. In this case the difficulty comes from
the fact that the tangent sheaf 7p is not locally free any more. In fact, H'(D,7x ®Zp/Z%) does not
vanish in general (see Remark 4.6 below), but an easy argument shows that it is enough to prove
that HY(D, Tx ® 7% /13) = 0.

Indeed, for a general H € |—-Kp|, as in the proof of Proposition 4.3, tensor

0—Op(—H)—-0Op —0g—0
by Tx ® I}, /l'f;r]L for some v > 2. From the long exact sequence of cohomology, we get
HY(D,Tx ® Ij; ' /Tp) — H'(D, Tx © Ip/IH) — H'(H, Tx @ Ip/T), " |n)-
Consider the exact sequences
0_’TH_’TX‘H _>~N’H/X —0
and
0 — Nu/p — Nu/x — Npyx|g — 0.

The latter sequence is exact because both H in D and D in X are Cartier divisors; see for example
[Gro67a, 19.1.5].

We know that Ny/p = On(—Kp), Np/x|# = Or(Kp), so tensoring the above exact sequences
with 7% /Z% = Op(—vKp) yields HY(H,Nyx ®I% /T4 = 0 (because —Kp is non-zero and
effective), and hence H(H,Tx @ Z% /%) = 0 for all v > 2. (Recall that H is an elliptic curve.)
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Therefore we have surjections
HYD,Tx @ I,V /1Y) — HY(D, Tx @ I} /T — 0 Ww>2,

and so we can use induction on v to prove the vanishing of the groups H!(D, Tx @ Z¥%/T}M).
Next we show that H'(D,7Tx ® 73 /Z3) = 0. The sequence

0—Ip/T3 — Q|p —QH =0 (4.4)
is exact because D is a Cartier divisor in the smooth 3-fold X. The dual of this sequence gives us
0—7p —Tx|p — (ID/Z%)* ®IS(D) — 0,

where S(D) is the scheme of singularities of D. We tensor this with Z%/Z3 ~ Op(—2Kp); the
corresponding long exact sequence on cohomology gives

0=HYD,Tp ® T3 /13) — HY(D,Tx @ 15 /I})
— HY(D,0p(—Kp) ® Ig(p)) — H*(D,Tp ® Ip/I}) = 0. (4.5)

Therefore H'(D, Tx ®13/1}) ~ H'(D,Zgp)(—Kp)). We now show that H'(D, Zgpy(—Kp)) = 0.
From the exact sequence
0—Zgpy — Op — Og(py — 0
we obtain that H(D,Zgp)(—Kp)) = coker(®p : H'(D,Op(—Kp)) — H(S(D),Og(p)(—KDp)))-
Suppose that the singularities of D are pi,pa,...,pr, of type Ay, Ay,,..., A, respectively.
Then h°(S(D), Og(p)(—Kp)) = >i_; Ai. We also know that h%(D,Op(—Kp)) = d + 1, where
d=degD.

CrLAIM. We claim that dimker(®p) =d+1—>"7 | \;.

Note that as D has only isolated singularities p1,po, ..., pr, Og(p) is the direct sum of the Milnor
algebras Op ,,/J(p;) of the singularities (D, p;), where J(p;) denotes the Jacobian ideal of D at p;.
Hence

ker(®p) = {s € H'(D,0p(~Kp)) : s € J(p;), Vi}.

We consider the anticanonical embedding of D into P? [HWS81, Corollary 4.5]. An element s of
H°(D,0Op(—Kp)) can be viewed as a hyperplane section of D C P? and s € .J(p;) means that
the corresponding hyperplane section contains the scheme Spec Op j,/J (p;). Therefore the claim is
obviously true when D is non-singular, or has one or two A; singularities, because in this case s
belongs to the Jacobian ideal if and only if the corresponding hyperplane section passes through
the (two) singular point(s).

We proceed by descending induction on d = deg D. Suppose D' C P? is a (normal, rational) del
Pezzo surface of degree d > 5. Then there is a del Pezzo surface D C P! of degree d + 1 and a
smooth point p € D such that the closure of the image of D under the projection m,: Pd+l __; pd
is D'. We have

H(D',Op/(=Kp)) ~{s € H'(D,Op(=KDp)): s(p) = 0}
Note that if p does not belong to any line on D, then S(D’) ~ S(D), and the claim follows.

Suppose now that p belongs to a line L C D. If L does not contain any singularities of D, then
mp(L — p) is a new A; singularity on D’; if L contains an Ay singularity, then m,(L — p) is an Ay
singularity; and if L contains an Ay, and an A, singularity, then m,(L — p) is an Aj, 4, singularity.

The claim now follows from the observation that

dim(ker @) = dim(ker ®p) — 1 — #(lines through p).
This completes the proof of Theorem 4.4. O
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COROLLARY 4.5. The Main Theorem holds, i.e. the contraction ¢ is analytically rigid.

Proof. Suppose D and X are as in the Main Theorem (Theorem 4.1). Then, by Proposition 4.3
and Corollary 3.8, any two embeddings of D into smooth 3-folds with normal bundles isomorphic
to Op(Kp) are 2-equivalent. We also have the vanishing of H'(D, 7Ty ® 7¥/Z"*!) for any v > 2
(Theorem 4.4); thus, by Lemma 3.1 and by [HR64, Theorem 3], the Main Theorem holds. O

Remark 4.6. When D is non-singular, the vanishing of H*(D, Tx ® Zp/Z%) is an easy consequence
of the fact that H'(D,7p) = 0 (via the exact sequence (4.4), using Proposition 4.3 and the van-
ishing of H'(D,Op)). Hence, by induction (as in the proof of Theorem 4.4), we have the vanishing
of HY(D,Tx ® IB/IBH), for all v > 2. However, if D is singular, it is not generally true that
HY(D,Tp) = 0 implies H'(D,Tx ® Ip/T3) = 0.
Indeed, suppose D has at least one singular point. Consider the exact sequence
0 — Hom(Qp,Zp/Z) — Hom(Qx|p,Zp/Ip) — Hom(Zp/Ip,Ip/TIp)
% Bxt QL) Ip/T2) — Ext (Qk|p, Ip/T3) — Ext (Ip/T3,Tn/T3)

obtained from (4.4). We have Ext!(Zp/Z2,Zp/T%) ~ H'(D,0Op) = 0 and Ext'(Q%|p,Zp/Z3) ~
HY(D,Tx ® Ip/T?) by Serre duality. Therefore we obtain

0 — Hom(QL,Zp/Z3) — Hom(Qk|p,Zp/T3) — k
2 Bxt(QY, Ip/T3) — HY(D, Tx ® Ip/I3) — 0.

Here 6(1) corresponds to the extension (4.4) that is not split, and hence it is non-zero in
Ext'(Q},Zp/Z%). Therefore § is injective and we have

0— k> Ext!(QY,Zp/T3) — HY (D, Tx ® Ip/T3) — 0. (4.6)
From the five-term exact sequence associated to the local to global spectral sequence, we have
0 — H'(D,Hom(Qp, Op)) — Ext'(Qp, Op) — H(D,Exty, (p, Op))
— H?(D,Hom(Qh5,0p)) — Ext*(Q}, 0Op),
and, as Hom(Q},, Op) = Tp and H?(D,7p) = 0 [Gr97a, Lemma 5.6], we obtain
0 — H'(D,Tp) — Ext' (Qp,0p) — H°(D, Exty, (Qp, Op)) — 0. (4.7)
It is easy to see that dim HY(D, SmtéD (Q},,0p)) = >7_, A\ if D has r singularities, of type Ay,
Ay, ..., Ay, respectively. Therefore, if H'(D,Tp) = 0, we obtain dim Ext'(QL, Op) = S77_, \.
Now suppose that H1(D,Tx ® Zp/Z2) = 0. Then (4.6) implies that dim Ext! (Q},, Op) = 1, and

hence D can have only one singularity, of type A;. However, this is not the case in general, and hence
HY(D,Tx ®Ip/I%) does not vanish for a general singular del Pezzo surface with H'(D,7p) = 0.

5. Computing the obstruction to formal equivalence: the vanishing of H'(D,7 p)
THEOREM 5.1. Let D be a normal rational del Pezzo surface of degree d > 5. Then

HY(D,7p) = 0.

Let 7: D — D denote the minimal resolution of D. The proof is done below in several steps (in-
volving §§ 5.1-5.3, Lemmas 5.2-5.4, Theorem 5.5 and Corollary 5.6), by comparing the cohomology
of the tangent sheaf on D to the cohomology of the tangent bundle on D.
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5.1 The Leray spectral sequence

As D is a surface having only isolated normal singularities, 7,75 ~ 7p [BW74, Proposition (1.2)].
We use this fact and the Leray spectral sequence

E¥? = HP(D, R, T5) = EXF = HP™(D, T;)
to compare the cohomology of 7p with that of 7.
The first four terms of the corresponding five-term exact sequence [God58, Theorem 1.4.5.1]
0— By - EL - EY' - E° — B2
give in our case
0 — H'(D,n,T5) — H'(D,T5) — H(D, R'n.T;) — H*(D, 7.Tp).

With the identification 7,75 ~ 7p, and using H?(D,Tp) = 0 [Gr97a, Lemma 5.6], we obtain

0— HYD,Tp) — HY(D,T;) — H*(D, R'7.T5) — 0. (5.1)
In order to show the vanishing of H'(D, 7p), we show that dim H'(D, T5) = dim H°(D, R'7, 7).

5.2 Local computations: H(D, R 7, T z)

As D is a normal rational del Pezzo surface of degree d > 5, it has only singularities of type A;, As,

As and A4 (Lemma 2.7). Denote by E the exceptional locus of its minimal resolution 7: D — D.
We have H O(D,RIW*TD) ~ RIW*TD if regarded as complex vector spaces, as R'm, T pHis a

skyscraper sheaf supported on the singular points of D. By the theorem of formal functions [Har77,
Theorem II1.11.1], we obtain

R'm.Tp ~lim H' (€, T le,),
where &, is the closed subscheme of D defined by 1%, where I is the ideal sheaf of £ in D.
From [BW74, (1.6)], we have the following lemma, true for any surface having only isolated

rational singularities.

LEMMA 5.2. If Z is an effective divisor on D supported on E, there is an exact sequence

A
0—>TZ—>TD\Z—>@NEZ_/D—>O (5.2)

i=1
where E1, Fs, ..., E\ are the irreducible components of E and NEi/D = Opg,(E;) = Og,(—2) is the
normal bundle of E; in D. (The second map of (5.2) is the sum of the compositions T, @ Oz —

By the tautness of rational double point singularities [Tju68] we have that H'(Tz) = 0.
Therefore, the long exact sequence obtained from (5.2) implies h' (€, Tple, ) = h' (En, PN Bi/D)>
for all n > 0. This shows that, if D has r singularities, of type Ay, Ax,, ..., A),, respectively, then
YD, R'm,. T5) = > 01 A

5.3 Global computations: H*! (E,TD)

Here we show that dim H'(D, T5) = >i_1 Ai as well, and therefore we obtain H'(D,7p) = 0 from
the sequence (5.1).

First, we need some preliminary results relating the tangent bundle of a (smooth) surface S to
that of a one-point blowup of S.

LEMMA 5.3. Let o: S’ — S be a birational morphism of smooth projective surfaces and let F be a
locally free sheaf on S. Then H*(S,F) = H*(S',0*F).
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Proof. The morphism o can be factored as the composition of blowups. Therefore it is enough to
assume that o itself is the blowup of a point p € S.

Because the sheaf F is locally free, the projection formula and normality of S imply that
0,0 F ~ F. Therefore, by a degenerate case of the Leray spectral sequence, it is enough to show
that Rlo,o0*F = 0, Vi > 0. But again, by the projection formula and ¢,0g = Og, we can reduce
this to showing that R'c,Og = 0, which is proven in [Har77, Proposition V.3.4]. O

LEMMA 5.4. Let o: S — S be the blowup of a smooth projective variety S of dimension n at a
point p and let £ denote the exceptional locus of o. We then have an exact sequence

0—Tg — 0"Tg — Tc @ Og(E) — 0. (5.3)

Proof. The first fundamental exact sequence of differentials

0— " QL — QL — Qgryg — 0 (5.4)
gives, after taking Homo, (—, Og):

0—Tg — 0"Tg — Ext}gsl(Q}g, Og) — 0,
where we used Qg /g ~ Qf (see for example [Kle81]).
As SmtéS,(Og, Og) = Og(€), from the conormal exact sequence

0—ZIg/T2 — QL|E — QF — 0 (5.5)

we obtain
0— Smt}gs,(Qé, Os) — Tsr @0, Oc(E) — Og(28) — 0.
Tensoring the dual of (5.5) by Og (&), we have
0—Te ® 0g(€) — Ts ®oy, Oe(E) — Og(28) — 0.

Comparing the last two exact sequences, we obtain the desired result. ]

In particular, if the variety S in Lemma 5.4 is a smooth surface, the exact sequence (5.3)
translates to

0—Tg — 0"Tg — Og(1) — 0.
We can use the associated long exact sequence and Lemma 5.3 to obtain
HO(S', T) = ker(H(S, Ts) — HO(€, Og(1)))

: 1 ! 0 / 0 1 (56)
dim H*(S",7g/) = h"(S",Tg:) — h"(S,7g) + 2+ h (S, Tg).

Therefore Lemma 5.4 gives us a tool to compute H 1(D, T}5) step-by-step, blowing up one point at
a time.

THEOREM 5.5. Let ¥ be a set of (possibly infinitely near) points of P? in almost general position.
Suppose || < 3. Let 0: S — P? be the blowup of center ¥. Let p € S be a point such that
¥ =X U{p} is in almost general position and let ¢’: S" — S be the blowup of S at p. Denote by
€ the union of all curves with negative self-intersection on S. Then we have the following:

i) If p ¢ &, then h0(S', Tg:) = h°(S, Tg) — 2.
ii) If p is contained in a single (—1)-curve, then h°(S’, Tg/) = h°(S, Ts) — 1.
iii) Ifp is the intersection point of two (—1)-curves, then h°(S’, Tg:) = h%(S, Ts).
The proof of Theorem 5.5 follows after Corollary 5.6 and Remark 5.7.
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COROLLARY 5.6. If D is a normal rational del Pezzo surface of degree d > 5, with r singularities,
of type Ay, Ay, .., Ay, respectively, and w: D — D is its minimal resolution, then we have
dim H'(D,Tp) = >"7_, Ai, and hence H' (D, Tp) = 0.

Proof. Note that h'(S’, 7s/) — h'(S,Ts) counts the number of (—2)-curves that appear on S’ after
the blowup ¢’, thus the corollary follows. O

This concludes the proof of Theorem 5.1.

Remark 5.7. As H'(D,Tp) is the tangent space of the locally trivial deformations of D, we can
conclude that all locally trivial deformations of a normal rational del Pezzo surface of degree d > 5
are trivial. This was to be expected, as configurations of at most four points in almost general
position on P? (giving the same del Pezzo surface) have no moduli.

Proof of Theorem 5.5. Note that, if the surface S is obtained by successive blowups of (possibly
infinitely near) points on P2, then we can regard H°(S,7s) as a subspace of H°(P?, 7p2). We prove
the theorem by blowing up one point at a time and explicitly computing the cohomologies involved.

Case 0: FExplicit computation of H°(P?, Tp2). It is well known that dim H°(P% Tp2) = 8 and
dim H'(P?, 7p2) = 0. Here we compute a basis for H°(IP?, Tp2) in local coordinates.

Fix the homogeneous coordinates [zo: #1: 23] on P2, Then on the affine open Uy = {xq # 0} we
have local coordinates x := x1/x¢ and y := x9/xo. Around p = [1 : 0 : 0], Zp2 is generated by the
vectors 0, = 0/0x and 0y = 0/0y; more precisely, Tpz2|v, = Clz, y]0; + Clz,y]0,.

CramM. With the above notations, H°(P?, Tp2) has a basis given by vy = 9,,v2 = 0,,v3 = x0,,
V4 = 20y, V5 = YOy, V6 = YOy, V7 = 20, + xy0y, and vg = xyd, + y28y on Uj.

Proof. We have the dual of the Euler sequence,
0 — Op2 — Op2(1)> — Tp2 — 0,
where Op2(1)? — Tp2 is (locally) given by

S1Xp — Sox1 S92 — SoT2

Oy +

0.

(50,51, 52)

2 2
) )

Writing out the generators of HO(P?, Op2(1)?), the claim follows. O

Using this explicit description of H?(P?, Tp2), the computations are straightforward. We illustrate
it in two cases: blowing up one point, and blowing up two infinitely near points on P2.

Case 1: Blowing up a point. Let o1: S; — P2 be the blowup of the point (z,y) = (0,0) € Uy,
and let £ denote the exceptional locus. On the affine open Vy = Spec C[z, s], where x = z, y = xs,
€ is defined by the equation {x = 0} and the sequence (5.3) is

1
0 — Clz, 5|0, ® Clz, s]0s — Clz, s]0, & Clz, s]0, — . C[s]0s — 0,
where the first map is given by
Op = Oy + 80y, 05 — x0y,

while the second map is given by

9(0’ S) — Sf(ov 8)
x

Note that the images of v; = 0, and vy = 0, (—(s/)0s and (1/x)0s respectively) generate the

global sections of Og(1).

f(xas)ax +g(x75)8y = 88‘
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As y = s, it is easy to check that the images of v3,vy,vs,v6,v7 and vg in HO(E,Og(1)) are all
zero, and hence

HO(Sl,’TSI) = ker(HO(PQ,’prz) —>H0(5,05(1))) ~ (vg, V3, V5, Vg, U7, Ug).
This shows that dim H°(Sy,7s,) = 6. In terms of 3, and Js, we have

v3 = 10, — 80,

vy = Os,

vs = x50, — 3283,

v = 80,

vy = 2%(1 + 8), — xs(1 + 5)0s,
vg = x5(1 + 5)0s.

Case 2:  Blowing up two infinitely near points of P2. Let So be the blowup of the point (z,s) =
(0,0) € Sy (corresponding to the direction given by the line {y = 0} in P?). Let & denote the
exceptional locus. As in the previous case, we see that the image of vy = 0y is a global section of
HY(&',0g/(1)), while the images of vs,vs,v6, v7 and vg are all zero. Hence dim H(Ss, 7s,) = 5.

For the rest of the cases, similar computations can be carried out, and we leave them to the
reader. Thus the proof of Theorem 5.5 is finished. ]

6. Example of a K-trivial contraction

Let ¢: X — Y be a K-trivial birational extremal contraction of a smooth projective 3-fold X,
contracting a divisor D C X to a point ¢ € Y. Suppose D is a normal rational del Pezzo surface of
degree d > 5. By our Main Theorem, in order to know the analytic structure of the contraction ¢,
it is sufficient to have one example for each possible exceptional divisor with the prescribed normal
bundle.

In the following, we construct an example of embedding a normal rational (singular) del Pezzo
surface D of degree 7 into a smooth 3-fold X with the prescribed normal bundle Op(Kp), and
hence, by Fujiki’s contraction theorem (see Theorem 6.1 below), obtain an analytic contraction
of D (i.e. a holomorphic map ¢: X — Y onto a normal complex space Y that contracts D to
a point ¢ € Y). Similar constructions can be carried out for each possible exceptional divisor D
(any normal rational del Pezzo surface of degree d > 5).

It should be noted that, if D is non-singular, the embedding of D as the zero-section into the
total space of Op(Kp) gives such an example. It is tempting to consider a similar approach in
the singular case, by considering the zero-section embedding of the minimal resolution D of D
into the total space X of O 5(Kp) and then flopping the (—2)-curves of D. However, while any
(—=2)-curve on D is a (0, —2)-curve on X, these curves are not isolated, and hence we cannot flop
them [Rei83]. Therefore we take a different approach.

Let D be a normal rational del Pezzo surface of degree d = 7. First we construct a family
X — A! such that X is non-singular, the central fiber X is isomorphic to D, and the general fibers
of the family are non-singular del Pezzo surfaces of degree d = 7 = deg D. We will construct the
family X C P x Al as the closure of a family of blowups of two distinct points on P2. We may
assume that the minimal resolution D of D is isomorphic to the blowup of the infinitely near points
p1=1[1:0:0] € P? and py = [1: 0] € P(T},,P?).

Consider the curve C = {x? —t(x1+x0) = 0,22 = 0} C P2 x AL, Over any t # 0, C has two points,
while over ¢ = 0 it has a double point. The curve C defines a map ® = {¢;}; : P2 x Al ——» P7 x Al
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with base-locus C, where ¢; : P2 --» P7 is given by

[0 : 21 @ x9)
3.

— 23 — tadx — t2xd — t2xdxy  ad  xdwy s wox? — tad — tady : woxd  2dxy : mxd : xoxy 2]

Let X be the blowup of P? x A! with center C. Then Pl-Ky will define an embedding of X
into P” x Al. The ideal Z defining X in this embedding is [GS02]

T = (ge — bh, —hf + gd + th* 4 tch, —he + ge, f> — ga — t°h® — th® — t>ch,ef — hyg,
fd—ah +thd, fc — h? —g*> + bf,de — h* + tc* + tch,ea — hf + t>ch + t*¢* + tch,
bd — hg + teh + tce, —e* + b, ca — dh — ted,ba — fg + t2eh + t2ce + tcg).

For each t, 7 defines a surface D; in P7. It can be verified by direct computation that the total
space X of the family {D;},cs1 is non-singular and that D; is non-singular (actually a smooth del
Pezzo surface of degree 7) except in the cases of Dy = D and D_4, which are singular del Pezzo
surfaces. In fact, for ¢t # 0, —4, the surface D; is the image (via the anticanonical embedding) in P”
of the blowup of the points [1 : A; : 0] and [1 : Ay : 0] on P?, where A\; and Ay are the roots of the
equation u? = t(u + 1).

Since D is a fiber of the family X, its normal bundle N'p /x = Op(D) in X is numerically trivial.

In order to make the normal bundle isomorphic to Op(Kp), as required for a K-trivial
contraction, we proceed as follows.

Let C' € |-Kp| be a general member avoiding the singular point of D (it exists, because |- Kp|
is very ample). Let X be the blowup of C on X, E the exceptional locus, D’ the strict transform
of D, and C' := E|p ~ C. Because Ky|p and Kp are numerically equivalent, it follows that Ky
is numerically trivial on D’. Therefore Np//x is numerically equivalent to Op/(Kp), and so, as
in §2, Np/ /x = Op/(Kpr). Therefore we succeeded in embedding the del Pezzo surface D ~ D’
into a non-singular 3-fold X such that its normal bundle is isomorphic to the canonical sheaf of D.
We can now apply the following theorem [Fuj74, Theorem 2.

THEOREM 6.1 (Fujiki’s Contraction Theorem). Let X be a complex space, A C X an effective
Cartier divisor, B another complex space, and f : A — B a surjective holomorphic map. Assume
that

1) the conormal bundle /\/'Z/X is f-positive, and that
2) RUf.( Z?X) =0, for all v > 0.

Then there exists a modification ¢ : X — Y with |4 = f. Moreover, 1,(L) ~ Oy, where the
coherent sheaf L is defined by

0—L— Ox— 04x/im(f*Op — O4) — 0.
In our case A := D' ~ D, B is a point (hence £ ~ Ox) and we have R!f,( Z?X) ~
HY(D,Op(vKp)) =0 for all v (see Proposition 2.8).

Therefore we have an analytic modification ¢ : X — Y contracting D to a point ¢ € Y, such
that ¥|x_p: X — D ~Y — ¢, and ¥,Ox = Oy.

Remark 6.2. A similar result is true in the category of algebraic spaces, based on a contraction
theorem due to Artin [Art69b, Corollary (6.10)].

However, Fujiki’s theorem does not guarantee a contraction in the algebraic category (i.e. the
existence of a morphism ¢: X — Y of algebraic varieties contracting D to a point). At the present
we do not know how to construct in general algebraic morphisms that contract a singular del Pezzo
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surface embedded into a smooth 3-fold with the prescribed normal bundle to a point, i.e. how to
obtain a K-trivial morphism ¢: X — Y onto a normal projective variety Y that contracts D
to a point ¢ € Y. For a non-singular D, the contraction of the zero-section of the total space of
the normal bundle N /x brovides such an example. Although this gives a K-trivial contraction,
it is not extremal. Namikawa constructs an example of a K-trivial extremal contraction [Nam97,
Example 1] with exceptional divisor D a non-singular del Pezzo surface of degree 6 (i.e. a smooth
cubic).
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