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Abstract

In the cons-free programming paradigm, we eschew constructors and program using only destructors.
Cons-free programs in a simple first-order language with string data capture exactly P, the class of
polynomial-time relations. By varying the underlying language and considering other data types, we
can capture several other complexity classes. However, no cons-free programming language captures
any functional complexity class for fundamental reasons. In this paper, we cleanly extend the cons-
free paradigm to encompass functional complexity classes. Namely, we introduce programs with
data that can either only be destructed or only be constructed, which we enforce by a type system on
the program variables. We call the resulting programs read/write- (or RW-)factorizable, show that
RW-factorizable string programs capture exactly the class FP of polynomial-time functions, and that
tail-recursive RW-factorizable programs capture exactly the class FL of logarithmic-space functions.
Finally, we state and solve the nontrivial problem of syntactic composition of two RW-factorizable
programs.

1 Introduction

The primitive operations associated with certain data types can be separated into construc-
tors and destructors. For example, over the natural numbers, the successor (or increment)
function and the constant 0 are constructors, whereas the predecessor (or decrement) func-
tion and equals-zero test are destructors. Over strings on some fixed alphabet �, the cons
function, which prepends a given character onto a given string, is a constructor, as is the
constant naming the empty string. On the other hand, the head function, which isolates the
first character of a given string, and the tail function, which deletes it, are destructors, as
is the relation which tests whether a string is empty. Similarly, one can define constructors
and destructors for trees, heaps, nested lists, and all sorts of other common data types.

A cons-free program over any one of these data types is a program in which no construc-
tors occur. For example, consider the following cons-free natural number program, which
decides whether its input is even:

even(n) =if zero(n) then true else if zero(n−1) then false, else even(n−2).
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In other words, to check whether a given number is even, we return “true” if it is equal to
zero, return “false” if it is equal to one, and otherwise subtract two and recurse. (Here, n−2
abbreviates n−1−1.) This program is clearly cons-free, as 0 and +1 do not occur within.

Cons-free programs clearly do not form a Turing complete language. Given their some-
what severe limitations, it is perhaps surprising that cons-free programs retain significant
computational power: by a seminal result of Neil Jones (1999), cons-free string programs
in a simple first-order functional language capture exactly the class P of polynomial-time
relations. In other words, every language in P is decided by some cons-free program, and
every language decided by a cons-free program is in P. Moreover, if we restrict our atten-
tion to tail-recursive programs, we capture the class L of logarithmic-space relations in
exactly the same sense.

Cons-free programs, however, fail to capture the functional versions of any complex-
ity class, e.g., the classes FP and FL of polynomial-time and logarithmic-space functions
respectively. Indeed, they cannot even define the simplest function which increases the
size of the input. To remedy this deficiency, we introduce the notion of an read/write-
factorizable program. Such programs extend the destruct-only (or read-only) variables
of cons-free programs with construct-only (or write-only) variables. For example, the
following addition program is RW-factorizable:

add(n, m) = if zero(n) then m else add(n−1, m+1).

Here n is a read-only variable of type R, m is a write-only variable of type W , and add :
R × W → W . Similarly, we can define a string concatenation function of type R × W → W
by

cat(x, w) = if null(x) then w else cons(hd x, cat(tl x, w)),

where x is a read-only variable of type R, w is a write-only variable of type W , null : R → 2
tests whether read-only string is empty, cons : � × W → W prepends a character in the
alphabet � to a write-only string, hd : R → � is the head function, and tl : R → R is the
tail function.

Consider the problem of programming a RW-factorizable identity function of type
R → W . Notice that the trivial program id(x) = x cannot be consistently typed as R → W ;
instead, we have to destruct the input and construct it again. Over strings, this would look
something like id(x) = cat(x, nil). This shows that information can flow from R values
to W values; however, the reverse is not possible.

Finally, let us try to define the base-2 exponential function n �→ 2n. The program

exp(n) = if zero(n) then 1 else double(exp(n−1))

double(n) = add(n, n)

is not RW-factorizable, because double : R → W , and exp cannot be well-typed, as its
output must agree with both the input and output of double. However,

leap(n) = f(n, 0) (1)

f(n, m) = if zero(n) then m+1 else f(n−1, f(n−1, m)) (2)

is a perfectly legitimate RW-factorizable definition of n �→ 2n, with f : R × W → W .
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1.1 Our contribution

The central results of this paper are that

• RW-factorizable string programs of type R → W which are non-nested capture
exactly the class FP of polynomial-time functions, and

• RW-factorizable strings programs of type R → W which are tail-recursive capture
exactly the class FL of logarithmic-space functions.

In other words, the passage from cons-free to RW-factorizable programs is exactly what
allows us to extend the results of Jones (1999) from relational to functional classes. The
purpose of the non-nested stipulation is to exclude nested recursive programs like leap
from line (1), whose outputs can have length exponential in the length of the inputs.1

A foundational lesson of implicit computational complexity going back to Bellantoni
& Cook (1992) is that any Turing-complete programming language must allow for the
same piece of data to be both read and written. Our results illustrate this phenomenon in a
particularly clear way.2

A natural question to ask about RW-factorizable programs is how to (syntactically) com-
pose them, i.e., produce a program which computes the sequential composition of two
given programs. Naive attempts fail: you cannot stick an output of type W directly into an
input of type R. So the problem is nontrivial; however, we solve it at the end of this paper.

Both the capturing and composition results utilize the same technical device, namely
bit-length computability of a function, which is introduced in this paper. This essentially
means computability by two cons-free programs, one computing the bits, the other the
length, of a given function on each input. Our results suggest that this idea might have
some “legs” and be worthy of further study in its own right.

1.2 Organization of this paper

In Section 2, we review some technical background. We then introduce RW-factorizable
programs over strings, our main object of study, in Section 3. In Section 4, we introduce
bit-length programs, a dialect of cons-free programs, and define bit-length computability
in Section 5. That section also states that FL and FP are captured by pairs of bit-length
programs; a sketch of the proofs is postponed to Appendix B.

Sections 6 defines a compiling function from RW-factorizable to (pairs of) bit-length
programs; Section 7 defines a compiling function in the other direction. These two sections
establish the equivalence of the two models of computation and thus prove our desired
capturing results for RW-factorizable programs. Section 8 treats syntactic composition of
bit-length programs and hence of RW-factorizable programs by proxy. Finally in Section 9,
we discuss further directions for research.

The beating technical heart of this paper consists of four program transformations in
Section 6, two in Section 7, and one in Section 8. Some of these are simple and others
more intricate, but each transformation implements a conceptually simple idea which we

1 More precisely, we forbid nested recursive calls of type W , like f(. . . f(. . . )) in leap, but allow it for other
types.

2 Thanks to an anonymous referee who pointed this out.
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outline at the top of its respective section. We advise that the reader read these first before
diving into the details.

We develop most transformations according to a common template: first describing
a transformation of types, then of variables and values, then of terms and programs,
and finally proving correctness. In the interests of space, we postpone all the proofs of
correctness to Appendix A.

1.3 Related work

The present paper falls squarely into a long tradition of characterizing complexity classes
by function algebras, programming languages, and related models of computation, a topic
known as implicit computational complexity (ICC). ICC has been an area of interest since,
at least, the 1960s (Cobham, 1965), with a resurgence in the last 30 years since the ground-
breaking work of Bellantoni & Cook (1992). There are multiple approaches to ICC, see,
e.g., the survey (Hofmann, 2000) for early developments pre-2000, and Dal Lago (2022)
for a recent survey about methods involving higher-order programs. Recently, implicit
characterizations have been furnished for complexity classes using different modes of com-
putation, or using different modes of computation as a means of characterizing standard
complexity classes; in particular, this includes probabilistic computation (Lago & Toldin,
2015; Lago et al., 2021), reversible computation (Kristiansen, 2022), parallel computation
(Baillot & Ghyselen, 2022), and higher-order complexity (Hainry et al., 2022).

Many of these results are obtained by imposing a type system on a base program-
ming language, as we do in this paper. Of the multitude of different flavors of implicit
characterizations, we briefly review the most well-known ones with connections to our
work:

• Data ramification. By this, we mean factoring the base data into two or more copies,
and restricting how we can access or modify data in each copy. (Our approach of
RW-factorization falls into this broad category.) The most common of these is the
normal/safe factorization, which underlies many of the foundational papers in the
field, e.g., Bellantoni & Cook (1992), Leivant (1995), and has a wide variety of
applications. Our work is distinguished from these by our use of a general-purpose
programming language with flexible recursive definitions, rather than function
algebras based off of primitive recursion.
There are other instances of data ramification, for example the secure information
flow of Marion (2011), which partitions data into “higher” and “lower” security
tiers. This bears resemblance to W - and R-data respectively, but ultimately yields
different results: higher-security data does allow a limited amount of destruction,
and FP is characterized by a class of tail-recursive programs. Still, this is perhaps
the characterization closest to our own in spirit.

• Linearity. By linearity we mean (very roughly) restricting the reuse of variables
or primitive operations, e.g., controlling the number of times a constructor can
occur in the right-hand side of a recursive definition. Approaches to ICC based
on linear logic include proof-theoretic approaches like light linear logic (Girard,
1998) and soft linear logic (Lafont, 2004), as well as the type-based approach of
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non-size-increasing computation (Hofmann, 2002). From a practical perspective,
they seem to yield more intensionally expressive languages than safe primitive
recursion and have been applied to, e.g., cryptographic protocols (Baillot et al.,
2019).
There does not seem to be any real technical connection between our work and
this approach, except perhaps that our “non-nested” restriction of RW-factorizable
programs carries a whiff of a linear typing discipline.

• Restricted termination. This is (roughly) the study of measures or bounds on pro-
grams or computation states, such that only those programs having execution that
terminates within the bound, are part of the characterization. This is a flourishing
field, both for traditional programs (Bonfante et al., 2011; Aubert et al., 2022) and
for non-deterministic models such as term rewriting systems (Avanzini et al., 2011,
2015; Avanzini & Moser, 2016).
The approach of the present paper does not use restricted termination in any tech-
nical sense, and the characterizations we provide are not reliant on termination;
there is, however, a tenuous connection in the sense that we use programs with very
restricted ability to construct data structures, and this might be amenable to analysis
by methods devised for ICC using restricted termination.

• Cons-free programs. This is the particular line of inquiry which the present paper
belongs to. Jones (1999) was the first to observe that eschewing constructors yields a
simple method of capturing polynomial-time and logarithmic-space relations. This
paradigm has since been extended to obtain many capturing results in a variety
of contexts, e.g., higher types (Jones, 2001), non-determinism (Bonfante, 2006),
simultaneous higher types and non-determinism (Kop & Simonsen, 2017), tree-
like data (Ben-Amram & Petersen, 1998), term rewriting systems (de Carvalho &
Simonsen, 2014; Czajka, 2018), and cons-free time complexity classes (Bhaskar et
al., 2022; Jones et al., 2020). The present paper is the first to consider computability
of function classes.

2 Preliminaries

We assume a basic familiarity with syntax and semantics of first-order functional program-
ming languages, Turing machines, the Turing machine complexity classes P (polynomial
time) and L (logarithmic space), and their functional variants FP and FL. Note that when
defining a functional space class, the space bound only applies to the work tapes and not
the output tape. Hence, the length of the output of function in FL may in general grow
polynomially in the length of the input.

Following the set-theoretic convention, we identify any natural number n with its set
of predecessors {0, 1, . . . , n − 1} and we denote the set of all natural numbers by ω.
Therefore, 1 = {0}, 2 = {0, 1}, and 1n and 2n are the sets of unary and binary strings of
length n, respectively. We also identify 0 and 1 with ⊥ (false) and � (true), respectively,
so 2 is also the set of boolean values.

We denote the set of all finite unary and binary strings by 1� and 2�, respectively, fol-
lowing the convention in computer science.3 The empty string is denoted ε; its underlying

3 In the set-theoretic convention these are 1<ω and 2<ω respectively.
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alphabet must be inferred from context. The head of a string is its first character, and its
tail is the remainder. The head and tail of ε are undefined. If x is a string, then |x| is its
length.

We typically use lowercase Latin letters such as m, n, u, v, w, x, y for variables that range
over “type-0 objects” such as natural numbers and strings. By, e.g., a “n-ary relation on
strings,” we mean a subset of (2�)n. We use capital Latin letters, e.g., P, Q, X , Y , for vari-
able that range over relations, and f , g, h for variables that range over functions. We use
lowercase Greek letters for variables that range over types. We use typewriter script for
program syntax.

A partial function f : X ⇀ Y is a function f : X ′ → Y for some X ′ ⊆ X ; X ′ is the
domain of convergence of f . If x is in the domain of convergence of f , we write f (x) ↓,
otherwise f (x) ↑, and say that f “converges” or “diverges” on x, respectively. Partial func-
tions converge strictly, meaning that f (g(x)) ↓ implies, in particular, that g(x) ↓. For two
partial functions f , f ′ : X ⇀ Y , we say that f ′ � f in case f ′(x) = y =⇒ f (x) = y for all
(x, y) ∈ X × Y . Finally, note that by “partial function” we do mean a possibly total function,
otherwise we will say properly partial.

The semantics of a program p is the partial function denoted by [[p]]. A program p
computes a partial function f in case [[p]] is identical to f as a partial function. A program
p accepts a set X in case X is the domain of convergence of [[p]]. Finally, a boolean-valued
program p decides a set X if it computes the characteristic function of X .

A partial function computed by a program may in general have a dependent type. Given
a type α and family of types β(x) indexed by x : α, we will refer to the dependent sum type∑

x:α β(x) and the dependent product type
∏

x:α β(x). (When β does not depend on x, these
reduce to α × β and α → β respectively.) The language of dependent types provides an
elegant formulation for counting modules, but we do not use the machinery of dependent
types in any essential way.

A note on functional complexity. Suppose that f : 2� → 2� is contained in the class FP
of polynomial-time computable functions. Consider the function f	 : 2� → 1� defined by
f	(x) = |f (x)|, i.e., the length of f (x). Then, f	 is also in FP; take, for example, any Turing
machine computing f in polynomial time and identify all the characters of its output alpha-
bet. Similarly, consider the function fb : 2� × 1� → 2 defined by fb(x, i) = (

f (x)
)

i
, meaning

the ith-bit of f (x), for any x ∈ 2� and i < |f (x)|. This relation is computable in polynomial
time as well: on input (x, i), write f (x) on a work tape and extract the ith-bit.4

All this is to say, roughly speaking, that if a function of type 2� → 2� is computable
in polynomial time, then so is its length function and its bits relation. We note that the
converse implication is valid too. In other words, if f	 and fb are both computable in poly-
nomial time, then we can compute f in polynomial time by concatenating the bits fb(x, i)
for each i < f	(x).

In other words, we have reduced the notion of polynomial-time computability of func-
tions of type 2� → 2� to polynomial-time computability of relations and of functions
2� → 1�. What do we gain from this? We get some characterization of polynomial-time

4 There is some slight imprecision here, since we haven’t said what fb(x, i) is if i ≥ |f (x)|. It doesn’t matter: we
view fb(x, i) = (

f (x)
)

b as a partial specification. If f ∈ FP, there is some such fb ∈ FP; if there is some such
fb ∈ FP and f	 ∈ FP, then f ∈ FP.
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computability of functions 2� → 2� in terms of cons-free programs. (Cons-free programs
can handle data of type 1� with counting modules, a device for reckoning with natural
number quantities bounded by a polynomial in the length of the input.) So the polynomial-
time computability of f : 2� → 2� may be witnessed by two cons-free programs: one with
string input and counting module output computing the length and another with string and
counting module input and boolean outputs, computing the bits. We shall elaborate on this
later.

The observations we have made about polynomial time apply respectively to logarithmic
space and tail-recursive cons-free programs. The proof is slightly different: notice that if
f : 2� → 2� is in FL, then we cannot compute fb(x, i) by writing f (x) on a work tape, because
it will be too long, in general. However, there is a well-known trick in space complexity to
circumvent this, viz., replacing the write-only output tape by a work tape that records only
the position of the head. Similarly, when computing f (x) using fb and f	, we compute f	(x)
in binary, which compresses it enough to stick it on a work tape.

We compile these observations into an official and easily referenced theorem.

Theorem 1. A function f : 2� → 2� is computable in polynomial time, respectively, loga-
rithmic space, iff there are functions f	 : 2� → 1� and fb : 2� × 1� → 2 computing the length
and bits of f which are computable in polynomial time, respectively logarithmic space.

3 RW-factorizable programs

Let us work over the set 2� of binary strings. Consider the following set of string
primitives5

• hd, denoting the head function, of type 2� ⇀ 2,
• tl, the tail function, of type 2� ⇀ 2
• null, the empty test, of type 2� → 2
• nil, a constant naming the empty string, of type 2�, and
• cons, a binary function prepending a given character onto a given string, of type

2 × 2� → 2.

Now, consider two separate copies of 2�, viz., R, whose strings are read-only, and W ,
whose strings are write-only. Then, we may retype these primitives, replacing each
occurrence of 2� by either R or W as follows:

hd : R ⇀ 2, tl : R ⇀ R, null : R → 2, nil : W , cons : 2 × W → W .

Note that this typing is consistent with strings in R being “read-only” and strings in W
being “write-only.”

From these primitives, we construct a simple first-order programming language. First
we define the types, then terms, of our programming language, then we define the pro-
grams themselves; finally, we equip these programs with an environment-based big-step
semantics.

5 Here we conflate program syntax, e.g., hd, with the function it denotes. We trust that this imprecision causes
no confusion. The symbol ⇀ occurs in hd and tl because they are undefined on the empty string.
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Fig. 1. RW-terms. Letters α, β, and each αi range over product types and each τi ranges over the
atomic types 2 and R.

Definition 1. The three atomic types are 2, R, and W , denoting the type of booleans, read-
only strings, and write-only strings, respectively. A product type is any expression of the
form τ0 × · · · × τn−1, for n ≥ 0, where each τi is either 2 or R. (W is excluded from product
formation.) When n = 0, the product is empty. We extend the type constructor × to apply
to product types by

(τ0 × · · · × τn−1) × (τn × · · · × τm−1) = τ0 × · · · × τm−1.

A function type symbol is an expression of one of the following forms

β → α, β → W , β × W → W ,

where β and α are product types, and α is nonempty.

Definition 2. For each product type α, fix an infinite set Varα of variables of type α. For
each product type β, fix infinite sets RFsymbβ→W and RFsymbβ×W→W of function symbols
of type β → W and β × W → W , respectively; similarly define RFsymbβ→α for each pair
or product types (α, β).

By a variable, we mean any member of any Varα , or the symbol w, which is the sole
variable of type W . By a recursive function symbol, we mean any member of one of the
sets RFsymbβ→W or RFsymbβ×W→W , for any β, W .

Definition 3. An RW term is any expression that can be derived according to the inference
rules in Figure 1.

It is straightforward to show that any RW term has a unique derivation from these infer-
ence rules, and that if an RW term contains any subterm of type W , it must itself have
type W .
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Notice that we restrict the way that W terms can occur: there is only one variable of
type W and recursive function symbols of output type W have at most one W input. This
restriction, which we may refer to as the W-thinness of RW terms, does not ultimately
limit the expressive power of the resulting language. Roughly speaking, this is because a
W datum is a sort of black box: no information can flow out of it and it cannot affect the
shape of a computation. Think of it as a write-only output tape of a Turing machine: a
single write-only output tape suffices.

Definition 4. We identify a few important properties of RW terms.

• An RW term is explicit if it contains no occurrence of a recursive function symbol.
• An RW term is cons-free if it is not of type W ; equivalently, if it does not contain

any subterm of type W .
• An RW term is non-nested in case it contains no occurrence of a recursion func-

tion symbol of type W inside another occurrence of a recursive function symbol of
type W . More precisely, in any application of the bottom-most rule of Figure 1, the
second hypothesis S must be explicit.

• An RW term is tail-recursive in case there is no occurrence of a recursive function
symbol inside any other occurrence of a recursive function symbol, or any primitive
call, or in the if clause of any if / then / else term. More precisely, in any
application of a rule in the second row of Figure 1, or any application of the three
recursive function calls at the bottom of 1, the terms in the hypotheses must be
explicit; when forming if T0 then T1 else T2, T0 must be explicit.

Remark 1. Notice that every tail-recursive term is also non-nested. Tail recursive RW-
factorizable programs will end up capturing FL and non-nested programs will end up
capturing FP; the program leap of Section 1 is witness to the necessity of this restriction.

Notice also that to be non-nested we only forbid nested recursive calls of output type W .
(Surprisingly, we can always eliminate nested recursive calls in the purely cons-free part
of a program, though we will not need this result in the present paper.)

Remark 2. We will actually silently use a slightly more general formulation of tail recur-
sion. Notice that tail recursion affords more flexibility to calls to the primitives over
recursive calls. For example, it is perfectly legal to write phrases such as hd(tl(. . . )) but
not hd(f(. . . )), in a tail-recursive program.

However, consider a transformation T �→ T� on terms that uses the recursive functions
of a previously defined tail-recursive program p†. In arguing that T �→ T� preserves tail
recursion, it suffices to treat calls to the recursive functions of p† like calls to the primitives
as opposed to other recursive calls.6

6 Suppose that a function f is computed by a tail-recursive program from the primitives � and that a function g is
computed by a tail-recursive program from the primitives � ∪ {f }. Then, g can be computed by a tail-recursive
program directly from �, but the simple transformation replacing each call to f by the � program computing it
may not preserve tail recursion. So there is a theorem here, but an ancient one, almost certainly folklore. This
remark appeals to this theorem, basically saying that to show that g is �-tail-recursive, it suffices to show that
it’s � ∪ {f }-tail-recursive. Cf. x2A.1 of Moschovakis (2018).
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Definition 5. An RW-factorizable program consists of a finite list of distinct recursive
function symbols (f0, . . . , fk) and a definition for each one, which takes one of the
following two forms:

fi(xi, w) = Ti or fi(xi) = Ti,

where Ti is a RW-term, xi is a variable, and every recursive function symbol that occurs in
Ti must be one of (f0, . . . , fk). Furthermore

• If the definition of fi is of the form fi(xi, w) = Ti, then fi(xi, w) must be a well-
formed RW term of the same type as Ti, and the only variables that may occur in Ti

are xi and w.
• If the definition of fi is of the form fi(xi) = Ti, then fi(xi) must be a well-formed

RW term of the same type as Ti, and the only variable that may occur in Ti is xi.

The head (term) of a program is the left-hand side of its first line, e.g., f0(x0) or f0(x0, w).
A program is cons-free in case all terms occurring within are cons-free.

Remark 3. Any RW-factorizable program can be split into a “purely cons-free part” and
a “W -part.” The purely cons-free part consists of all recursive function symbols of output
type other than W and their definitions. This part is a self-contained “sub-program”: it does
not contain any recursive function calls of type W , and its semantics is independent of the
rest of the program. The W part of the program consists of all recursive function symbols
of output type W and their definitions. It lies on top of the purely cons-free part, using it as
a black box.

We equip programs with a standard, call-by-value, environment-based big-step seman-
tics. By a value, we mean an element of the domain of some type, and by an environment,
we mean a finite function mapping variables to values.

Definition 6. For a program p, term T , value v of the same type as T , and environment
ρ, we define the relation ρ �p T → v according to the inference rules in Figure 2. We
typically suppress the subscript p from � for legibility.

Definition 7. Given a program p, define [[p]](x) = v iff there is a derivation of [x=
x] �p f0(x) → v, where f0(x) is the head of p. (If the head of p is of the form f0(x, w),
then [[p]](x, w) = v iff there is a derivation of [x= x, w= w] �p f0(x, w) → v.) Since p is
deterministic, [[p]] is easily seen to be a partial function.

Note that the relation �p is independent of the head of p; it is only when defining [[p]] that
we care what the head is.7 Aside from specifying the head, neither �p nor [[p]] is sensitive
to the particular order of the recursive function symbols in a program; it is only because
of overwhelming programming intuition that we say a list instead of a set of function
symbols.

7 A more precise treatment might distinguish headless programs from programs but we find this both slightly
morbid and excessively pedantic.
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Read/write factorizable programs 11

Fig. 2. Program Semantics. In the bottom two rules, f(x) = Tf or f(x, w) = Tf is the recursive def-
inition of f in p. Also, w ranges over values of type W ; r and r′ range over values of type R; b
ranges over values of type 2; the ai range over values of type 2 and R; v, v′, vi range over val-
ues of any product type; and u ranges over values of any type. The value v0 ◦ · · · ◦ vn−1 denotes
concatenation of the constituent tuples. For example if v0 = (a0, a1) and v1 = (a2, a3, a4) then
v0 ◦ v1 = (a0, a1, a2, a3, a4). In general we will not carefully maintain this correspondence between
variable names and their types.

In subsequent sections, we will define programs by extending previously defined pro-
grams with additional recursive function symbols and their definitions. This simply means:
take the old program, forget what its head is, add new lines to the program—we don’t care
in what order—and pick a new head according to the definition at hand. If q is the old
program and p the new one, notice that �p extends �q.

4 Bit-length programs

In this section, we construct a dialect of cons-free programs and use them to define func-
tion computability in the manner sketched in Section 2. In other words, two programs
are needed to witness the computability of a function f : 2� → 2� in polynomial time: one
that computes the bits of f and the other that computes the length. Hence, we call these
programs (rather unimaginatively) bit-length (or BL) programs.

The bit-length dialect differs from the standard cons-free language in two ways. The first
difference is to replace R-data with string indices as follows. Imagine a cons-free program
with a single string input. Then any string constructed during computation will be a suffix
of that input. Instead, we might as well consider indices of the input string. Instead of
querying the head of the various string suffixes, we query the bit of the input string at the
given index.
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Table 1. A correspondence between languages in the present paper on the left and Jones (1999) on

the right. A bit-length program is C-free if it contains no counting modules

bit-length programs CMrec−poly

C-free bit-length programs CMrec\+
tail-recursive bit-length programs CMpoly

C-free tail-recursive bit-length programs CM\+

The second difference is that counting modules—a type of natural numbers with magni-
tude bounded polynomially in the length of the input—are treated as a separate data type,
a dependent type which varies with the length of the input string, as opposed to syntactic
sugar.

Each of these modifications confers an advantage. Replacing R values by string indices
lends a sort of extensional compositionality to bit-length programs that RW-factorizable
programs lack. Meaning, the pair of programs computing a function transforms the same
type of information about the input (its bits and length, given by the index primitives)
into the same type of information about the output (its bits and length, given by the two
programs). Moreover, a careful treatment of counting modules allows for cleaner repre-
sentation strings in 1�. (The relevance of unary strings to computation of functions was
discussed in Section 2.)

We note that the original paper (Jones, 1999) contains a language called CM for counter
machine, which was used as a technical tool in the proofs of the main results of that paper.
A variant, CMrec−poly, is basically identical to our bit-length language. However, our pre-
sentation is different enough to justify a separate treatment. For one, CM and its variants
are imperative instead of functional. Secondly, indices and counting modules are conflated
in CM, whereas we treat them as different types. A glossary between the present paper and
Jones (1999) can be found in Table 1.

As for RW programs, we explain bit-length programs first by discussing types, then
terms, then programs, and finally semantics.

Definition 8. For any n ∈ ω, the counting module C(n) is a data type whose domain is the
set n = {0, 1, . . . , n − 1}, and whose primitives consist of constants naming the maximum
(n − 1), minimum (0), and 1, plus operations of addition, subtraction, and comparison and
equality tests. Addition and subtraction “top out” and “bottom out” at the maximum and
minimum element, respectively.8

Definition 9. For any string x ∈ 2�, the set of indices I(x) is a data type whose domain is
|x| + 1 = {0, 1, . . . , |x|}, and whose primitives consist of constants naming the maximum
(|x|), minimum (0), predecessor (which decrements the index), equality to zero, and bit
(which returns the bit of the input at the given index).

Remark 4. We index strings such that the leftmost character has index the length
of the string, and the rightmost character has index 1. That is, for any string x, x =
x|x|x|x|−1 . . . x2x1. The bit x0 is undefined. This funny indexing makes the compiling

8 If the sum of two numbers is greater than the maximum, for example, then the result is simply the maximum.
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Read/write factorizable programs 13

Fig. 3. Bit/length terms. Here α ranges over product types and τ over atomic types.

between bit-length and cons-free programs cleaner, as identifying indices with suffixes
identifies tl with the predecessor function.

Notice that C and I are dependent types; namely, they are families of types indexed by
some other value (natural numbers or binary strings). Now we introduce program syntax.

Definition 10. There are three atomic type symbols, 2, I , and C, denoting the type of
booleans, indices, and counting modules respectively. A BL-type symbol is any expression
of the form τ0 × · · · × τn−1, for n ≥ 0, where each τi is an atomic type symbol. When n = 0,
the product is empty, and when n = 1, we recover the atomic type symbols. A BL-function
type symbol is an expression of the form β → α, where β and α are product types, and α

is nonempty.

Definition 11. For a BL-type symbol α, we write α(x, n) to denote the type obtained
by specializing each coordinate of α to x or n as appropriate. (Similarly for BL-function
types.)

Remark 5. In the context of a single computation of a bit-length program, x and n will
be fixed. Therefore, it is fine to type variables by type symbols, like 2, I , C, 2 × I × C,
etc., since we do not have multiple instantiations of these types in a single computation. In
contrast, values have types like I(x), I(x) × C(n), etc., where x is a string and n a number.

Definition 12. Fix an infinite set Varα of variables of type α, for each BL-type α, and
an infinite set RFsymbβ→α of BL-function symbols of type β → α, for each function type
β → α. Then, a bit-length term is any expression which can be derived according to the
inference rules in Figure 3.

https://doi.org/10.1017/S0956796823000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000023


14 S. Bhaskar and J. G. Simonsen

Fig. 4. Semantics for bit-length programs. Dependence of � on x, n, and ρ is suppressed for legibil-
ity. f(xf) = Tf is the recursive definition of f in p and xi is the i-th bit of x = x|x| . . . x1. Variables c
and d range over C(n), i ranges over I(x), the ai range over values in any atomic type, and v, v′ and
the vi range over values of any type. In general we will not carefully maintain this correspondence
between variables and their types. As in RW-factorizable programs, note that while we can form
larger tuples from smaller proper tuples, we can only decompose tuples into atomic types.

Definition 13. A bit-length term is explicit in case it contains no occurrence of a recursive
function symbol. It is tail-recursive in case no recursive function symbol occurs inside any
other recursive call, primitive call, or if clause. (We are not concerned with non-nested
bit-length terms.)

Definition 14. A bit-length program is a finite list of lines of the form fi(xi) = Ti, for
0 ≤ i ≤ k, where xi is a variable whose type agrees with the domain of f, and the type of
Ti agrees with the codomain of fi. In addition, the only variable that occurs in Ti must be
xi, and the only recursive function symbols that occur in Ti must be one of (f0, . . . , fk).

Definition 15. For any bit-length program p, input string x ∈ 2�, seed n ∈ ω, term T of type
α, environment ρ binding the free variables of T , and value v of type α(x, n), we define the
relation

x, n, ρ �p T → v

https://doi.org/10.1017/S0956796823000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000023


Read/write factorizable programs 15

according to the inference rules in Figure 4. Note that there is at most one v satisfying the
above relation for each x, n, ρ, p, and T , which means that p is deterministic.

Remark 6. Note the extra two parameters x and n in the definition of semantics of bit-length
programs. These may be viewed as analogous to a global variable if you’re a program-
mer or the structure on the left-hand side of the satisfiability relation if you’re a logician.
Without them, the function symbols max, +, and bit are ill defined.

Definition 16. For any program p and function λ : ω → ω, we define the relation
[[p]]λ(x, y) = w by

x, λ(|x|), [x0 = y] �p f0(x0) → w,

where f0(x0) = T0 is the head of p. By the determinism of p, [[p]]λ is a partial function.

Note that the string variable x becomes the first argument of [[p]]λ. Therefore, if we want
to compute a function which has a single string input by a bit-length program, the head of
that program must be nullary, i.e., have zero inputs.

Definition 17. Fix a string x, natural number n, and program p, and let ρ � T → v mean
x, n, ρ �p T → v. A collision is an occurrence of an inference rule of the form

ρ � T0 → v ρ � T1 → w
ρ � T0 + T1 → min{v + w, n}

such that min{v + w, n} = n, in a derivation formed from the inference rules in Figure 4.
We say a derivation of ρ � T → v is collision-free in case it contains no collisions.

Informally, a collision occurs when an addition operation attempts to overstep (or even
meet) the maximum integer bound n in a derivation. The nice thing about collision-free
derivations is that they are oblivious to this bound.

Lemma 1. If x, n, ρ �p T → v by a collision-free derivation and n′ ≥ n, then x, n′, ρ �p

T → v.

Proof Notice that in the inference rules of Figure 4, a collision is the only instance in
which the conclusion depends on n. Hence if we take a collision-free derivation and
increase n, it is still a valid derivation. �

Remark 7. As a consequence of Lemma 1, if [[p]]λ(x, y) = w by a collision-free derivation
and λ(n) ≤ λ′(n) for all n ∈ ω, then [[p]]λ′ (x, y) = w.

Finally, let us discuss the type of the partial function computed [[p]]λ by a bit-length pro-
gram p, which will in general be a dependent product type. Suppose the recursive function
symbol f0 in the head of program p has type β → α. Then, the type of [[p]]λ is∏

x:2�

(
β(x, λ(|x|)) → α(x, λ(|x|))).
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16 S. Bhaskar and J. G. Simonsen

We identify two important special cases. When β is the empty tuple and α = C, then

[[p]]λ :
∏
x:2�

C(λ(|x|)).

On the other hand, when α = 2 and β = C, then

[[p]]λ :
∑
x:2�

C(λ(|x|)) → 2.

(Note that when both β is empty and α = 2, then [[p]]λ : 2� → 2.)

5 Bit-length computability of functions

The following theorem is a restatement of the theorems TMptime ≡ CMrec−poly and TMlogspace ≡
CMpoly from Jones (1999).

Theorem. Let f be any function of type 2� → 2. Then, the following are equivalent:

• f is computable in polynomial time.
• There is a polynomially bounded function λ : ω → ω and bit-length program p such

that [[p]]λ(x) = f (x), without collisions, for any x ∈ 2�.

We get an analogous result by replacing FP with FL and “bit-length program” with “tail-
recursive bit-length program” throughout.

We use the following extension of this theorem. The basic observation is that the simu-
lations of Turing machines by programs can be augmented by counting modules that keep
track of the lengths of tapes or what comes to the same thing, unary strings. So the simula-
tion extends to Turing machines which return unary strings as output. We sketch the proof
in Appendix B.

Theorem 2. For any function f : 2� → 1�, the following are equivalent:

• f is computable in polynomial time.
• There is a polynomially bounded function λ : ω → ω and a bit-length program p

such that [[p]]λ(x) = f (x), without collisions, for any x ∈ 2�.

For any function f : 2� × 1� → 2 and polynomially bounded function π : ω → ω, the
following are equivalent:

• There is a polynomial-time computable function g : 2� × 1� → 2 such that g(x, y) =
f (x, y) for any string x ∈ 2� and y < π (|x|).

• There is a polynomially bounded function λ : ω → ω and a bit-length program p
such that [[p]]λ(x, y) = f (x, y), without collisions, for any x ∈ 2� and y < π (|x|).

Moreover, we get an analogous result by replacing FP with FL and “bit-length program”
with “tail-recursive bit-length program” throughout.
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Note that the recursive function symbol f0 in the head of the program p should have
type C if f : 2� → 1� and type C → 2 if f : 2� × 1� → 2.

Combining Theorems 1 and 2, we are able to show the fundamental property of bit-
length programs; namely that a function is computable in polynomial time iff there is a
pair of bit-length programs computing the length and bits of f , respectively. Similarly, a
function is computable in logarithmic space iff there is a pair of tail-recursive bit-length
programs computing the length and bits of f respectively.

Theorem 3. For any function f : 2� → 2�, f is computable in polynomial time if and only if
there is a polynomially bounded function λ : ω → ω such that |f (x)| < λ(|x|) for all x ∈ 2�

and a pair of bit-length programs p and q such that

|f (x)| = [[q]]λ(x)

without collisions, for all x ∈ 2�, and additionally for any i < |f (x)|,
(
f (x)

)
i
= [[p]]λ(x, i)

without collisions, where
(
f (x)

)
i
is the ith-bit of f (x).

Furthermore, we get the analogous result for logarithmic space by requiring that p and
q be tail-recursive.

Proof We go through the proof in the polynomial-time case; the proof for the logarithmic-
space case is verbatim, replacing “program” by “tail-recursive program” throughout.

Suppose f : 2� → 2� is computable in polynomial time. By Theorem 1, there exist
polynomial-time computable functions f	 : 2� → 1� and fb : 2� × 1� → 2 such that, for all
x ∈ 2� f	(x) = |f (x)|, and additionally for each i < |f (x)|, fb(x, i) = (

f (x)
)

i
. Let π be a

polynomially bounded function such that |f (x)| < π (|x|).
By Theorem 2 applied to f	, there is a polynomially bounded function λ1 and a bit-length

program q such that [[q]]λ1
(x) = f	(x), without collisions, for any string x. By Theorem 2

applied to fb, there is a polynomially bounded function λ2 and a bit-length program p
such that [[p]]λ2

(x, i) = fb(x, i), without collisions, for any string x and i < π (|x|). Let λ be
a polynomially bounded function dominating both λ1 and λ2. By Remark 7 concerning
collision-free computation, we can replace λ1 and λ2 by λ in the statements above. By
definition of f	, [[q]]λ(x) = |f (x)|, for any string x. By definition of fb and since π (|x|) dom-
inates |f (x)|, [[p]]λ(x, i) = (

f (x)
)

i
for any string x and i < |f (x)|. This concludes the forward

direction.
In the other direction, suppose we have a bound λ and programs p and q satisfying the

desired properties. Then by Theorem 2, the function x �→ |f (x)| : 2� → 1� is computable in
polynomial time. Fix a polynomially bounded function π such that |f (x)| < π (|x|). Then
by Theorem 2 again, there is a function g : 2� × 1� → 2, computable in polynomial time,
such that g(x, i) = [[p]]λ(x, i) for every string x and i < π (|x|). (In particular, g(x, i) = (

f (x)
)

i
for every string x and i < |f (x)|.) Finally, by applying Theorem 1 to x �→ |f (x)| and g, we
conclude that f is computable in polynomial time. �

Theorem 3 suggests the following definition.
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Definition 18. Let f : 2� → 2�, λ : ω → ω, p be a bit-length program whose head recursive
function symbol has type C → 2, and q be a bit-length program whose head recursive
function symbol has type C.

Then we say (λ, p, q) properly computes f in case λ is increasing, |f (x)| < λ(|x|) for all
x ∈ 2�, |f (x)| = [[q]]λ(x), without collisions, for all x ∈ 2�, and additionally for any i < |f (x)|,(
f (x)

)
i
= [[p]]λ(x, i) without collisions.

Then, Theorem 3 can be succinctly restated as follows: membership in FP is equivalent
to being properly computed by some triple (λ, p, q) with polynomially bounded λ, and
membership in FL is equivalent to being properly computed by some triple (λ, p, q) with
polynomially bounded λ and p and q tail-recursive.

6 Compiling RW-factorizable to bit-length programs

We now show how to compile an RW-factorizable program into a pair of bit-length
programs that properly computes the same function. This consists of four program
transformations:

1. The “dagger” transformation †, that translates the RW-terms without W into the
bit-length variant without counting modules. (So, substrings of the input string are
reinterpreted as indices, hd is reinterpreted as bit, tl is reinterpreted as P, etc.)

2. The “diamond” transformation � that takes an RW-term T of type W into a bit-
length term T� of type 2, which detects whether T denotes a string built up from w
or built up from nil.

3. A “length” transformation 	 that takes an RW-term T of type W into a bit-length
term T	 of type C computing the length of T .

4. A “bit” transformation b that takes an RW-term T of type W into a bit-length term
Tb of type 2, which has an extra variable c and computes the bit of T at c.

Each of these transformations requires a translation of types, then terms and values, then
programs, and finally a proof of correctness.9 Moreover, we need to observe that each
transformation preserves tail recursion. For that reason, this section is long, even though
the main idea of each translation is easy to intuit:

• The dagger transformation is straightforward, essentially amounting to a “renam-
ing” of primitives.

• Operationally, when we evaluate a RW-term T of type W into a value v according
to an environment ρ, v is constructed by starting with either the empty string ε or
the string w = ρ(w) and cons-ing various bits in front. The term T� detects which
of ε or w v is “built up” from.

• Suppose p is an RW-factorizable program that contains a recursive function sym-
bol f of type β × W → W . Suppose that ρ �p f(T , S) → v, ρ �p f(T , nil) → u and
ρ �p S → w. Then, there are two possibilities. Either v = uw, in which case

9 The map on types is only explicitly defined for the dagger transformation; the remaining three map the type W
to 2, C, and 2, respectively.
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– |v| = |u| + |w|, and
– vi = wi (if i ≤ |w|), and otherwise is ui−|w|.

Otherwise v = u, in which case |v| = |u| and vi = ui. Which case we are in is given
to us by the diamond transformation.

The rest of the section essentially consists of making these intuitions formal.

6.1 The dagger transformation

The types in an RW-factorizable program are 2, R, and W . The types in a bit-length pro-
gram are 2, I , and C. We first define a map from W -free types to bit-length types and then
extend it to variables, recursive function symbols, terms, and programs.

Definition 19. Let 2† = 2 and R† = I , and extend this to product and function types
coordinate-wise.

Definition 20. For RW variables x not of type W and function symbols f not containing
any type W , let x �→ x† and f �→ f† be a map from RW-factorizable variables and function
symbols into bit-length variables and function symbols, so that for example, if x is of type
τ , then x† is of type τ †. (We may assume these maps are injective.)

Definition 21. Define a map T �→ T† from W -free RW-factorizable terms to bit-length
terms by:

• If T ≡ true or T ≡ false,, then T† ≡ T .
• If T ≡ x, then T† ≡ x†.
• If T ≡ hd(S) then T† ≡ bit(S†).
• If T ≡ tl(S) then T† ≡ P(S†).
• If T ≡ null(S) then T† ≡ null(S†).
• If T ≡ T0 ⊕ · · · ⊕ Tn−1 then T† ≡ T†

0 ⊕ · · · ⊕ T†
n−1.

• If T ≡ S[i] then T† ≡ S†[i].
• If T ≡ if T0 then T1 else T2, then T† ≡ if T†

0 then T†
1 else T†

2 .
• If T ≡ f(S) then T† ≡ f†(S†).

Notice that this transformation trivially preserves tail recursion.

Definition 22. For a cons-free program p = (fi(xi) = Ti)0≤i≤k , let the bit-length program
p† be (f†

i (x†
i ) = T†

i )0≤i≤k . Note that p† is a well-formed program which is tail-recursive if
p is.

Finally, we extend † to a map on values. Note that the type of the map y �→ y† : R → I(x)
depends on an “ambient string” x of which y is a suffix.

Definition 23. For any b ∈ 2, let b† = b. For any string x ∈ 2� and any nonempty suffix y
of x, let y† = |y| (as a member of I(x)). Furthermore,

https://doi.org/10.1017/S0956796823000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000023


20 S. Bhaskar and J. G. Simonsen

• Extend the map to tuples of data coordinate-wise, i.e., if v = (v0, . . . , vn−1) is a
decomposition of v into atomic types, then v† = (v†

0, . . . , v†
n−1). Note that (u ◦ v)† =

u† ◦ v†, where ◦ denotes concatenation.
• For an environment ρ, define the environment ρ† by ρ(x) = v ⇐⇒ ρ†(x†) = v†.

(By this, we mean that the domain of ρ† is the †-image of the domain of ρ.)

Next, we prove correctness of the dagger translation.

Definition 24. Let ρ be an RW environment, i.e., a partial, finite map from RW variables
to RW data. For a string x ∈ 2�, we say that ρ is an x-environment in case for every variable
x of type R, ρ(x) is a suffix of x, and similarly, for every variable x of product type τ0 ×
. . . τn−1, ρ(x)[i] is a suffix of x whenever τi = R.

Remark 8. Suppose p is RW-factorizable program, ρ is an x-environment, T is a cons-free
term, and ρ �p T → v. Then, every R value that appears in the derivation of ρ � T → v

must also be a suffix of x.

The proof of the next lemma is postponed to Appendix A.

Lemma 2. Suppose p is a cons-free program, x is a string, ρ is an x-environment. Then,

ρ �p T → v =⇒ x, ρ† �p† T† → v†.

Example. Consider the program p defined by

evt(y) = if null(y) then true else if hd(y) then odt(tl y) else evt(tl y)

odt(y) = if null(y) then false, else if hd(y) then evt(tl y) else odt(tl y).

Then, evt and odt compute whether the number of occurrences of the character true in
the string y is even or odd, respectively. The program p† is defined by

evt†(y†) = if null(y†) then true else if bit(y†) then odt†(P(y†)) else evt†(P(y†))

odt†(y†) = if null(y†) then false, else if bit(y†) then evt†(P(y†)) else odt†(P(y†)).

Notice that evt† and odt† compute whether the number of occurrences of true with index
at most y† in the input string is even or odd respectively. Thus, if y is bound to a suffix y
of some string x, then evt and odt behave the same on input y as evt† and odt† behave
on input y† (the index |y|) with global input x.

6.2 The diamond transformation

These next three transformations each extend the dagger transformation from pure cons-
free terms to terms of type W in different ways. In the diamond transformation, we will
transform terms of type W into terms of type 2, the idea being that the transformed term
will encode which of nil or w the original term is built up from.

Definition 25. For each recursive function symbol f : β × W → W , let f� be a recursive
function symbol of type β† → 2. (We may assume that the map f �→ f� is injective.)
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Definition 26. We define a transformation T �→ T� from RW terms of type W to bit-length
terms of type 2 as follows:

• If T ≡ w, then T� ≡ false,.
• If T ≡ nil, then T� ≡ true.
• If T ≡ if T0 then T1 else T2 then T� ≡ if T†

0 then T�
1 else T�

2 .
• If T ≡ f(T ′) for some f : β → W , then T� ≡ true.
• If T ≡ f(T ′, S) for some f : β × W → W , then T� ≡ if S� then true

else f�((T ′)†)
• If T ≡ cons(T ′, S) then T� ≡ S�.

Remark 9. This transformation transforms tail-recursive terms into tail-recursive terms. It
never produces a primitive call, and the only things it puts inside recursive calls are outputs
of the † transformation. The only way it possibly produces a non-tail-recursive term is in
the case T ≡ f(T ′, S), when S� goes in an if clause. But if T is tail-recursive, S is explicit,
so S� is explicit, hence contains no recursive function calls.

Definition 27. Given an RW-factorizable program p of type R → W , we define the bit-
length program p� by extending p† as follows. For every function symbol fi of type β ×
W → W with definition fi(xi, w) = Ti, we add a new line f�

i (x†
i ) = T�

i . Note that p� is tail-
recursive if p is.

We ignore function symbols of type β → W . Also, we do not bother to specify a head,
because we will only need �p� , not [[p�]].

Note that p� is a well-formed program: its recursive function symbols consist exactly
of f†

i for fi of type non-W and f�
i for fi of type β × W → W . For the latter, the term

f�
i (x†

i ) is well-formed and of the same type as T�
i . The only variable that may occur in T�

i

is x†
i . Notice as well that p� contains no terms of type C. Hence, when specifying a seman-

tics, we do not need to give a natural number bound n on the upper end of the counting
module.

Lemma 3. Suppose that p is an RW-factorizable program, T is an RW term, x, v, v′, w ∈
2�, ρ is an x-environment, and w is not bound by ρ.

Suppose that ρ, [w= w] �p T → v and ρ, [w= ε] �p T → v′.10 Then either

• x, ρ† �p� T� → � and v = v′, or
• x, ρ† �p� T� → ⊥ and v = v′w.

(The proof is postponed to Appendix A.)
In particular, Lemma 3 implies that for any x, x-environment ρ, w, and term T , if there

exists a v such that ρ, [w= w] � T → v, then there exists a boolean b such that x, ρ† �p�
T� → b. We will silently use this fact in the remainder of this paper.

10 Note that the convergence of the term T only depends on the environment ρ and not on the binding of the
variable w.
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Example. Consider the program id defined by

id(x) = cat(x, nil)

cat(x, w) = if null(x) then w else cons(hd x, cat(tl x, w)),

which computes the identity function of type R → W . Both id and cat have output type
W ; note that id always builds its output from nil and cat always builds its output from
the input w. Then,

id�(x†) = true

cat�(x†) = if null(x†) then false, else if false, then true else cat�(P(x†)).

We can see that id� and cat� compute the always-true and always-false functions, respec-
tively, as they ought to. Note that the dagger and diamond transformations produce C-free
BL-terms. By contrast, the subsequent two transformations make crucial use of counting
modules.

6.3 The length transformation

In the length transformation, we will be transforming terms of type W into terms of type
C. Since the length of any W output of an RW-factorizable program is bounded by a
polynomial in the length of the inputs, it makes sense to try to capture the length within a
counting module.

Definition 28. For each recursive function symbol f of type β × W → W or β → W , let
f	 be a recursive function symbol of type β† → C. (We may assume that the map f �→ f	

is injective.)

Definition 29. We define a transformation T �→ T	 from RW-terms of type W to bit-length
terms of type C as follows:

• If T ≡ w or T ≡ nil, then T	 ≡ 0.
• If T ≡ if T0 then T1 else T2, then T	 ≡ if T†

0 then T	
1 else T	

2 .
• If T ≡ f(T ′), then T	 ≡ f	((T ′)†).
• If T ≡ f(T ′, S), where S has type W , then

T	 ≡ if f�((T ′)†) then f	((T ′)†) else f	((T ′)†) + S	.

• If T ≡ cons(T ′, S), then T	 ≡ 1 + S	.

Remark 10. This transformation does not preserve tail recursion, the problem being
f	((T ′)†) + S	, where the recursive function symbol f	 occurs within the primitive +. This
can be fixed in a couple of ways. For one, we can observe that if T is tail-recursive then T	

is linear recursive, which can always be transformed into an equivalent tail-recursive term
(Greibach, 1975).

But there is an easier fix in this case: just give each f	 an extra input of type c, the
idea being that the new f	(T , c) is the old f	(T) + c. We have to change each recursive
definition f	(x†) = T	 to f	(x†, c) = T	 + c. Then f	((T ′)†) + S	 becomes f	((T ′)†, S	),
and this solves our problem.
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Definition 30. Given an RW-factorizable program p of type R → W , we define the bit-
length program p	 by extending p� by adding the following lines for each recursive
function symbol of output type W :

For each line in p of the following form, add the line

fi(xi) = Ti (f : β → W ) f	
i (x†

i ) = T	
i

fi(xi, w) = Ti (f : β × W → W ) f	
i (x†

i ) = T	
i

Finally, add a new head h= f	
0(max). The resulting program is p	; it is tail-recursive if

p is.

Let us check that p	 is a well-defined bit-length program. In addition to p�, it contains
recursive function symbols f	

i for fi of output type W . If the only variables that may occur
in Ti are xi and w, then the only variable that may occur in T	

i is x†
i , and the only recursive

function symbols that may occur are the recursive function symbols listed above. Finally,
the terms in each line are well-formed and the types of each recursive functions symbol
and its definition agree. Finally, notice that since p has type R → W , p	 has type C.

Definition 31. For a value v of type W , let v	 = |v|.

Lemma 4. For every RW-program p of type R → W, RW term T from p of type W, strings
x, v, and w, natural number n > |v|, and x-environment ρ binding w to w:

ρ �p T → v =⇒ x, n, ρ† �p	 T	 → v	 − δ,

where δ = 0 if ρ† �� T� → � or δ = |w| if ρ† �� T� → ⊥. Moreover, the derivation of the
right-hand side is collision-free.

(The proof is postponed to Appendix A.)

Theorem 4. Suppose that p is an RW-factorizable program of type R → W and suppose
that λ : ω → ω satisfies

(∀x, w ∈ 2�) [[p]](x) = w =⇒ |w| < λ(|x|).
Then,

(∀x, w ∈ 2�) [[p]](x) = w =⇒ [[p	]]λ(x) = |w|;
moreover, without collisions.

Proof Fix x and suppose that [[p]](x) = w. Suppose f0(x0) is the head of p. Then, [x0 =
x] �p f0(x0) → w, so by Lemma 4, since λ(|x|) > w,

x, λ(|x|), [x†
0 = x†] �p	 f	

0(x†
0) → |w|

by a collision-free derivation. Therefore, since x† = |x| (as a member of I(x)), and since |x|
is the denotation of max, we have

x, λ(|x|) �p	 f	
0(max) → |w|.
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Since f0(max) is precisely the head of p	, we have [[p	]]λ(x) = |w|, which is what we wanted
to prove. �

Examples. Consider again the program id given by

id(x) = cat(x, nil)

cat(x, w) = if null(x) then w else cons(hd x, cat(tl x, w)),

Then,

id	(x†) = if cat�(x†) then cat	(x†) else cat	(x†) + 0

cat	(x†) = if null(x†) then 0 else 1 + (
if cat�(P(x†)) then cat	(P(x†)) else

cat	(P(x†)) + 0
)
,

which is semantically equivalent to

id	(x†) = cat	(x†)

cat	(x†) = if null(x†) then 0 else 1 + cat	(P(x†)).

It’s now easy to see that for sufficiently large λ, [[id	]]λ(x) = |x|, as it ought to. (Recall that
the head of id	 is id	(max).)

Consider the following program leap based off of modifying the program from line (1)
in Section 1 to string data:

leap(x) = f(x, nil)

f(x, w) = if null(x) then cons(true, w) else f(tl x, f(tl x, w)).

Then for any string x, [[leap]](x) is a 2|x|-length string of only the character true. Now,

leap	(x†) = if f�(x†) then f	(x†) else f	(x†) + 0

f	(x†) = if null(x†) then 1 + 0 else

if f�(Px†) then f	(Px†) else f	(Px†)+(
if f�(Px†) then f	(Px†) else f	(Px†) + 0

)
.

This is semantically equivalent to

leap	(x†) = f	(x†)

f	(x†) = if null(x†) then 1 else f	(Px†) + f	(Px†),

which we can see correctly computes the base-2 exponential of the length of the input
string (given a sufficiently large counting module).

6.4 The bit transformation

In the bit transformation, we will transform terms of type W into terms of type 2, with
an additional type-C input. The idea is that the transformed term encodes the bits of the
original W -term.
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Definition 32. For each function symbol f of type β × W → W or β → W , let fb be a
recursive function symbol of type β† × C → 2. (We may assume that the map f �→ fb is
injective.)

Definition 33. We define a transformation T �→ Tb from RW terms of type W to bit-length
terms of type 2 as follows. Here c is a fixed variable of type C.

• If T ≡ w or T ≡ nil, then Tb ≡ false,.11

• If T ≡ if T0 then T1 else T2, then Tb ≡ if T†
0 then Tb

1 else Tb
2 .

• If T ≡ f(T ′), then Tb ≡ fb((T ′)†, c)
• If T ≡ f(T ′, S), where S has type W , then

Tb ≡ if f�((T ′)†) then fb((T ′)†, c) else if c≤ S	 then Sb else fb((T ′)†, c− S	).

• If T ≡ cons(T ′, S), then Tb ≡ if c≤ S	 then Sb else (T ′)†,

Notice that the only variables that may occur in Tb are c and x† for x which occur in T ,
and the only recursive function symbols that may occur are fb for f of output type W , and
f† for f of output type non-W , which occur in T .

Remark 11. Not only does this transformation preserve tail-recursive terms, but every term
it produces is tail-recursive (as long as we regard previously defined subterms like S	 and
f�((T ′)†) as explicit, as usual). No matter what T is, no fb will occur inside anything other
than a then- or else-clause in Tb.

Definition 34. Given an RW-factorizable program p of type R → W , we define the bit-
length program pb by extending p	 as follows

For each line of the following form, add the following

fi(xi) = Ti (fi : β → W ) fb
i (x†

i , c) = Tb
i

fi(xi, w) = Ti (fi : β × W → W ) fb
i (x†

i , c) = Tb
i

Finally, add a new head h(c) = fb
0(max, c). The resulting program is pb. It is tail-recursive

if p is.

Let us check that for any RW-factorizable program p of type R → W , pb is a well-
defined bit-length program. It contains the recursive function symbols fb for f in p of type
W , and f† for f in p of type non-W . Since the only variable that appears in T is xi, the only
variables that may appear in Tb are x†

i and c. Finally, the types of fb
i (x†, c) and Ti agree.

Notice that pb contains p	, and hence p� and p†, as “subprograms.” Hence, the semantics
of pb extends the semantics of the previous programs. We now prove its correctness; the
proof is postponed to Appendix A.

Lemma 5. For every RW program p of type R → W, RW term T from p of type W, strings
x, w and v, natural numbers n > |v| and 1 ≤ c ≤ |v| − δ, and x-environment ρ binding w
to w,

11 This definition will not be important in practice; rather, it is purely so that the transformation is always well-
defined. We could have equally well set Tb ≡ true.
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ρ �p T → v =⇒ x, n, ρ†, [c= c] �pb Tb → vc+δ ,

where δ = 0 if ρ† �� T� → � or δ = |w| if ρ† �� T� → ⊥.12 Moreover, the computation
on the right-hand side is without collisions.

Theorem 5. Suppose that p is an RW-factorizable program of type R → W and suppose
that λ : ω → ω satisfies

(∀x, w ∈ 2�) [[p]](x) = w =⇒ |w| < λ(|x|).
Then,

(∀x, w ∈ 2�) [[p]](x) = w =⇒ (∀c ≤ |w|) [[pb]]λ(x, c) = wc,

without collisions.

Proof Fix x, v, and c such that [[p]](x) = v and 1 ≤ c ≤ |v|. Suppose that f0(x0) is the
head of p, so that [x0 = x] �p f0(x0) → v. Therefore, [x0 = x, w= ε] �p f0(x0) → v. By
Lemma 5, since λ(|x|) > v,

x, λ(|x|), [x†
0 = x†, c= c] �pb fb

0(x†
0, c) → vc,

without collisions. (Notice that δ = 0 as w is bound to ε.)
Since x, λ(|x|) �pb max→ |x| and |x| = x†, we have

x, λ(|x|), [c= c] �pb fb
0(max, c) → vc.

But since the head of h(c) is defined to be fb
0(max, c), this implies [[pb]]λ(x, c) = vc, which

is exactly what we wanted to show. �

Theorems 4 and 5 immediately imply the following result, the statement of correctness
for the translation from RW-factorizable to bit-length programs.

Theorem 6. Let f : 2� → 2� be a function, λ : ω → ω satisfy λ(|x|) > |f (x)|, and p be
an RW-factorizable program of type R → W computing f . Then ,(λ, p	, pb) properly
computes f .

Example. Given the program id defined by

id(x) = cat(x, nil)

cat(x, w) = if null(x) then w else cons(hd x, cat(tl x, w)),

idb is defined by

idb(x†, c) = if cat�(x†) then catb(x†, c) else if c≤ 0 then false,

else catb(x†, c− 0)

catb(x†, c) = if null(x†) then false, else if c≤ S	 then Sb else bit(x†),

12 Recall that vc+δ refers to a particular bit of v, where v = v|v| . . . v2v1.
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where S ≡ cat(tl x, w). We know that S	 correctly computes the length of tl(x), which
is (abusing notation) x† − 1. Moreover,

Sb ≡ if cat�(Px†) then catb(Px†, c) else if c≤ 0 then false, else catb(Px†, c− 0).

Recall that cat� computes the always-false function. Combining this all into semantically
equivalent and legible pseudocode, we get

idb(x†, c) = if c≤ 0 then false, else catb(x†, c)

catb(x†, c) = if null(x†) ∨ c≤ 0 then false, else

if c≤ x† − 1 then cat(Px†, c) else bit(x†).

We can see that catb(x†, c) computes the bit indexed by c: operationally, it decrements
the index x† until it is equal to the counting module c, then spits out the bit indexed by x†.
Hence, [[idb]]λ(x, c) computes the bit xc for sufficiently large λ and appropriate values of c.

Observe that for sufficiently large λ, (λ, id	, idb) correctly bit-length computes the
identity function, as [[id	]]λ(x) = |x| and [[idb]]λ(x, c) = xc.

7 Compiling BL- to RW-factorizable programs

In this section, we show how to compile a pair of bit-length programs into a single
RW-factorizable program, thus establishing extensional equivalence for these two notions
of computability, at least for total functions. The core of this section consists of two
transformations:

• The more significant of these is a transformation ‡, which acts as a sort of inverse to
†: it eliminates indices in favor of string suffixes, i.e., R-data, and counting modules
in favor of tuples of R-data. (More precisely, this is a family of transformations
parameterized by how many R values we need to encode a single counting module.)
This process transforms every bit-length program into a cons-free program with a
“global input variable.”

• The simpler transformation takes a cons-free program with a global input variable
into one without. We do this in most naive way possible, simply by passing the
global input as an additional parameter to every recursive call.

The former transformation uses a well-known trick of cons-free programming, namely
that we can simulate a counting module of size polynomial in the input length by a tuple
of suffixes of the input. If we just think of a suffix of the input as encoding its length (i.e.,
forgetting about its bits), then we can identify it with some single digit {0, 1, . . . , n}, where
n is the length of the input. Therefore, we can identify a k-tuple of suffixes with some k-
digit number in base n + 1, which we can identify in turn with some number less than (n +
1)k . To implement the full data type of a counting module, it simply suffices to implement
the fixed-width arithmetic and comparison operations using cons-free programs. In this
way, we can replace polynomially bounded counting modules with fixed-width tuples of R
values.

A complication is the fact that our language does not accommodate nested tuples. For
example, suppose that we had to replace every counting module of type C by three R values
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of type R × R × R. Then if we had a tuple of type I × C × 2, it should be replaced by a
tuple of type (R, R3, 2), but since we don’t have nested tuples, we are required to “flatten it
out” into a tuple of type (R, R, R, R, 2). This makes indexing harder: to get the element of
R3 encoding the counting module, we have to extract the middle three coordinates.

7.1 Programs with global input

Bit-length programs have a global input value, which is the x in the judgment x, n, ρ �p

T → v. RW-factorizable programs, and cons-free programs in particular, do not. It will
be convenient to first transform bit-length programs into cons-free programs with some
global input variable in, and then eliminate it, instead of trying to cram both in one
transformation.

Definition 35. A RW term term with global input is obtained by extending the formation
rules of Figure 1 by the additional axiom in : R. A RW-factorizable program with global
input is defined like an ordinary RW-factorizable program, except that the terms Ti are
RW-terms with global input.

The semantics relation � has the form x, ρ � T → v (note the additional x argument
on the left-hand side) and is defined by extending the rules of Figure 2 by the axiom
x, ρ � in→ x. If f0(x0) is the head of a program p, then we define

[[p]](x, y) = v ⇐⇒ x, [x0 = y] �p f0(x0) → v.

An RW-factorizable program with global input is cons-free if it contains no term of
type W .

We can easily transform a RW program with global input into one without. The basic
idea is to pass the global input explicitly into each recursive function symbol as an extra
argument which never gets modified. The remainder of this subsection consists of mak-
ing this intuition formal. Moreover, we will restrict our attention to cons-free programs,
because that is the only case we need.

Definition 36. For any RW product term α, let αR be α × R. For any RW function term
ρ = β → α, let ρR be βR → α. Define an injection x �→ xR, f �→ fR from variables and
recursive function symbols of type α and ρ to type αR and ρR, respectively.

The idea of the next transformation is we replace the variable x with the variable xR. The
last coordinate of xR stores the “global input” which gets passed around to all the recursive
functions in the program, and the rest of the variable stores the “original variable” x.

Definition 37. Suppose T is a term in which only the variable x may occur. (Call this an
x-term for brevity.) Let n be the length of the type of x. Define the map T �→ Tx

R from
cons-free terms with global input to cons-free terms as follows (for brevity, we omit the
superscript x):

• If T ≡ x, then TR ≡ xR[0, n − 1].
• If T ≡ in, then TR ≡ xR[n].
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• If T ≡ if T0 then T1 else T2 then TR ≡ if (T0)R then (T1)R else (T2)R.
• If T ≡ hd(S), tl(S), or null(S), then TR ≡ hd(SR), tl(SR), or null(SR) respectively.
• If T ≡ T0 ⊕ · · · ⊕ Tn−1, then TR ≡ (T0)R ⊕ · · · ⊕ (Tn−1)R.
• If T ≡ S[i, j], then TR ≡ SR[i, j].
• If T ≡ f(S), then TR ≡ fR(SR ⊕ xR[n]).

Notice that for any RW-term with global input T containing only x, then Tx
R is a well-

formed RW-term of the same type of T . Moreover, xR is the only variable which may occur
in Tx

R . This transformation is easily seen to preserve tail recursion.

Definition 38. Suppose the cons-free program with global input p consists of the lines
fi(xi) = Ti for 0 ≤ i ≤ k. Then define the program pR to consist of lines (fi)R((xi)R) = (Ti)

xi
R

for 0 ≤ i ≤ k.

Note that pR is a well-defined program. It contains the recursive function symbols (fi)R

for each fi from p. The type of (xi)R is the input type of (fi)R. The type of (Ti)
xi
R is the type

of Ti, which is the output type of fi, which is the output type of (fi)R. The only variable
that may occur in (Ti)R is (xi)R, and the only recursive function symbols that may occur
are among ((f0)R, . . . , (fk)R).

In the next lemma, recall that if (u0, . . . , un−1) is a decomposition of the value u
into atomic values, then by u ◦ x we mean (u0, . . . , un−1, x). Its proof is postponed to
Appendix A.

Lemma 6. For any cons-free program with global input p, values x u, and v, variable x,
and x-term T,

x, [x= u] � T → v =⇒ [xR = u ◦ x] � Tx
R → v.

Hence,

Theorem 7. For any cons-free program with global input p with nullary input, string x
and value v, if [[p]](x) = v, then [[pR]](x) = v.

Proof Let f0(x) be the head of p. Since p has nullary input, x is a variable of type the
empty product, and xR is a variable of type R. If [[p]](x) = v, then x � f0 → v. By Lemma 6,
[xR = x] � (f0)R((x0)R) → v. But since (f0)R((x0)R) is the head of pR, [[pR]](x) = v. �

7.2 Eliminating indices and counting modules

In this subsection, we show how to compile any bit-length program into a cons-free pro-
gram with global input. We fix a natural number k ≥ 1 which is the number of copies of
R we want to replace every copy of C by. The transformation ‡ defined in this section
should be understood as parameterized by this number k. First we will define a map on
types, variables, and terms, then values, then programs, and we conclude with a proof of
correctness.
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The main idea: Bit-length programs contain two types of data that RW-factorizable pro-
grams do not: indices and counting modules. We replace indices by single R values and
counting modules by k-tuples of R values.

The former correspondence is straightforward: if the input string x has length n, then
its bits are xn . . . x2x1. R values range over suffixes of x. We encode the index i by the R
value xi . . . x2x1. The “dummy index” 0 is encoded by the empty string. With respect to
this encoding, the index primitives bit, P, null, and max correspond to hd, tl, null,
and in (the global input variable) respectively. The only index primitive that needs to be
programmed is min, which can be replaced by f(in), where

f(x) ≡ if null(x) then x else f(tl(x)).

Let zeroI be the term f(in).
If we ignore the characters in an R-string, it simply encodes a length ranging from

0 to n + 1; i.e., a single digit base n + 1. Hence, a k-tuple of R-data encodes a k-digit
number base n + 1, or alternatively, as a natural number less than (n + 1)k . Therefore,
k-tuples of R data can be used to simulate counting modules which are polynomially
bounded in the length of the input.13 The counting modules primitives +, −, and ≤ can be
replaced by cons-free programs add, minus, and less, which simulate the corresponding
primitives on k-tuples of R values by mimicking any common algorithm for fixed-width
arithmetic.14 The cons-free constants 0 and 1 can similarly be replaced with programs zero
and one, which compute the constant-(0, . . . , 0, 0) and constant-(0, . . . , 0, 1) functions,
respectively.15

We assume the existence of these five programs without constructing them and note that
they can always be made tail-recursive. In fact, all the recursion we need can be collected
into a few important subroutines. Thinking of R values as single digits, we can name the
largest digit (by the global input variable in) and we can decrement digits (by tl). Using
these primitives, we can define simple tail-recursive subroutines incrementing a digit, com-
paring two digits, and naming the digit 0. Then, the programs add, minus, less, zero,
and one are explicit in these subroutines; i.e., can be defined in terms of them using no
additional recursion.

Definition 39. Let 2‡ = 2, I‡ = R, and C‡ = Rk . For every bit-length product type α, define
the RW product type α‡ by replacing every copy of I by R, replacing every copy of C by
Rk , and flattening. For example:

C‡ = Rk

(2 × I × C)‡ = 2 × Rk+1

(2 × C × I × 2 × C × C)‡ = 2 × Rk+1 × 2 × R2k .

Extend this to a map on function types by (β → α)‡ = β‡ → α‡.

13 Indeed, in the original formulation of Jones (1999), counting modules were introduced as syntactic sugar for
fixed-width tuples of R data.

14 When a sum or difference would overflow its bounds of (n + 1)k − 1 or 0, add “tops out” at (n + 1)k − 1 and
minus “bottoms out” at 0, respectively, thus mimicking the behavior of + and − on counting modules.

15 When we say, e.g., constant (0, . . . , 0, 0)-function, the values in the tuple are understood to be R-data.
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Finally, for each product type α, define the map sα : |α‡| → |α| by mapping each coor-
dinate of α‡ to the coordinate “which it comes from” in α. For example, sC : k → 1 is
defined by sC(i) = 0 for all i ∈ k; s2×I×C : k + 2 → 3 and s2×I×C(i) is 0 if i = 0, 1 if i = 1,
and 2 otherwise; and

s2×C×I×2×C×C : 3k + 2 → 6

is defined by

s2×C×I×2×C×C(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0

1 if 1 ≤ i ≤ k

2 if i = k + 1

3 if i = k + 2

4 if k + 3 ≤ i ≤ 2k + 2

5 otherwise

Notice that each such map sα is a monotone (non-decreasing) surjection.

Definition 40. Fix an injection x �→ x‡ from bit-length variables to RW variables such that
if x has type α, x‡ has type α‡. Fix an injection f �→ f‡ from bit-length recursive function
symbols of type ρ to RW function symbols of type ρ‡, for every bit-length function type ρ.

In the next definition, in is a fixed variable of type R naming the global input, zero and
one are fixed function symbols of type C†, add and minus are fixed function symbols of
type (C × C → C)‡, and less is a fixed function symbol of type (C × C → 2)‡.

Definition 41. Define a map T �→ T† from bit-length terms to cons-free terms with global
input by:

• If T ≡ true or T ≡ false, then T‡ ≡ T .
• If T ≡ x, a variable of type α, then T‡ ≡ x‡.
• If T ≡ 0 then T‡ ≡ zero.
• If T ≡ 1 then T‡ ≡ one.
• If T ≡ T0 + T1 then T‡ ≡ add(T‡

0 , T‡
1 ).

• If T ≡ T0 − T1 then T‡ ≡ minus(T‡
0 , T‡

1 ).

• If T ≡ T0 ≤ T1, then T‡ ≡ less(T‡
0 , T‡

1 ).
• If T ≡ min then T‡ ≡ zeroI .
• If T ≡ max then T‡ ≡ in.
• If T ≡ P(S) then T‡ ≡ tl(S‡).
• If T ≡ null(S) then T‡ ≡ null(S‡).
• If T ≡ bit(S) then T‡ ≡ hd(S‡).
• If T ≡ T0 ⊕ · · · ⊕ Tn−1 then T‡ ≡ T‡

0 ⊕ · · · ⊕ T‡
n−1.

• If T ≡ S[i, j], let m be the length of S and n the length of S‡. Then, T‡ ≡ S‡[ı , j ],
where the interval [ı , j ] ⊆ m is the sα-pre-image of [i, j] ⊆ n.

• If T ≡ if T0 then T1 else T2 then T‡ ≡ if T‡
0 then T‡

1 else T‡
2 .

• If T ≡ f(S), then T ≡ f‡(S‡).
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Now we define a map on values. For this definition, recall the bijection

f : n × · · · × n︸ ︷︷ ︸
k copies

→ nk

defined by (d0, . . . , dk−1) �→ ∑
i<k dini. Intuitively, this identifies k-digit numerals base n

with the numbers they denote.

Remark 12. As long as zero, one, add, minus, and less are implemented by tail-
recursive programs, this transformation is easily seen to preserve tail recursion.

Definition 42. For any string x ∈ 2�, define the map v �→ v‡ as follows. If v ∈ 2, then
v

‡
x = v. If v ∈ I(x), then v

‡
x is the suffix of x of length |v|. If v ∈ C((|x| + 1)k), then v

‡
x is the

unique k-tuple of suffixes (s0, . . . , sk−1) of x such that

v =
∑
i<k

|si|(|x| + 1)i.

If (v0, . . . , vn−1) is a decomposition of v into atomic types, then v‡ = v
‡
0 ◦ · · · ◦ v

‡
n−1.

Notice that for any values u and v, (u ◦ v)‡ = u‡ ◦ v‡.

Definition 43. Given a bit-length program p = (fi(xi) = Ti), the cons-free program with
global input p‡ is defined to be (f‡

i (x‡
i ) = T‡

i ).

This program is well-defined: if Ti is an xi-term, then T‡
i is an x‡

i -term. The only recur-
sive function symbols that may occur in T‡

i , besides the previously defined zeroI , zero,
one, add, minus and less, are the f‡

j . Moreover, it is tail-recursive if p is.
The proof of the next result is postponed to Appendix A.

Lemma 7. For every bit-length program p, bit-length term T from p, string x, x-
environment ρ, and value v,

x, (|x| + 1)k , ρ �p T → v =⇒ x, ρ‡ �p‡ T‡ → v‡.

Lemma 7 and Theorem 7 have the following corollary. Let p‡
R be (p‡)R.

Theorem 8. For any bit-length program p and polynomially bounded λ : ω → ω, string x
and value v, if [[p]]λ(x) = v without collisions, then [[p‡

R]](x) = v‡.

Proof Choose k such that λ(n) < (n + 1)k for all n and define μ : ω → ω by μ(n) =
(n + 1)k . Suppose that [[p]]λ(x) = v without collisions. Then, [[p]]μ(x) = v by monotonic-
ity of collision-free computation. By Lemma 7 and the definition of p‡, [[p‡]](x) = v‡. By
Theorem 7, [[p‡

R]](x) = v‡. �

Example. The following program of type C × C → C multiplies its two inputs. (Or rather,
the two coordinates of its single input—recall these are c[0] and c[1].)

f(c) = if c[0] ≤ 0 then 0 else c[1] + f(c[0] − 1, c[1]).
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Suppose that k = 2, so we replace each occurrence of C by two copies of R. Then, the
type of c‡ is R4, where the former and latter two copies of R correspond to c[0] and c[1],
respectively. Hence,

f‡(c‡) = if less(c‡[0, 1], zero) then zero else add(c‡[2, 3], f‡(minus(c‡[0, 1], one),

c‡[2, 3])).

7.3 Building type-W output

So far we have shown that we can convert any bit-length program p into an equivalent
cons-free RW-factorizable program p‡

R. Given a polynomially bounded function λ and bit-
length programs p and q such that (λ, p, q) properly computes a function f , how do we use
the cons-free programs q‡

R and p‡
R to form an RW-factorizable program computing f ? (As

above, ‡ is dependent on a parameter k, which we choose large enough so that (n + 1)k

dominates λ.)
As usual, the basic idea is straightforward. We compute the length of the output string

using q‡
R. We iterate through indices of the output string less than q‡

R and compute the
corresponding bit of the output string using p‡

R. For each of these computed bits, we cons-
them on to a variable w, which “accumulates” the eventual output.

If we were to write this in a legible but informal imperative pseudocode, it would look
like this:

w= nil

for 1≤ c≤ [[q‡
R]](x)

w= cons([[p‡
R]](x, c), w)

return w

It is easy to see that this program computes f (x) on input x, as it outputs a string of length
[[q‡

R]](x) whose i-th bit is [[p‡
R]](x, i). Written slightly more carefully, we get this:

out(x) = f(x, one, nil)

f(x, c, w) = if c= hq(x) then w else f(x, add(c, one), cons(hp(x, c), w)),

where hp and hq denote the heads of the programs p‡
R and q‡

R, respectively. But even here,
we have sacrificed some precision for legibility: for example, we must replace = by two
occurrences of less, and a term like f(x, 0, nil) must be understood as f(x⊕ 0, nil).

Thus, we have transformed (λ, p, q) into an RW-factorizable program computing the
same function. Moreover, note that it is non-nested, and tail-recursive if p and q are.16

Combined with Theorem 6, we get the following translation result:

Theorem 9. For every function f : 2� → 2� whose length is polynomially bounded, there
is a non-nested RW-factorizable program of type R → W computing f iff there is a poly-
nomially bounded function λ and bit-length programs p and q such that (λ, p, q) properly
computes f .

16 Recall that “non-nested” only applied to recursive functions of output type W .
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Similarly, there is a tail-recursive RW-factorizable program of type R → W computing
f iff there is a polynomially bounded function λ and tail-recursive bit-length programs p
and q such that (λ, p, q) properly computes f .

Theorems 9 and 2 have the following immediate consequence, which is the central result
of this paper:

Theorem 10. For any function f : 2� → 2�, f ∈ FP iff f is computed by a non-nested RW-
factorizable program of type R → W, and f ∈ FL iff f is computed by a tail-recursive
RW-factorizable program of type R → W.

A few comments are in order. The proof of this theorem gives us a rather strong normal
form for non-nested RW-factorizable programs. Namely, each such program can be written
with a single for loop on top of purely cons-free subroutines. We know that those cons-
free subroutines can be made non-nested in general, and can furthermore be made tail-
recursive if the original program was tail-recursive.

It remains an open question which complexity class general (i.e., possibly nested)
RW-factorizable programs capture, but it seems to be intermediate between the class of
polynomial time and polynomial space functions. (Recall that the length of the output of
the latter functions can grow exponentially in the length of the input.) A plausible can-
didate is functions whose length is computable in polynomial space, but whose bits are
computable in polynomial time.

8 Composing bit-length programs

Finally, we turn to the problem of syntactic composition: producing a program r such
that [[r]] = [[p]] ◦ [[q]] given p and q. In most programming languages this is trivial: we
combine programs p and q and add a new head hp(hq(x)), where hp and hq are the recursive
function symbols in the heads of p and q respectively. However, this does not work for
RW-factorizable programs of type R → W , as the term hp(hq(x)) would be ill-typed.

However, since we can transform RW-factorizable programs to and from equiva-
lent pairs of bit-length programs, it suffices to syntactically compose these.17 As we
have remarked above, pairs of bit-length programs are compositional in a rough exten-
sional sense: we are given bit- and length-access to the input, and we compute bit- and
length-access to the output.

More precisely, suppose we have a triple (λf , pf , qf ) that properly computes a function
f and a triple (λg, pg, qg) that properly computes g. We want to transform pf and qf so
that they output the bits and length of f (g(x)), as opposed to f (x). Namely, we must “re-
interpret” the primitives in pf and qf so that it returns the bits of g(x) instead of bits of x,
and the constant max so that it returns the maximum index of g(x) instead of the maximum
index of x. Luckily this is exactly what we have in pg and qg.

17 To be completely syntactic when we transform an RW-factorizable program into an equivalent triple (λ, p, q),
we must provide a finite description for λ as well. This is not hard: if f is computable by an RW-factorizable
program, then its length on inputs of length n is bounded by a(n + 1)b, where a is something like the number
of distinct terms that occur in the program and b is the maximum length of any tuple.
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Finally, we have to find a suitable bound for the size of the counting module in the com-
posed program. We assume λf and λg are increasing and dominate the identity function.
Note that if |f (x)| ≤ λf (|x|) and |g(x)| ≤ λg(|x|), then |f (g(x))| ≤ (λf ◦ λg)(|x|). Hence, we
may take λf ◦ λg.

We now present the formal development, which follows a familiar rhythm: a map
on types, on values, terms, and programs, followed by a proof of that the program
transformation behaves how we want it to. In this section, let us fix:

• functions f , g : 2� ⇀ 2�,
• increasing functions λf , λg : ω → ω, each dominating the identity function, such that

λf (|x|) > |f (x)| and λg(|x|) > |g(x)| for all x,
• a function μ : ω → ω satisfying μ ≥ λf ◦ λg,
• a triple (λf , pf , qf ) properly computing f , and
• a triple (λg, pg, qg) properly computing g.

Note that the map defined in this section will be denoted by a g in the subscript, e.g.,
T �→ Tg. For types, terms, and programs, this g is purely formal; not so for values, where
it actually depends on the partial function g.

Definition 44. Let 2g = 2, Ig = C, and Cg = C. Extend this map to a map α �→ αg on
product types coordinate-wise, and thence to a map (β → α) �→ (βg → αg) on function
types.

Definition 45. For each product type α, fix an injection x �→ xg : Varα → Varαg and an
injection f �→ fg : RFsymbρ → RFsymbρg

.

For the next definition, notice that |g(x)| ≤ λg(|x|) ≤ λf (λg(|x|)) ≤ μ(|x|) and λf (|g(x)|) ≤
λf (λg(|x|)) ≤ μ(|x|), by the assumption that λf is increasing and dominates the identity.

Definition 46. For each x ∈ 2�, we define a map v �→ vg : I(g(x)) → C(μ(|x|)) and
C(λf (|g(x)|)) → C(μ(|x|)) by inclusion as initial segments of ω. Extend this to a map
v �→ vg on product types coordinate-wise, fixing boolean values.

For the next definition and henceforth, let hp(c) and hq be the heads of pg and qg. Notice
that these are terms of type 2 and C respectively, and that c is a variable of type C.

Definition 47. Given a term T of type α, we define the term Tg of type αg as follows:

1. If T ≡ x (a variable) then Tg ≡ xg.
2. If T ≡ f(T ′), then Tg ≡ fg(T ′

g).
3. If T ≡ true, false,, 0, or 1, then Tg ≡ T .
4. If T ≡ T0 + T1, T0 − T1, or T0 ≤ T1, then Tg ≡ (T0)g + (T1)g, (T0)g − (T1)g, or

(T0)g ≤ (T1)g respectively.
5. If T ≡ min, then Tg ≡ 0.
6. If T ≡ max, then Tg ≡ hq.
7. If T ≡ P(T ′) or null(T ′), then Tg ≡ T ′

g − 1, or T ′
g ≤ 0, respectively.

8. If T ≡ bit(T ′), then Tg ≡ hp(T ′
g).
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9. If T ≡ (T0, . . . , Tn−1), then Tg ≡ ((T0)g, . . . , (Tn−1)g).
10. If T ≡ T ′[i], then Tg ≡ (T ′

g)[i].
11. If T ≡ if T0 then T1 else T2, then Tg ≡ if (T0)g then (T1)g else (T2)g.

Definition 48. Given a program p = (fi(xi) = Ti)0≤i≤k , let program p(g) be defined by com-
bining the programs pg and qg, then adding new lines ((fi)g((xi)g) = (Ti)g)0≤i≤k on top.
(The head of p(g) is the line (f0)g((x0)g) = (T0)g, where f0(x0) = T0 is the head of p.)

Lemma 8. For any program p, environment ρ, string x, term T, and value v,

g(x), λf (|g(x)|), ρ �p T → v =⇒ x, μ(|x|), ρg �p(g) Tg → vg,

without collisions, if the derivation of the left-hand side has no collisions.

(The proof is in Appendix A.)

Theorem 11. (μ, (pf )(g), (qf )(g)) properly computes f ◦ g.

Proof Let h′
p(c) and h′

q be the left-hand-sides of the heads of pf and qf respectively. Fix a
string x. By definition of qf ,

g(x), λf (|g(x)|) �qf h
′
q → |f (g(x))|

without collisions. Hence by Lemma 8,

x, μ(|x|) �(qf )(g) (h′
q)g → |f (g(x))|,

i.e., [[(qf )(g)]](x) = |f (g(x))|, without collisions.
By definition of pf , for each i < |f (g(x))|,

g(x), λf (|g(x)|), [c= i] �pf h
′
p(c) → (f (g(x)))i

without collisions. Hence, by Lemma 8,

x, μ(|x|), [cg = i] �(pf )g (p0
f )g(cg) → (f (g(x)))i,

i.e., [[(pf )(g)]](x, i) = (f (g(x)))i, without collisions. �

Example. Let qg be the program

hq = q(max)

q(x) = if null(x) then 0 else 1 + q(P(x)),

and let pg be the program

hp(x) = if bit(x) then false, else true.

In other words, for sufficiently large λ, (λ, pg, qg) computes the function which flips the
bits of the input string. Let us square this function, i.e., create an identical pair of programs
(pf , qf ), distinguishing the function symbols of the latter by replacing, e.g., q by q′, and
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then composing (pf , qf ) with (pg, qg). We get for the length component:

h′
q = q′(hq)

q′(xg) = if xg ≤ 0 then 0 else 1 + q′(xg − 1)

hq = q(max)

q(x) = if null(x) then 0 else 1 + q(P(x)),

and for the bits component,

h′
p(xg) = if hp(xg) then false, else true

hp(x) = if bit(x) then false, else true.

By inspection, we can see that this pair of programs computes the identity function, as it
should.

9 Discussion and open questions

We have identified RW-factorizable programs as a simple extension of cons-free programs
that captures functional polynomial time and logarithmic space, and we have also shown
how to compose two such programs. We introduced the notion of bit-length computabil-
ity as auxiliary machinery to help us show these results. Our work suggests a number of
subsequent questions:

1. Higher orders, non-determinism, and other data types.
Cons-free programs have been studied in all of these contexts. Jones (2001) showed
that deterministic cons-free programs at higher orders capture the deterministic
exponential hierarchy, whose union is the class of elementary relations. Kop &
Simonsen (2017) showed that whereas non-deterministic first-order cons-free pro-
grams are no more expressive than deterministic ones, even non-deterministic
second-order programs capture the entire class of elementary relations. Ben-
Amram & Petersen (1998) studied cons-free programs over tree data. Does the
RW-factorizable paradigm extend smoothly to all of these situations?

2. RW-factorizable algorithms
Many algorithms seem to be RW-factorizable, in the sense that they have read-
only input and write-only output (allowing for some flexibility in what we mean
by “read” and “write”). For example, both selection sort and insertion sort seem
to follow this paradigm: both algorithms have an input list which gets whit-
tled down over the course of computation while the output list is simultaneously
built up. Mergesort, on the other hand, is definitely not RW-factorizable: whereas
merge can be consistently typed by R → W , the recursive definition sort(u) =
merge(sort(u0), sort(u1)) forces sort(u) to be of type R and W simultaneously.
Are there general techniques or results that apply to RW-factorizable algorithms
in general, for example, stronger lower bounds? More generally, can we consider
other ways to separate construction from destruction that just variable typing?
(e.g., in heapsort we separate them chronologically: the same piece of data is first
constructed, then destructed.)
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3. RW-factorizable programs as an indexing of polynomial-time functions.
If we fix an encoding of RW-factorizable programs by binary strings, we get
an indexing of polynomial-time functions, i.e., an identification of strings with
functions. Indexings of partial recursive functions are the central topic in recur-
sion theory, but indexings of complexity classes (or subrecursive indexings) have
received a little bit of attention in the context of proving, e.g., speedup phenomena
for non-Turing complete languages (Constable & Borodin, 1972; Alton, 1980).18

Kozen (1978) has identified several simple axioms of subrecursive indexings with
significant consequences, for example, Kleene’s second recursion theorem. One of
these axioms is the existence of a polynomial-time function which gives a code for
f ◦ g given codes for f and g. It seems likely that the transformations in this paper
can be computed in polynomial time, and that the natural indexing of FP given by
RW-factorizable programs satisfies this and the other axioms.
This suggests that we might look for speedup phenomena within the class of
RW-factorizable programs itself. Given that cons-free running time corresponds
to something like (the exponential of) circuit depth, such speedups might have
complexity-theoretic consequences (Bhaskar et al., 2022).
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Appendix A: Proofs of correctness

In this section, we collect all the proofs of correctness for transformations defined earlier.

Lemma (Lemma 2). Suppose p is a cons-free program, x is a string, ρ is an x-
environment. Then,

ρ �p T → v =⇒ x, ρ† �p† T† → v†.

Proof The proof is by induction on the length of the derivation of ρ � T → v. Abbreviate
x, ρ† �p† by ρ† �.

• If T ≡ true or T ≡ false,, then v = � or v = ⊥, and v† = v and T† ≡ T .
• If T ≡ x, then T† ≡ x†, and hence, ρ† � T† → ρ(x†), which is v†.
• If T ≡ hd(S), then let u satisfy ρ � S → u. Then by the suffix property, u is a suffix

of x, so the head of u is the bit x|u| and ρ � T → x|u|. By induction, ρ† � S → u† so
ρ† � bit(S†) → xu† , but u† = |u|.

• If T ≡ tl(S), then there exists a u and b ∈ 2 such that v = bu and ρ � S → u. By
induction, ρ† � S† → |u|. Hence, ρ† � P(S†) → |u| − 1.

• If T ≡ null(S), then v is true or false depending on whether S is the empty string.
Similarly, null(S†) is true or false depending on whether S† is zero, the length of
the empty string.
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• If T ≡ T0 ⊕ · · · ⊕ Tn−1, then there exist v0, . . . , vn−1 such that ρ � Ti → vi for each
i < n and v = v0 ◦ · · · ◦ vn−1. By induction, ρ† � T†

i → v
†
i for each i < n. Since v† =

v
†
0 ◦ · · · ◦ v

†
n−1, ρ† � T†

0 ⊕ · · · ⊕ T†
n−1 → v†; hence, ρ† � T† → v†.

• If T ≡ S[i], then there exists a value u such that ρ � S → u, (u0, . . . , un−1) is a
decomposition of u into atomic values, and v = ui. By induction, ρ† � S† → u†,
where u† = (u†

0, . . . , u†
n−1). Thus, ρ† � S†[i] → u†

i , which says ρ† � T† → v†.
• If T ≡ if T0 then T1 else T2, assume ρ � T0 → �. (The case ρ � T0 → ⊥ is

similar.) Then, ρ � T1 → v. By induction, ρ† � T†
0 → � and ρ† � T†

1 → v†. Hence,
ρ† � T → v†.

• If T ≡ f(S), then let f(xf) = Tf be the definition of f in p. Then there exists some
u such that ρ � S → u and [xf = u] � Tf → v. By induction, ρ† � S† → u† and
[(xf)† = u†] � (Tf)† → v†. Hence ,ρ† � f†(S†) → v†, and ρ† � T† → v†. �

Lemma (Lemma 3). Suppose that p is an RW-factorizable program, T is an RW-term,
x, v, v′, w ∈ 2�, ρ is an x-environment, and w is not bound by ρ.

Suppose that ρ, [w= w] �p T → v and ρ, [w= ε] �p T → v′.19 Then either

• x, ρ† �p� T� → � and v = v′, or
• x, ρ† �p� T� → ⊥ and v = v′w.

Proof Abbreviate ρ, [w= w] �p T → v by [ρ, w] � T → v, and similarly abbreviate
ρ, [w= ε] �p T → v by [ρ, ε] � T → v. Abbreviate x, ρ† �p� T� → b by ρ† �� T� → b.
The proof proceeds by induction on the size of the derivation of [ρ, w] � T → v and breaks
up into cases depending on the form of T .

• If T ≡ w, then v = w, ρ† �� T� → ⊥, and v′ = ε. In this case, v = w = εw = v′w, so
we’re done.

• If T ≡ nil, then v = ε, ρ† �� T� → �, and v′ = ε. In this case v = ε = v′, so we’re
done.

• If T ≡ if T0 then T1 else T2, first suppose that ρ � T0 → �. By Lemma 2, ρ† ��
T†

0 → �. By definition of T , [ρ, w] � T1 → v and [ρ, ε] � T1 → v′. By induction,
either ρ† �� T�

1 → � or ρ† �� T�
1 → ⊥.

Suppose that ρ† �� T�
1 → �. By induction v = v′. By definition of T�, ρ† �� T� →

�. Similarly, suppose that ρ† �� T� → ⊥. By induction, v = v′w. By definition of
T�, ρ† �� T� → ⊥, and we’re done.
(The case ρ � T0 → ⊥ is similar.)

• Suppose that T ≡ f(T ′) for some f : β → W . Then, the variable w does not occur in
T , so v′ = v. Since T� ≡ true, ρ† �� T� → �, and we are done.

• Suppose that T ≡ f(T ′, S) for some f : β × W → W . Suppose that f(xf, w) = Tf is
the recursive definition of f in p. Then there exist t and s such that ρ � T ′ → t,
[ρ, w] � S → s, and [xf = t, w= s] � Tf → v, and there exists s′ such that [ρ, ε] �
S → s′ and [xf = t, w= s′] � Tf → v′. By Lemma 2, ρ† � (T ′)† → t†. Since conver-
gence is independent of the binding of w, there exists a v′′ such that [xf = t, w= ε] �
Tf → v′′.

19 Note that the convergence of the term T only depends on the environment ρ and not on the binding of the
variable w.
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Now

[xf = t, w= s] � Tf → v and [xf = t, w= ε] � Tf → v′′.

By induction,
(
[(xf)† = t†] �� (Tf)� → � ∧ v = v′′) ∨ (

[(xf)† = t†] �� (Tf)� → ⊥ ∧ v = v′′s
)
.

Similarly,

[xf = t, w= s′] � Tf → v′ and [xf = t, w= ε] � Tf → v′′.

By induction,
(
[(xf)† = t†] �� (Tf)� → � ∧ v′ = v′′) ∨ (

[(xf)† = t†] �� (Tf)� → ⊥ ∧ v′ = v′′s′).

First assume [(xf)† = t†] �� (Tf)� → �. Then, v = v′′ = v′ and (by definition of T�)
ρ† �� T� → �, which completes this case.
Next assume then that [(xf)† = t†] �� (Tf)� → ⊥. In this case, v = v′′s and v′ = v′′s′.
Now

[ρ, w] � S → s and [ρ, ε] � S → s′.

Then by induction,
(
ρ† �� S� → � ∧ s = s′) ∨ (

ρ† �� S� → ⊥ ∧ s = s′w
)
.

If ρ† �� S� → �, then v = v′′s = v′′s′ = v′ and ρ† �� T� → � (by definition of T�).
If, on the other hand, ρ† �� S� → ⊥, then v = v′′s = v′′s′w = v′w and ρ† �� T� → ⊥
(by definition of T�). This finishes the case that T ≡ f(T ′, S).

• If T ≡ cons(T ′, S), then there are strings s and s′ and a character c ∈ 2 such that
[ρ, w] � S → s, [ρ, ε] � S → s′, v = cs, and v′ = cs′. By induction, either ρ† ��
S� → � and s = s′ or ρ† �� S� → ⊥ and s = s′w. In the first case, ρ† �� T� → �
and v = cs = cs′ = v′. In the second case, ρ† �� T� → ⊥ and v = cs = cs′w = v′w.

�

Lemma (Lemma 4). For every RW program p of type R → W, RW term T from p of type
W, strings x, v, and w, natural number n > |v|, and x-environment ρ binding w to w:

ρ �p T → v =⇒ x, n, ρ† �p	 T	 → v	 − δ,

where δ = 0 if ρ† �� T� → � or δ = |w| if ρ† �� T� → ⊥. Moreover, the derivation of the
right-hand side is collision-free.

Proof Let ρ � T → v abbreviate ρ �p T → v and ρ �	 T → v abbreviate x, n, ρ �p	 T →
v. The proof proceeds by induction on the derivation of ρ � T → v and breaks up into
cases depending on the form of T . To verify that the derivation is collision-free, we note
that any time we add counting modules we do not introduce a new collision. Note that
since p	 contains p�, �	 extends ��.

• If T ≡ w, then v = w and v	 = |w|. Moreover, ρ† �	 T� → ⊥, so δ = |w| and v	 −
δ = 0. But in this case, T	 ≡ 0.
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• If T ≡ nil, then v = ε. Moreover, ρ† �	 T� → �, so δ = ε and v	 − δ = 0. But in
this case, T	 ≡ 0 as well.

• If T ≡ if T0 then T1 else T2, assume ρ � T0 → � (the case ⊥ is similar).
By Lemma 2, ρ† �	 T†

0 → 1, so by definition of T�, ρ† �	 T� → � ⇐⇒ ρ† �	

T�
1 → �. Therefore, the δ associated with T1 is identical to the δ associated with

T , and we can simply say δ unambiguously.
Since ρ � T0 → 1, ρ � T1 → v, so (by induction) ρ† �	 T	

1 → v	 − δ. Since ρ† �	

T†
0 → �, ρ† �	 T	 → v	 − δ by definition of T	.

• If T ≡ f(T ′), let f(xf, w) = Tf be the definition of f in p. There exists a value t
such that ρ � T ′ → t and [xf = t] � Tf → v. By induction, [(xf)† = t†] �	 (Tf)	 →
v	. Hence, ρ† �	 f	((T ′)†) → v	, and ρ† �	 T	 → v	. (In this case, ρ† �	 T� → �.)

• If T ≡ f(T ′, S), let f(xf, w) = Tf be the definition of f in p. There exist values t and
s such that ρ � T ′ → t, ρ � S → s, and [xf = t, w= s] � Tf → v.
Let us first suppose that ρ† �� f�((T ′)†) → �. By Lemma 2, ρ† �	 (T ′)† → t†. Since
the recursive definition of f� is f�((xf)†) = (Tf)�, we have that [(xf)† = t†] �	

(Tf)� → �. By induction, [(xf)† = t†] �	 (Tf)	 → v	; hence, ρ† �	 f	((T ′)†) → v	.
By definition of T	, ρ† �	 T	 → v	, which is what we wanted to show.
Now suppose that ρ† �� f�((T ′)†) → ⊥. By definition of T�, ρ† �	 T� → b iff ρ† �	

S� → b for both boolean values b. Therefore, since w is bound to the same value
(w) in S as in T , the value of δ can be used unambiguously in both the inductive
hypothesis at S and the conclusion at T .
Moreover, [(xf)† = t†] �	 (Tf)� → ⊥. Thus, by the inductive hypothesis applied
to [xf = t, w= s] � Tf → v, [(xf)† = t†] �	 (Tf)	 → v	 − |s|, and therefore, ρ† �	

f	((T ′)†) → v	 − |s|. By the inductive hypothesis at ρ � S → s, ρ† �	 S	 → s	 − δ.
As s	 = |s|, ρ† �	 f	(T†) + S	 → v	 − δ. (Note that this uses the assumption that
n > |v|, which also verifies that this addition does not introduce a new collision.)
Finally, since ρ† �� f�((T ′)†) → ⊥ and by definition of T	, ρ† �	 T	 → v	 − δ,
which is what we wanted to show.

• If T ≡ cons(T ′, S), then there exists a character c ∈ 2 and a string s such that ρ �
T ′ → b, ρ � S → s, and v = cs. As in the previous case, the values of δ at S and T
are identical. By induction, ρ† �	 S	 → |s| − δ, so ρ† �	 T	 → |s| + 1 − δ, which is
|v| − δ. (We again use the assumption that n > |v| here, which again verifies that
this addition does not introduce a new collision.) �

Lemma (Lemma 5). For every RW program p of type R → W, RW term T from p of type
W, strings x, w and v, natural numbers n > |v| and 1 ≤ c ≤ |v| − δ, and x-environment ρ

binding w to w,

ρ �p T → v =⇒ x, n, ρ†, [c= c] �pb Tb → vc+δ ,

where δ = 0 if ρ† �� T� → � or δ = |w| if ρ† �� T� → ⊥.20 Moreover, the computation
on the right-hand side is without collisions.

20 Recall that vc+δ refers to a particular bit of v, where v = v|v| . . . v2v1.
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Proof Let ρ � T → v abbreviate ρ �p T → v and [ρ†, c] �b Tb → a abbreviate
x, n, ρ†, [c= c] �pb Tb → a. The proof is by induction on the size of the derivation
of ρ � T → v and breaks up into cases depending on the form of T .

• If T ≡ w or T ≡ nil, then |v| − δ = 0, so the universal quantification over c is empty
and the conclusion is vacuously true.

• If T ≡ if T0 then T1 else T2, then suppose ρ � T0 → � (the case ρ � T0 → ⊥ is
similar). Then ρ � T1 → v. By Lemma 2, ρ† �	 T†

0 → �, and hence ρ† �	 T� → b
if and only if ρ† �	 T�

1 → b.
Let us apply the induction hypothesis to ρ � T1 → v. The value of δ at the induction
hypothesis is identical to the value of δ for ρ � T → v, so by induction [ρ†, c] �b

Tb
1 → vc+δ , and by definition of Tb, [ρ†, c] �b Tb → vc+δ .

• If T ≡ f(T ′), let f(xf) = Tf be the definition of f in p. Then, there exists a value t
such that ρ � T ′ → t and [xf = t] � Tf → v. In this case, ρ† � T� → �, so δ = 0. By
Lemma 2, ρ† �b (T ′)† → t†.
Since [xf = t] � Tf → v, [xf = t, w= ε] � Tf → v. By induction on the latter,
[(xf)† = t†, c= c] �b (Tf)b → vc. (Notice that the denotation of (Tf)� is irrelevant
if |w| = 0.) Hence, [ρ†, c] �b f((T ′)†, c) → vc, i.e., [ρ†, c] �b Tb → vc.

• If T ≡ f(T ′, S), let f(x, w) = Tf be the definition of f in p. Then, there are values
(t, s) such that ρ � T ′ → s, ρ � S → s, and [xf = t, w= s] � Tf → v.
First let us suppose that ρ† � f�((T ′)†) → �. In this case, ρ† �b T� → �, so δ = 0.
Moreover, [(xf)† = t†] �b (Tf)� → �, so by induction applied to Tf, [(xf)† = t†, c=
c] �b (Tf)b → vc, and hence, [ρ†, c] �b fb((T ′)†, c) → vc. But by definition of Tb,
[ρ†, c] �b Tb → vc.
Next let us suppose that ρ† � f�((T ′)†) → ⊥. In this case, [(xf)†] �b (Tf)� → ⊥, and
the denotation of T� is equivalent to that of S�. Since it is the same environment ρ

at T and S as well, the value of δ = |ρ(w)| is identical at both S and T . Therefore,
by induction applied to ρ � S → s, [ρ†, c] �b Sb → sc+δ for any 1 ≤ c ≤ |s| − δ. By
Lemma 3, since [xf = t, w= s] � Tf → v, s appears as a suffix of v, and hence for
1 ≤ c ≤ s − |δ|, sc+δ = vc+δ . Hence for any 1 ≤ c ≤ |s| − δ, [ρ†, c] �b Sb → vc+δ .
By induction applied to [xf = t, w= s] � Tf → v, [(xf)†, c= c] �b (Tf)b → vc+|s|,
and hence [ρ†, c] �b fb((T ′)†, c) → vc+|s|, for any 1 ≤ c ≤ |v| − |s|. Said another
way, for any |s| − δ + 1 ≤ c ≤ |v| − δ, [ρ†, c − |s| + δ] �b fb((T ′)†, c) → vc+δ . By
Lemma 4, ρ† �b S	 → |s| − δ. Hence for any |s| − δ + 1 ≤ c ≤ |v| − δ, [ρ†, c] �b

fb((T ′)†, c− S	) → vc+δ .
Since ρ† �b S	 → |s| − δ, [ρ†, c] �b c≤ S	 → � just in case c ≤ |s| − δ, otherwise
[ρ†, c] �b c≤ S	 → ⊥. We have now shown that for all 1 ≤ c ≤ |v| − δ,

[ρ†, c] �b if c≤ S	 then Sb else fb((T ′)†, c− S	) → vc+δ .

Since we are in the case ρ† � f�((T ′)†) → ⊥, we have now shown that [ρ†, c] �b

Tb → vc+δ , which is what we wanted to show.
• If T ≡ cons(T ′, S), then T� and S� are identical, so we can use δ unambiguously at

both T and S as in the previous case. Let ρ � S → s. By induction, for any 1 ≤ c ≤
|s| − δ, [ρ†, c] � Sb → vc+δ . If c = |v| − δ, then vc+δ is the first character of v, so
ρ � T ′ → vc+δ . By Lemma 2, ρ† � T ′ → vc+δ (vc+δ = v

†
c+δ as it is a boolean value).
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Since |v| − δ = (|s| − δ) + 1 and [ρ†, c] �b c≤ S	 → � if and only if c ≤ |s| − δ,
otherwise [ρ†, c] �b c≤ S	 → ⊥, then for any 1 ≤ c ≤ |v| − δ,

[ρ†, c] �b if c≤ S	 then Sb else (T ′)† → vc+δ;

hence [ρ†, c] �b Tb → vc+δ , which is what we wanted to show.

That there are no collisions stems from the fact that the transformation T �→ Tb introduces
no new occurrences of counting module addition that were not already contained in the
transformation T �→ T	. �

Lemma (Lemma 6). For any cons-free program with global input p, values x u, and v,
variable x, and x-term T,

x, [x= u] � T → v =⇒ [xR = u ◦ x] � Tx
R → v.

Proof As usual, the proof proceeds by induction on the size of the derivation of the
hypothesis and breaks up into cases according to the form of T . Let us abbreviate Tx

R

by TR.

• If T ≡ x, then v = u, and [xR = u ◦ x] � xR[0, n − 1] → u.
• If T ≡ in, then v = x, and [xR = u ◦ x] � xR[n] → x.
• If T ≡ if T0 then T1 else T2, suppose that x, [x = u] � T0 → �. (The case x, [x =

u] � T0 → ⊥ is similar.) Then, x, [x = u] � T1 → v, so by induction, [xR = u ◦ x] �
(T0)R → � and [xR = u ◦ x] � (T1)R → v. Therefore, [xR = u ◦ x] � TR → v.

• Suppose that T ≡ ϕ(S), where ϕ ∈ {hd, tl, null}. Then, there exists some v′

such that x, [x = u] � S → v′ and ϕ(v′) = v. By induction, [xR = u ◦ x] � SR → v′.
Therefore, [xR = u ◦ x] � TR → v.

• Suppose that T ≡ T0 ⊕ · · · ⊕ Tn−1. Then, there exist v0, . . . , vn−1 such that x, [x =
u] � Ti → vi for each i < n and v = v0 ◦ · · · ◦ vn−1. By induction, for each i < n,
[xR = u ◦ x] � Ti → vi, so [xR = u ◦ x] � T → v.

• If T ≡ S[i, j], there is some v′ such that x, [x = u] � S → v′. Let (v0, . . . , vn−1) be a
decomposition of v′ into a tuple of atomic values; then, v = (vi, . . . , vj). By induc-
tion, [xR = u ◦ x] � SR → (v0, . . . , vn−1), so [xR = u ◦ x] � SR[i, j] → (vi, . . . , vj),
i.e., [xR = u ◦ x] � TR → v.

• Finally, suppose T ≡ f(S). Let f(xf) = Tf be the definition of f in p. Then, there
is some v′ such that x, [x = u] � S → v′ and x, [xf = v′] � Tf → v. By induction,
[xR = u ◦ x] � SR → v′ and [xfR = v′ ◦ x] � (Tf)x

f

R → v. Since [xR = u ◦ x] � SR → v′,
[xR = u ◦ x] � SR ⊕ xR[n] → v′ ◦ x.
But fR(xfR) = (Tf)x

f

R is the recursive definition of fR in pR. Hence, [xR = u ◦ x] �
fR(SR ⊕ xR[n]) → v, which is what we wanted to prove. �

Lemma (Lemma 7). For every bit-length program p, bit-length term T from p, string x,
x-environment ρ, and value v,

x, (|x| + 1)k , ρ �p T → v =⇒ x, ρ‡ �p‡ T‡ → v‡.
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Proof The proof is by induction on the length of x, (|x| + 1)k , ρ �p T → v and then breaks
up into cases depending on the form of T . Abbreviate x, (|x| + 1)k , ρ �p T → v by ρ � T →
v and x, ρ† �p‡ T‡ → v‡ by ρ‡ � T‡ → v‡.

• If T ≡ true or false,, then v = v‡ = � or ⊥, and T‡ ≡ true or false, respec-
tively.

• If T ≡ x, then v = ρ(x), so v‡ = ρ‡(x‡), T‡ ≡ x‡, and ρ‡ � T‡ → v‡.
• If T ≡ 0 then v = 0 (as a counting module), v‡ = (0, . . . , 0, 0) (as an element of Rk),

and T‡ ≡ zero. By correctness of zero, ρ‡ � T‡ → v‡.
• The case T ≡ 1 is similar to the previous one, replacing (0, . . . , 0, 0) by (0, . . . , 0, 1)

and zero by one.
• If T ≡ T0 + T1, then T‡ ≡ add(T‡

0 , T‡
1 ). By induction, there exist u0 and u1 such

that ρ � Ti → ui for i < 2 and v = max{u0 + u1, (|x| + 1)k − 1}. By induction, ρ‡ �
T‡

i → u‡
i for i < 2. By correctness of add, [u0 = u‡

0, u= u‡
1] � add(u0, u1) → v‡.

Hence, ρ‡ � T‡ → v‡.
• The cases T ≡ T0 − T1 and T ≡ T0 ≤ T1 are similar to the previous one, by the

correctness of minus and less respectively.
• If T ≡ min, then v = 0 (as an index), v‡ = ε, and T‡ = zeroI . By correctness of

zeroI , ρ‡ � T‡ → v‡.
• If T ≡ max, then v = |x|, v‡ = x, T‡ ≡ in, so x, ρ‡ � in→ x implies x, ρ‡ � T‡ →

v‡.
• If T ≡ P(S), then there exists some u such that ρ � S → u and u − 1 = v. In this case,

v‡ is the tail of u‡; by induction, ρ‡ � S‡ → u‡, and thus, ρ‡ � T‡ → v‡.
• If T ≡ null(S), then there exists some u such that ρ � S → u and v = true ⇐⇒

u = 0. In this case v‡ = v and u‡ = ε ⇐⇒ u = 0; by induction, ρ‡ � S‡ → u‡, and
thus ρ‡ � T‡ → v‡.

• If T ≡ bit(S), then there exists some u such that ρ � S → u and xu = v. In this case,
v‡ = v and u‡ is a suffix of x with head xu = v = v‡; by induction, ρ‡ � S‡ → u‡, and
thus, ρ‡ � T‡ → v‡.

• If T ≡ T0 ⊕ · · · ⊕ Tn−1, then there exist v0, . . . , vn−1 such that ρ � Ti → vi for each
i < n; by induction, ρ‡ � T‡

i → v
‡
i and ρ‡ � T‡ → v

‡
0 ◦ · · · ◦ v

‡
n−1. But this is exactly

v‡.
• If T ≡ S[i, j], then there exists a u such that ρ � S → u. Let (u0, . . . , um−1) be a

decomposition of u into atomic values; then v = ui ◦ . . . uj. Now ρ‡ � S‡ → u‡ by

induction, and u‡ = u‡
0 ◦ · · · ◦ u‡

m−1. Suppose that (t0, . . . , tn−1) is a decomposition
of u‡ into atomic values. By definition of sα , where α is the type of S, tı ◦ · · · ◦ tj =
u‡

i ◦ . . . u‡
j = v‡. Hence, ρ‡S‡[ı , j ] → v‡, which is what we wanted to show.

• If T ≡ if T0 then T1 else T2, then suppose that ρ � T0 → �. (The case ρ � T0 →
⊥ is similar.) Then, ρ � T1 → v. By induction, ρ‡T‡

0 → � and ρ‡ � T‡
1 → v‡; hence,

ρ‡ � T‡ → v‡.
• If T ≡ f(S), let f(xf) = Tf be the recursive definition of f in p. Then, there exists

a u such that ρ � S → u and [xf = u] � Tf → v. By induction ρ‡ � S‡ → u‡ and
[(xf)‡ = u‡] � (Tf)‡ → v‡. Since f‡((xf)‡) = (Tf)‡ is the definition of f‡ in p‡, ρ‡ �
f‡(S‡) → v‡. �
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Lemma (Lemma 8). For any program p, environment ρ, string x, term T, and value v,

g(x), λf (|g(x)|), ρ �p T → v =⇒ x, μ(|x|), ρg �p(g) Tg → vg,

without collisions, if the derivation of the left-hand side has no collisions.

Proof For legibility, we will abbreviate g(x), λf (|g(x)|), ρ �p by ρ � and x, μ(|x|), ρg �p(g)

by ρg �g. The proof proceeds by induction on the size of the derivation of ρ � T → v and
is broken into cases depending on the form of T .

1. If T ≡ x, a single variable, then Tg ≡ xg, and v = ρ(x), so vg = ρ(xg). Hence, ρg �g

Tg → vg.
2. If T ≡ f(T ′), let f(x) = Tf be the recursive definition of f in p. Then, there exists

a w such that ρ � T ′ → w and [x= w] � Tf → v. By induction, ρg �g T ′
g → wg and

[xg = wg] � Tf
g → vg.

But fg(xg) = Tf
g is the recursive definition of fg in pg. Hence, ρg �g fg(T ′

g) → vg.
But Tg ≡ fg(T ′

g), so ρg �g Tg → vg.
3. If T ≡ true, false,, 0, or 1, then the conclusion is immediate.
4. If T ≡ ϕ(T0, T1), for ϕ ∈ {+, −, ≤}, then there exists v0, v1, such that ρ � Ti → vi

for i < 2 and ϕ(v0, v1) = v in C(λf (|g(x)|)). Since, by assumption, there are no col-
lisions, ϕ(v0, v1) = v in C(μ(|x|)). Note that vi = (vi)g and v = vg, when we identify
C(λf (|g(x)|)) as a subset of C(μ(|x|)).
By induction, ρg �g (Ti)g → (vi)g. Since Tg ≡ ϕ((T0)g, (T1)g), ρg � Tg → vg. Since
C(μ(|x|)) contains C(λf (|g(x)|), no new collisions are introduced.

5. If T ≡ min, then v is the index 0, so Tg ≡ 0, and vg is 0 ∈ C(μ(|x|)). Hence, ρg �g

Tg → vg.
6. If T ≡ max, then v is the index |g(x)|, so vg = |g(x)| ∈ C(μ(|x|)).

Since x, λg(|x|) �qg hq → |g(x)| with no collisions, x, μ(|x|) �qg hq → |g(x)|. Since
qg is a fragment of pg, x, μ(|x|) �pg hq → |g(x)|, i.e., �g hq → |g(x)|. Hence, �g

hq → vg, but Tg ≡ hq, so �g Tg → vg.
7. If T ≡ ϕ(T ′) for ϕ ∈ {P, null}, then there exists an index w of g(x) such that

ρ � T ′ → w and v = ϕ(w). By induction, there exists some wg ∈ C(μ(|x|)) such that
vg = wg − 1 (if ϕ = P) or vg ⇐⇒ wg = 0 (if ϕ = null), and ρg �g T ′

g → wg. In the
former case, ρg �g T ′

g − 1 → vg and in the latter, ρg �g (T ′
g) → vg; in either case,

ρg � Tg → vg.
8. If T ≡ bit(T ′), then there is some w such that ρ � T ′ → w and (g(x))w−1 = v.

Notice that vg = v and wg is natural number equivalent to w in the counting module
C(μ(|x|)). If we identify C(λg(|x|)) as a subtype of C(μ(|x|)), wg becomes a member
of C(λg(|x|)) too. Then,

x, λg(|x|), [c= wg] �pg hp(c) → v,

moreover with no collisions. Hence,

x, μ(|x|), [c= wg] �pg hp(c) → v,

and therefore [c= wg] �g hp(c) → v.
By induction, ρg � T ′

g → wg. Hence, ρg � hp(T ′
g) → v; as Tg ≡ hp(T ′

g) and v = vg,
this is what we wanted to show.
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9. If T ≡ (T0, . . . , Tn−1), then v = (v0, . . . , vn−1), where ρ � Ti → vi. By induc-
tion, ρg � (Ti)g → (vi)g, and ρg � Tg → vg, as Tg ≡ ((T0)g, . . . , (Tn−1)g) and vg =
((v0)g, . . . , (vn−1)g).

10. If T ≡ T ′[i], then there exists some (v0, . . . , vn−1) such that v = vi and ρ � T ′ →
(v0, . . . , vn−1). By induction, ρg �g T ′

g → ((v0)g, . . . , (vn−1)g), and therefore, ρg �g

Tg → (vi)g.
11. If T ≡ if T0 then T1 else T2, then there exists some b ∈ 2 such that ρ � T0 → b

and ρ � Tb → v. By induction, ρg �g (T0)g → b (as b = bg) and ρg � (Tb)g → vg.
Therefore, since Tg ≡ if (T0)g then (T1)g else (T2)g, ρg � Tg → vg. �

Appendix B: Bit-length programs and Turing machines

In this section, we sketch a proof of Theorem 2. We split the recursive/polynomial time
correspondence and the tail-recursive/logarithmic space correspondence into two different
parts, as they require different constructions. We try to give just enough detail so that these
are perspicuous and unburdened by excess notation.

Theorem. For any function f : 2� → 1�, the following are equivalent:

• f is computable in polynomial time.
• There is a polynomially bounded λ : ω → ω and a bit-length program p such that

[[p]]λ(x) = f (x), without collisions, for any x ∈ 2�.

For any function f : 2� × 1� → 2 and polynomially bounded function π : ω → ω, the
following are equivalent:

• There is a polynomial-time computable function g : 2� × 1� → 2 such that g(x, y) =
f (x, y) for any string x ∈ 2� and y < π (|x|).

• There is a polynomially bounded function λ : ω → ω and a bit-length program p
such that [[p]]λ(x, y) = f (x, y), without collisions, for any x ∈ 2� and y < π (|x|).

Proof Let f be a function of type 2� × (1�)k → α for some k ∈ ω and α ∈ {1�, 2}. (This
generalizes both cases above.) Suppose that f is computable in polynomial time, and let
M be a Turing machine witnessing as much. We may assume that M has read-only input
tapes, a one-way write-only output tape if the output alphabet is 1�, and any finite number
of work tapes, each with tape alphabet � containing a blank character. All tapes of M
extend infinitely to the right; the heads of M are initialized to the left; the work and output
tapes are initialized to all blank.

We now describe a bit-length program simulating M. The global input variable is identi-
fied with the single input of type 2�. The tuple �x of counting module variables is identified
with the remaining unary inputs; these keep getting passed around, unchanged, in each
recursive call. For each tape of M we define a recursive functions position : C → C and
character : C × C → �. The function position(t, �x) describes the position of the head
after t steps, and character(t, p, �x) describes the character on that tape after t steps at
position p. In addition, there is a single recursive function state(t, �x) describing the state
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of M after t steps. The codomain of state is a finite type, which we can encode by a
sufficiently wide tuple of booleans.

The surface configuration of M at a given time t, consists of the current state
(state(t, �x)) and the characters read by the heads (character(t, position(t), �x) for
each tape). The surface configuration tells us what state M transitions to, how the heads
move, and what they write in each step. (Exactly how this happens is specified by the
transition function of M.) More precisely, for t> 0, state(t, �x) is given by the previous
surface configuration, position(t, �x) = position(t− 1, �x) + δ, where δ = 0, 1, or − 1
depending on the previous surface configuration, and character(t, p, �x) is equal to
character(t− 1, p, �x) unless position(t− 1) = p, in which case it is given by the
previous surface configuration.

The initial position of each head is 0. The initial characters all work and output tapes
are blank, and the initial characters of the input tapes are given by the �x. Once M reaches
a halting state, the state, positions, and characters of the program remain fixed. Therefore,
to name the “final” state, tape positions, etc., we need a function seed : C which is big
enough to bound the largest possible running time on some given input.

Notice that we can always “copy” an index value to a counting module value in a bit-
length program. In particular, we can copy the maximum index max into the counting
module value n, the length of the input. Using the counting module primitives, we can
define multiplication on counting modules. Then, all we need to do is construct (n + 1)k

for a large enough constant k. All of this is done without collisions in the context of a
sufficiently large (but still polynomially bounded) counting module.21

The final state is named by state(seed, �x), which is the output of M if f is boolean-
valued. If M has output of type 1�, then the output is position(seed, �x), the final position
of the output tape. Since the output tape is one-way and write-only, this position is precisely
the output string. Finally, this program contains no collisions, since it contains no counting
module additions except those in the construction of seed.

Conversely, suppose that there is a polynomially bounded λ : ω → ω and a bit-length
program p such that [[p]]λ(x) = f (x), without collisions, for any x ∈ 2�. For a fixed input x,
there are at most polynomially many-in-|x| possible environments ρ obtained by binding
variables of p to indices of x and counting modules bounded by λ(|x|). We make a table of
all pairs (ρ, T) of environments and possible terms and then, using dynamic programming,
evaluate each term on each environment. One of these is the output of the program, and
the whole process takes polynomial time. �

Theorem. For any function f : 2� → 1�, the following are equivalent:

• f is computable in logarithmic space.
• There is a polynomially bounded λ : ω → ω and a tail-recursive bit-length program

p such that [[p]]λ(x) = f (x), without collisions, for any x ∈ 2�.

For any function f : 2� × 1� → 2 and polynomially bounded function π : ω → ω, the
following are equivalent:

21 In earlier papers (Jones, 2001; Kop & Simonsen, 2017), seed was originally a counting module primitive
naming the largest element of the counting module. We did not follow that approach here, because its inclusion
would break Lemma 1, the independence of collision-free computation from the bound of the counting module.
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• There is a logarithmic-space computable function g : 2� × 1� → 2 such that
g(x, y) = f (x, y) for any string x ∈ 2� and y < π (|x|).

• There is a polynomially bounded function λ : ω → ω and a tail-recursive bit-length
program p such that [[p]]λ(x, y) = f (x, y), without collisions, for any x ∈ 2� and y <

π (|x|).

Proof As above, let f be a function of type 2� × (1�)k → α for some k ∈ ω and α ∈ {1�, 2},
and let M be a Turing machine computing f in logarithmic space. In case α = 1�, M has
a write-only one-way output tape; note that the logarithmic space bound does not apply to
this tape.

For a fixed finite alphabet �, call a short string a �-string of length O(log n), for any
given n. We can encode short strings by polynomially bounded-in-n counting modules,
roughly, by identifying � with some finite initial segment of ω, and identifying bounded-
width �-strings with base-� numerals.

Let the configuration of M at a given time consist of the current state, the positions of
each head, and the entire contents of each tape. (Contrast this with the surface configuration
above.) The point is, in a logarithmic-space Turing machine on input of length n, the entire
configuration of n can be encoded by a short string in n and thus in a polynomially bounded
counting module. Moreover, we can compute the next configuration from the previous one
by a tail-recursive program using the counting module primitives.

Ultimately, the program p looks something like this. As above, the single binary string
input is identified with the (invisible) global input variable, and the string �x is identified
with any remaining variables of type 1�.

f0(�x) = f1(init(�x))

f1(c) = if halt(c) then out(c) else f1(next(c)),

where halt(c) detects whether the configuration c is halting, out(c) correctly returns the
output of a halting configuration, init(�x) is the initial configuration, and next(c) is the
configuration following c. This program is tail-recursive and correctly computes f .

Conversely, suppose that there is a polynomially bounded λ : ω → ω and a tail-recursive
bit-length program p such that [[p]]λ(x) = f (x), without collisions, for any x ∈ 2�. It is
a well-known fact that every tail-recursive program can be rewritten as a while pro-
gram with a single while loop and no additional data structures (e.g., a stack). We can
directly simulate a program with a single while loop on a Turing machine by, e.g., storing
each program variable on a tape of the machine. But it takes only logarithmic space to
encode indices and counting modules which are bounded polynomially in the length of the
input. �
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