SOME RESULTS ON SEMI-PERFECT GROUP RINGS

S. M. WOODS

The aim of this paper is to find necessary and sufficient conditions on a group G and a ring A for the group ring AG to be semi-perfect. A complete answer is given in the commutative case, in terms of the polynomial ring A[X] (Theorem 5.8). In the general case examples are given which indicate a very strong interaction between the properties of A and those of G. Partial answers to the question are given in Theorem 3.2, Proposition 4.2 and Corollary 4.3.

1. Preliminaries. Given a group G and a ring A (with unit element) the group ring AG is the free left A-module with the elements of G forming a basis. Multiplication is defined by

$$\left(\sum a_{i}g_{i}\right)\left(\sum b_{j}g_{j}'\right) = \sum \sum \left(a_{i}b_{j}\right)\left(g_{i}g_{j}'\right).$$

Alternatively AG may be thought of as all functions from G to A with finite support. The function r is identified with the element $\sum_{g \in G} r(g)g$, and the support of r, denoted $\operatorname{Supp}(r)$, is the set $\{g \in G : r(g) \neq 0\}$. The fundamental ideal of AG, denoted Δ_{AG} (or simply Δ if no confusion will arise), is the ideal generated by $\{1 - g : g \in G\}$. Then $AG/\Delta \cong A$. If H is a subgroup of G then ωH will denote the right ideal of AG generated by $\{1 - h : h \in H\}$. If H is a normal subgroup of G then ωH is an ideal and $AG/\omega H \cong A(G/H)$. For further details, see [3].

If A is any ring then JA will denote the Jacobson radical of A and $\overline{A} = A/JA$. A ring A is semi-perfect if \overline{A} is artinian and every idempotent in \overline{A} is the image of an idempotent in A. Since homomorphic images of semi-perfect rings are semi-perfect [2], if AG is semi-perfect then so is A, and so is A(G/N) for every normal subgroup $N \leq G$. Moreover if A and B are semi-perfect rings, then their direct sum $A \oplus B$ is semi-perfect.

If E is a division ring the characteristic of E will be denoted char(E).

2. Reduction to the case: A is local. A ring A is called *local* if A has a unique maximal left ideal M. In this case M = JA and \overline{A} is a division ring. If A is any ring, a *local idempotent* in A is an idempotent e such that eAe is a local ring.

THEOREM (Mueller [4]). The following are equivalent for a ring A: (1) A is semi-perfect.

Received August 18, 1972 and in revised form, January 8, 1973.

S. M. WOODS

(2) The unit $1 \in A$ is a sum of orthogonal local idempotents.

(3) Every primitive idempotent is local, and there is no infinite set of orthogonal idempotents in A.

LEMMA 2.1. Let A be a ring and let $\{e_1, \ldots, e_n\}$ be a set of orthogonal idempotents in A whose sum is 1. Then A is semi-perfect if and only if e_iAe_i is semi-perfect for each i.

Proof. Let $A' = \sum_{i=1}^{n} e_i A e_i$. Then A' is a subring of A, and is the direct sum of the rings $e_i A e_i$. Thus each e_i is central in A', and, it is sufficient to show that A is semi-perfect if and only if A' is semi-perfect.

Suppose A is semi-perfect. Then clearly A' has no infinite set of orthogonal idempotents. Let f be a primitive idempotent in A' and suppose $f = f_1 + f_2$ in A, where f_1, f_2 are orthogonal idempotents. Since $f = \sum_{i=1}^{n} fe_i$ and the fe_i are orthogonal idempotents, $f = fe_i$ for some i. But then $f_1 = ff_1f = e_iff_1fe_i \in A'$. Similarly $f_2 \in A'$. Thus, $f_1 = f$ or $f_2 = f$ and f is primitive in A. Since A is semi-perfect, fAf is a local ring. But $fA'f = fe_iA'e_if = fe_iAe_if = fAf$. Thus A' is semi-perfect.

Conversely suppose A' is semi-perfect. Then $1 \in A'$ can be written $1 = f_1 + \dots + f_m$ where the f_i are orthogonal local, and hence primitive, idempotents in A'. As above, $f_i = f_i e_j$ for some j, and $f_i A f_i = f_i A' f_i$ is a local ring. Thus A is semi-perfect.

PROPOSITION 2.2. Let A be semi-perfect and let $\{e_1, \ldots, e_n\}$ be a set of orthogonal local idempotents in A whose sum is 1. Let G be any group. Then AG is semi-perfect if and only if $(e_iAe_i)G$ is semi-perfect for each i.

Proof. $(e_iAe_i)G \cong e_iAGe_i$ and the result follows from Lemma 2.1.

3. Necessary conditions on *G*. Here we show that if *AG* is semi-perfect then *G* is a torsion group and there are no infinite chains of finite subgroups of *G* whose orders are units in *A*. In view of the reduction in §2 and the fact that \overline{AG} is semi-perfect whenever *AG* is, we may assume that *A* is a division ring.

If p is a prime, a p'-group is a group which has no element of order p, and a p'-element of a group is an element whose order is not divisible by p. If p = 0, every group is a p'-group and every element of a group is a p'-element.

If p = 0, by a *p*-subgroup or Sylow *p*-subgroup of G we mean the trivial subgroup.

LEMMA 3.1. Let R be any ring such that $\overline{R} = R/JR$ is artinian, and let $x \in R$. Let $\{x_n\}$ be the sequence: $x_0 = x$, $x_{i+1} = x_i - x_i^2$ for $i \ge 0$. Then for some n, $1 - x_n$ has a right inverse in R.

Proof. The chain $x_1R \supseteq x_2R \supseteq \ldots$ of right ideals in R gives rise to a chain $(x_1R + JR)/JR \supseteq (x_2R + JR)/JR \supseteq \ldots$

of right ideals in \overline{R} . Thus for some $n \ge 1$, $(x_nR + JR)/JR = (x_{n+1}R + JR)/JR$,

122

and $x_n \in x_{n+1}R + JR$. For some $r \in R$ and $y \in JR$, $x_n = (x_n - x_n^2)r + y$. Now $1 - y = (1 - x_n)(1 + x_n r)$ has a right inverse in R and so $1 - x_n$ has a right inverse in R.

THEOREM 3.2. Let A be a division ring of characteristic $p \ge 0$ and let G be a group. If AG is semi-perfect then G is a torsion group and there is a positive integer n such that no chain of finite p'-subgroups of G has length greater than n.

Proof. Suppose $x \in G$ has infinite order. Construct a sequence $\{x_m\}$ in AG as in Lemma 3.1, starting with $x_0 = x$. Then for some $m, 1 - x_m$ has a right inverse in AG. Since $1 - x_m \in KH$ where K is the prime subfield of A and H is the subgroup of G generated by x, and since KH is a direct summand of AG as left KH-modules, $1 - x_m$ has a right inverse in KH.

Multiplying by a high enough power of x we obtain the factorization $x^r = (1 - x_m)g(x)$ in the polynomial ring K[x]. This is impossible since $1 - x_m$ has 2 distinct terms: 1 and $\pm x^{2^m}$. Thus G must be a torsion group.

If $H = \{h_1, \ldots, h_r\}$ is a finite p'-subgroup of G then $r = r \cdot 1$ is a unit in A and $e_H = (1/r)(h_1 + \ldots + h_r)$ is an idempotent in AG. Moreover if $K \leq H$ then $e_H e_K = e_K e_H = e_H$. Let n be the length of a composition series for the right \overline{AG} -module \overline{AG} and suppose

$$\{1\} \subsetneq H_1 \subsetneq \ldots \subsetneq H_{n+1}$$

is a chain of n + 1 finite p'-subgroups of G. Let $e_i = e_{H_i}$, $i = 1, \ldots, n + 1$. Then $AG \supseteq e_1AG \supseteq \ldots \supseteq e_{n+1}AG$. Reducing modulo J(AG) we obtain $\overline{AG} \supseteq \overline{e_1AG} \supseteq \ldots \supseteq \overline{e_{n+1}AG}$. Thus for some i, $\overline{e_i}\overline{AG} = \overline{e_{i+1}AG}$. Then $e_i - e_{i+1}$ is an idempotent in J(AG) and so $e_i = e_{i+1}$. This implies $H_i = H_{i+1}$, a contradiction.

COROLLARY 3.3. Let A be a division ring of characteristic $p \ge 0$ and let G be a locally finite group. If AG is semi-perfect then every p'-subgroup of G is finite.

Remark. It is not known whether AG semi-perfect implies that G is locally finite. If K is a field of characteristic p > 0 and G is a non-locally-finite p-group, then KG will be semi-perfect (even local) if $J(KG) = \Delta$. However the problem of determining J(KG) appears to be very difficult. (See [5, p. 121].)

From now on we consider only locally finite groups.

4. Some sufficient conditions. Here we see that if G is locally finite we may consider a suitable subgroup of G rather than all of G.

LEMMA 4.1. Let A be a ring, G a group and N a normal subgroup of G such that G/N is locally finite. Then $J(AN) \subseteq J(AG)$.

Proof. Let $x \in J(AN)$, $r \in AG$. We show that 1 - xr has a right inverse in AG. Let G' be the subgroup of G generated by N and Supp(r). Then G'/N is finitely generated, hence finite. Let

$$G'/N = \{g_1N, g_2N, \ldots, g_nN\}$$

where $g_1 = 1$. Then $\{g_1, g_2, \ldots, g_n\}$ is a basis for the free right AN-module AG'. Thus the endomorphism ring of AG' as a module is the matrix ring $AN_{(n)}$. For each $y \in AG'$ let λ_y be the matrix corresponding to left multiplication by y. Then $\lambda : AG' \to AN_{(n)}$ is a ring homomorphism. In particular λ_x is the diagonal matrix with entries $x, g_2^{-1}xg_2, \ldots, g_n^{-1}xg_n$, each of which is in J(AN) since J(AN) is invariant under automorphisms of AN. Thus $\lambda_x \in (JAN)_{(n)} = J(AN_{(n)})$ and for some $f \in AN_{(n)}, (1 - \lambda_x\lambda_r)f = 1$. Regarding these as endomorphisms and applying them to $1 \in AG'$ yields $(1 - xr) \cdot f(1) = 1$. Then $f(1) \in AG' \subseteq AG$ is the required inverse of 1 - xr.

PROPOSITION 4.2. Let A be a local ring with char $(\overline{A}) = p > 0$ and let G be a locally finite group. Let N be a normal p-subgroup of G and let H be any subgroup of G such that NH = G. If AH is semi-perfect, then so is AG.

Proof. Let $\pi: AG \to \overline{AG}$ be the canonical epimorphism. If $g \in G$ then for some $n \in N$, $h \in H$ we have $g = nh = (n-1)h + h \in \omega N + AH$. Thus $AG = \omega N + AH$. Since $(JA)G \subseteq J(AG)$, π may be factored into

$$AG \xrightarrow{\pi_1} \overline{A}G \xrightarrow{\pi_2} \overline{A}G$$

where Ker $\pi_2 = J(\bar{A}G)$. Now $\Delta_{\bar{A}N}$ is a nil ideal, hence $\Delta_{\bar{A}N} \subseteq J(\bar{A}N) \subseteq J(\bar{A}G)$. Thus

$$\Delta_{AN} \subseteq \pi_1^{-1}(\Delta_{\overline{A}N}) \subseteq \pi_1^{-1}(J(\overline{A}G)) = J(AG)$$

and $\omega N = \Delta_{AN}AG \subseteq J(AG)$. It follows that AG = J(AG) + AH and $\pi(AH) = \overline{AG}$. By [3, Proposition 9], $AH \cap JAG \subseteq JAH$. But $\underline{AH}/(AH \cap JAG) \cong \overline{AG}$ is semi-simple. Thus $JAH = AH \cap JAG$ and $\overline{AH} \cong \overline{AG}$.

If AH is semi-perfect then AG is artinian. Let $\bar{x}^2 = \bar{x}$ in \overline{AG} . Then $\bar{x} = \pi(e)$ for some $e^2 = e$ in $AH \subseteq AG$. Thus AG is semi-perfect.

In [5] Passman asks: if K is a field when is KG semi-perfect? The next result provides a partial answer in a somewhat more general setting.

COROLLARY 4.3. Let A be a local perfect ring with char $(\overline{A}) = p \ge 0$ and let G be a locally finite group. If G has a p-subgroup of finite index then AG is semi-perfect.

Proof. G has a normal p-subgroup N of finite index and a finite subgroup F such that NF = G. Then AF is perfect [6], hence semi-perfect and so AG is semi-perfect.

5. Abelian groups. If G is an abelian torsion group and p is a prime then $G \cong G_p \times H$ where G_p is the Sylow *p*-subgroup of G and H consists of all p'-elements of G. Hence $G/G_p \cong H$ is a p'-group.

LEMMA 5.1. (Burgess [2]). Let A be a local ring with $char(\overline{A}) = p \ge 0$. Let G be an abelian group and let G_p be the Sylow p-subgroup of G. Then AG is semi-perfect if and only if $A(G/G_p)$ is semi-perfect and in this case G/G_p is finite. *Proof.* This follows easily from Proposition 4.2 and Corollary 3.3.

We now show that if G is a finite abelian group of exponent n and if C_n is the cyclic group of order n then AG is semi-perfect if and only if AC_n is semi-perfect. Then necessary and sufficient conditions for AC_n to be semi-perfect are given when A is commutative, in terms of the polynomial ring A[X].

We may assume that A is semi-perfect and n is a unit in A. Thus J(AG) = (JA)G and $\overline{AG} = \overline{A}G$, an artinian ring. To prove that AG is semi-perfect it is sufficient to prove either that idempotents lift from $\overline{A}G$ to AG or that every primitive idempotent in AG is local. If e is any idempotent in AG then ne is a unit in eAGe and $\overline{eAGe} = \overline{e}\overline{A}G\overline{e}$.

Let g be an element of order n in an abelian group G, let F be an algebraically closed field whose characteristic does not divide n and let z be a primitive nth root of unity in F. For i = 0, ..., n - 1 let

$$\epsilon_i = \frac{1}{n} \sum_{j=0}^{n-1} z^{ij} g^j.$$

We show that the ϵ_i are orthogonal idempotents whose sum is 1, and that if z^i is a primitive *m*th root of 1 then $g\epsilon_i$ is a primitive *m*th root of ϵ_i .

Since $z^i g \epsilon_i = \epsilon_i$, $\epsilon_i^2 = \epsilon_i$. If $i \neq j$ let $\epsilon_i \epsilon_j = (1/n^2) \sum_{t=0}^{n-1} a_t g^t$. Then

$$z^{i-j}a_{t} = z^{i-j}\sum_{k=0}^{n-1} z^{ik}z^{j(t-k)} = z^{jt}z^{i-j}\sum_{k=0}^{n-1} z^{(i-j)k} = a_{t}.$$

Since $z^{i-j} \neq 1$, $a_t = 0$ and hence $\epsilon_i \epsilon_j = 0$. Let $\sum_{i=0}^{n-1} \epsilon_i = (1/n) \sum_{i=0}^{n-1} b_i g^i$. Then $z^i b_t = z^i \sum_{i=0}^{n-1} z^{ii} = b_i$. If 0 < t < n, $z^i \neq 1$ and hence $b_t = 0$. Thus

$$\sum_{i=0}^{n-1} \epsilon_i = \frac{1}{n} \cdot n \cdot 1 = 1.$$

If z^i is a primitive *m*th root of 1 then $g^m \epsilon_i = g^m z^{im} \epsilon_i = \epsilon_i$, but if 0 < r < m then $\epsilon_i = g^r z^{ir} \epsilon_i \neq g^r \epsilon_i$ since $z^{ir} \neq 1$ and $\epsilon_i \neq 0$.

For each m|n let $e_m = \sum \epsilon_i$ where the sum is taken over all i such that z^i is a primitive *m*th root of 1 and let $e_m' = \sum \epsilon_i$ where the sum is taken over all i such that $z^{im} = 1$. Then $\{e_m : m|n\}$ is an orthogonal set of idempotents whose sum is 1. Since $e_m \epsilon_i = \epsilon_i$ whenever z^i is a primitive *m*th root of unity, ge_m is a primitive *m*th root of e_m . Clearly $e_m' = \sum_{d|m} e_d$. Since $z^{im} = 1$ if and only if s|i where s = n/m, $e_m' = \sum_{j=0}^{m-1} \epsilon_{sj}$. Let

$$e_{m}' = \frac{1}{n} \sum_{t=0}^{n-1} c_{t} g^{t}.$$

Then $c_t = \sum_{j=0}^{m-1} z^{sjt}$. If $m|t, z^{sjt} = 1$ and $c_t = m$. If $m \nmid t$, then, since $z^{st}c_t = c_t$ and $z^{st} \neq 1$, $c_t = 0$. Thus

$$e_m' = \frac{m}{n} [1 + g^m + g^{2m} + \ldots + g^{n-m}].$$

S. M. WOODS

If $F = \mathbf{C}$, the complex numbers, then for each $m|n, ne_m' \in \mathbf{Z}G$ where \mathbf{Z} denotes the integers. Since $e_m = e_m' - \sum e_d$ where the sum is taken over all d|m, d < m, we see by induction that $ne_m \in \mathbf{Z}G$.

Let A be any ring in which n is a unit and let A' be the subring $\{t \cdot 1 : t \in \mathbb{Z}\}$. Then $A' \cong \mathbb{Z}$ or $A' \cong \mathbb{Z}/(r)$ for some r relatively prime to n. In either case, for some $p \nmid n$ there are homomorphisms

$$\mathbf{Z} \to A' \to \mathbf{Z}/(p) \to F$$

where F is the algebraic closure of $\mathbb{Z}/(p)$, which extend to homomorphisms $\mathbb{Z}G \to A'G \to FG$. In AG, we may define inductively for each $m|n, e_m' = (m/n)[1 + g^m + g^{2m} + \ldots + g^{n-m}]$ and $e_m = e_m' - \sum e_d$ where the sum is taken over all d|m, d < m. Then $ne_m \in A'G$ for each m|n. Using the homomorphisms defined above, $(ne_m)^2 = n(ne_m)$, $(ne_m)(ne_d) = 0$ if $m \neq d$, $\sum_{m|n}ne_m = n$, and $g^m(ne_m) = ne_m$. Hence in AG, $e_m^2 = e_m$, $e_me_d = 0$ if $m \neq d$, $\sum_{m|n}e_m = 1$ and $g^me_m = e_m$. If $g^re_m = e_m$ in AG for some r, 0 < r < m then $g^r(ne_m) = ne_m$ in A'G, hence in FG. Thus $g^re_m = e_m$ in FG, a contradiction. It follows that ge_m is a primitive mth root of unity in AGe_m .

LEMMA 5.2. Let $e \neq 0$ be a primitive idempotent in AG and let m|n. Then ge is a primitive mth root of unity in eAGe if and only if $e = e_m e$. In this case \overline{ge} is a primitive mth root of unity in \overline{eAGe} .

Proof. Since $(ge)^n = g^n e = e$, ge is a primitive dth root of unity in eAGe for a unique d|n. Since e is primitive and $e = \sum_{m|n} e_m e$, $e = e_m e$ for a unique m|n. We show that d = m.

Since $(ge_m)^m = e_m$, $(ge)^m = (ge_m e)^m = e_m e = e$. Thus d|m. Since $g^d e = e$, $e_d'e = e$. If d < m then $e = e_d'e_m e = 0$, a contradiction. Thus d = m.

In this case $\overline{eAGe} = \overline{e}\overline{A}G\overline{e}$ and $\overline{ge} = g\overline{e}$ in $\overline{A}G$. Then $\overline{e} = \overline{e}_m\overline{e}$ and the above argument applied in $\overline{A}G$ shows that $g\overline{e}$ is a primitive *m*th root of unity in $\overline{e}\overline{A}G\overline{e}$.

LEMMA 5.3. Let A be a local ring, G a group and e an idempotent in AG such that $eAGe \subseteq eA \cap Ae$ and e(1) is central and not a zero-divisor in A. Let $A' = \{a \in A : ea = ae\}$. Then $eAGe \cong A'$ as rings and A' is local.

Proof. If $x \in eAGe$ then x = ea for a unique $a \in A$. Define $f: eAGe \to A$ by f(ea) = a. Clearly f preserves sums and ker f = 0. If $ea \in eAGe$ then eae = ea. Thus $f(ea \cdot eb) = f(eab) = ab$ and f preserves products. This proves that $eAGe \cong \text{Im } f$.

Clearly $A' \subseteq \text{Im } f$. Let $a \in \text{Im } f$. Then $ea \in eAGe \subseteq eA \cap Ae$ and so ea = a'e for some $a' \in A$. Thus e(1)a = a'e(1) = e(1)a' and $a = a' \in A'$. This completes the proof that $eAGe \cong A'$.

Finally if $a' \in A'$ is a unit in A, then a' is a unit in A'. Thus the set of non-units in A' is precisely $A' \cap JA$, an ideal of A'. It follows that A' is local.

LEMMA 5.4. Let A be a local ring with char $(\overline{A}) = p \ge 0$. Let $G = \langle g \rangle$ be a cyclic group of order n, $p \nmid n$. Let $m \mid n$ and suppose A has a primitive mth root of

unity a such that \bar{a} is a primitive mth root of unity in \bar{A} . Then AGe_m is semiperfect.

Proof. Since $AGe_m' = AGe_m \oplus AG(e_m' - e_m)$ it is sufficient to show that AGe_m' is semi-perfect.

For $i = 1, \ldots, m$ let

$$f_i = \left(\frac{1}{m}\right) \sum_{j=0}^{m-1} a^{ij} g^j e_m'.$$

Since $a^i g f_i = f_i$, $f_i^2 = f_i$. If $i \neq k$ then 0 < |i - k| < m. Thus $\bar{a}^{i-k} \neq \bar{1}$ in \bar{A} and $a^{i-k} - 1$ is a unit in A. Now

$$f_{j}f_{k} = \left(\frac{1}{m^{2}}\right) \sum_{j=0}^{m-1} \sum_{t=0}^{m-1} a^{ij}a^{k(t-j)}g^{j}g^{t-j}e_{m'} = \left(\frac{1}{m^{2}}\right) \sum_{t=0}^{m-1} a^{kt}xg^{t}e_{m'}$$

where

$$x = \sum_{j=0}^{m-1} a^{(i-k)j}.$$

But $a^{i-k}x = x$ and so x = 0. Thus $f_i f_k = 0$. Moreover

$$\sum_{i=1}^{m} f_i = \left(\frac{1}{m}\right) \sum_{j=0}^{m-1} \left(\sum_{i=1}^{m} a^{ij}\right) g^j e_m' = 1 e_m',$$

the unit element of $AGe_{m'}$.

Finally, $f_i A G e_m' f_i = f_i A G f_i$. Since $a^i g f_i = f_i$, $g f_i = a^{-i} f_i \in A f_i$. Thus $A G f_i = A f_i$. Similarly $f_i A G = f_i A$, and so $f_i A G f_i \subseteq f_i A \cap A f_i$. Moreover $f_i(1) = (1/m)(m/n)a^0 = 1/n$, a central unit in A. By Lemma 5.3, $f_i A G f_i$ is local. Thus $A G e_m'$ is semi-perfect.

LEMMA 5.5. Let g and h be commuting elements in a group G, of orders s and t respectively, and let u = L.C.M.(s, t). Then for some integer r, gh^r has order u.

Proof. The group $\langle g, h \rangle$ is a finite abelian group of exponent u. Hence $\langle g, h \rangle = Y \times Z$ where $Y = \langle y \rangle$ is a cyclic group of order u and $z^u = 1$ for all $z \in Z$. Let $g = (y^a, z_1)$ and $h = (y^b, z_2)$. Since g and h generate $Y \times Z$, y^a and y^b generate Y. Thus G.C.D. (a, b, u) = 1. If u|a| et r = 1. Otherwise let r be the product of all primes which divide u but not a. A check of possible prime factors reveals that G.C.D. (a + br, u) = 1. Thus $gh^r = (y^{a+br}, z_1 z_2^r)$ has order u.

LEMMA 5.6. Let A be a ring and let $G = C_n$. If AG is semi-perfect then so is $A(G \times G)$.

Proof. Without loss of generality we may assume that A is local and n is a unit in A. Let g generate G and let $H = \langle h \rangle$ denote the second copy of G. For each m|n define $e_m \in AG$ as at the beginning of this section and define $f_m \in AH$ in a corresponding way using h in place of g.

Let *e* be a primitive idempotent in $A(G \times H)$. We show that *e* is local. Now $e = ee_s f_t$ for a unique *s*, t|n. Thus, by Lemma 5.2, in the multiplicative group $\langle ge, he \rangle$, ge has order *s* and *he* has order *t*. Let u = L.C.M.(s, t) and let *r* be

an integer such that $gh^r e$ has order u. The automorphism of $G \times H$ which sends gh^r to g and h to h extends to an automorphism θ of $A(G \times H)$. Since $\theta(e)A(G \times H)\theta(e) \cong eA(G \times H)e$ it is sufficient to show that $\theta(e)$ is a local idempotent.

Since e is a primitive idempotent, so is $\theta(e)$. In $\langle g\theta(e), h\theta(e) \rangle$, $g\theta(e) = \theta(gh^r e)$ has order u and $h\theta(e) = \theta(he)$ has order t. By Lemma 5.2, $\theta(e) = \theta(e)e_uf_t$. Now $A(G \times H)e_uf_t \cong (AGe_u)Hf_t$ in a natural way. Since AGe_u is semi-perfect the unit element e_u is a sum of orthogonal local idempotents. If f is a local idempotent in AGe_u then $f(AGe_u)Hf_tf \cong (fAGe_uf)Hf_t$ is semi-perfect by Lemmas 5.2 and 5.4. Thus $(AGe_u)Hf_t$ is semi-perfect by Lemma 2.1. It follows that

$$\theta(e)A(G \times H)\theta(e) = \theta(e)A(G \times H)e_u f_t \theta(e)$$

is a local ring and $A(G \times H)$ is semi-perfect.

PROPOSITION 5.7. Let A be a ring and let G be a finite abelian group of exponent n. Then AG is semi-perfect if and only if AC_n is semi-perfect.

Proof. Since AC_n is a homomorphic image of AG, if AG is semi-perfect then so is AC_n .

Conversely suppose AC_n is semi-perfect. If $r \ge 2$ then $AC_n^r \cong (AC_n^{r-2})$ $(C_n \times C_n)$ and $AC_n^{r-1} \cong (AC_n^{r-2})C_n$. By Lemma 5.6 and induction AC_n^r is semi-perfect for all r > 0. But AG is a homomorphic image of AC_n^r for some r. Thus AG is semi-perfect.

THEOREM 5.8. Let A be a commutative local ring with char(\overline{A}) = $p \ge 0$ and let G be an abelian group with Sylow p-subgroup G_p . Then AG is semi-perfect if and only if G/G_p is a finite group of exponent n and every monic factor of $X^n - 1$ in $\overline{A}[X]$ can be lifted to a monic factor of $X^n - 1$ in A[X].

Proof. By Lemma 5.1 and Proposition 5.7 we may assume $G = C_n$ and n is a unit in A. Then $AG \cong A[X]/(X^n - 1)$ and $\overline{AG} = \overline{AG} \cong \overline{A}[X]/(X^n - 1)$. Since n is a unit in $\overline{A}, X^n - 1$ has no multiple roots in any extension of \overline{A} . Thus if $X^n - 1 = f(X)g(X)$ in $\overline{A}[X]$ then f(X) and g(X) are relatively prime. By [1, Theorem 19] idempotents in $\overline{A}[X]/(X^n - 1)$ lift to idempotents in $A[X]/(X^n - 1)$ if and only if every monic factor of $X^n - 1$ in $\overline{A}[X]$ lifts to a monic factor of $X^n - 1$ in A[X].

6. Examples. In this section it is shown that for a given ring A, the class of groups G for which AG is semi-perfect is not closed under taking subgroups or direct products.

Let g generate C_2 , the 2-element group. If A is a local ring and char $(\bar{A}) \neq 2$ then (1 + g)/2 and (1 - g)/2 are local idempotents in AC_2 whose sum is 1. Thus AC_2 is semi-perfect. If char $(\bar{A}) = 2$ then AC_2 is semi-perfect by Proposition 4.2.

LEMMA 6.1. If A is semi-perfect and S_3 is the symmetric group of degree 3 then AS_3 is semi-perfect.

Proof. We may assume A is local. If $char(\overline{A}) = 3$ let N be the subgroup of order 3 and let H be a subgroup of order 2 in S_3 . Then $S_3 = NH$ and AS_3 is semi-perfect by Proposition 4.2.

If $char(\overline{A}) \neq 3$, let g generate N and h generate H, and let $e = (1 + g + g^2)/3$, a central idempotent. Then

$$AS_3 = AS_3e \oplus AS_3(1-e).$$

Since $AS_3(1-e) = \omega N$, $AS_3e \cong AS_3/\omega N \cong A(S_3/N) = AC_2$. Thus AS_3e is semi-perfect.

Let $f_1 = (1 - g)(1 + h)/3$ and let $f_2 = (1 - e) - f_1$. Then f_1 and f_2 are orthogonal idempotents whose sum is 1 - e. Also for $i = 1, 2, f_i A S_3(1 - e)f_i = f_i A S_3 f_i \subseteq f_i A \cap A f_i$ and $f_i(1) = 1/3$. By Lemma 5.3, $f_i A S_3 f_i$ is local. Thus $A S_3(1 - e)$ is semi-perfect.

Now we exhibit a local ring A such that AC_3 is not semi-perfect. Let

$$A = \{a/b : a, b \in \mathbb{Z} \text{ and } 7 \nmid b\},\$$

a subring of the rationals. Then \overline{A} is the field with 7 elements. In $\overline{A}[X]$, $X^3 - \overline{1} = (X - \overline{1})(X - \overline{2})(X - \overline{4})$ but in A[X], $X^3 - 1 = (X - 1)(X^2 + X + 1)$. Since $X^2 + X + 1$ is irreducible over A, AC_3 is not semi-perfect.

For our second example we let

$$A = \{x/y : x, y \in \mathbb{Z}[i] \text{ and } (2+i) \nmid y \text{ in } \mathbb{Z}[i]\},\$$

a subring of the complex numbers. Then \overline{A} is the field with 5 elements. In $\overline{A}[X]$, $X^3 - 1 = (X - \overline{1})(X^2 + \overline{1}X + \overline{1})$ and $X^8 - 1 = (X - \overline{1})(X + \overline{1})(X - \overline{i})(X + \overline{i})(X^2 - \overline{i})(X^2 + \overline{i})$, and the quadratic factors are irreducible. Since these factorizations can be lifted to A[X], AC_3 and AC_8 are semi-perfect.

Now $C_3 \times C_8 = C_{24}$. In A[X], $X^{24} - 1$ has the irreducible factor $X^4 - iX^2 - 1$ but in $\bar{A}[X]$, $X^4 - \bar{i}X^2 - \bar{1} = X^4 + \bar{2}X^2 + \bar{9} = (X^2 + \bar{2}X + \bar{3})$ $(X^2 - \bar{2}X + \bar{3})$. Thus AC_{24} is not semi-perfect.

References

1. G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.

2. W. D. Burgess, On semi-perfect group rings, Can. Math. Bull. 12 (1969), 645-652.

3. I. G. Connell, On the group ring, Can. J. Math. 15 (1963), 650-685.

4. B. J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464-467.

- 5. D. S. Passman, Infinite group rings (Marcel Dekker, New York, 1971).
- 6. S. M. Woods, On perfect group rings, Proc. Amer. Math. Soc. 27 (1971), 49-52.

University of Manitoba, Winnipeg, Manitoba