SOME RESULTS ON SEMI-PERFECT GROUP RINGS

S. M. WOODS

The aim of this paper is to find necessary and sufficient conditions on a group G and a ring A for the group ring $A G$ to be semi-perfect. A complete answer is given in the commutative case, in terms of the polynomial ring $A[X]$ (Theorem 5.8). In the general case examples are given which indicate a very strong interaction between the properties of A and those of G. Partial answers to the question are given in Theorem 3.2, Proposition 4.2 and Corollary 4.3.

1. Preliminaries. Given a group G and a ring A (with unit element) the group ring $A G$ is the free left A-module with the elements of G forming a basis. Multiplication is defined by

$$
\left(\sum a_{i} g_{i}\right)\left(\sum b_{j} g_{j}{ }^{\prime}\right)=\sum \sum\left(a_{i} b_{j}\right)\left(g_{i} g_{j}{ }^{\prime}\right) .
$$

Alternatively $A G$ may be thought of as all functions from G to A with finite support. The function r is identified with the element $\sum_{g \in G} r(g) g$, and the support of r, denoted $\operatorname{Supp}(r)$, is the set $\{g \in G: r(g) \neq 0\}$. The fundamental ideal of $A G$, denoted $\Delta_{A G}$ (or simply Δ if no confusion will arise), is the ideal generated by $\{1-g: g \in G\}$. Then $A G / \Delta \cong A$. If H is a subgroup of G then ωH will denote the right ideal of $A G$ generated by $\{1-h: h \in H\}$. If H is a normal subgroup of G then ωH is an ideal and $A G / \omega H \cong A(G / H)$. For further details, see [3].

If A is any ring then $J A$ will denote the Jacobson radical of A and $\bar{A}=A / J A$. A ring A is semi-perfect if \bar{A} is artinian and every idempotent in \bar{A} is the image of an idempotent in A. Since homomorphic images of semi-perfect rings are semi-perfect [2], if $A G$ is semi-perfect then so is A, and so is $A(G / N)$ for every normal subgroup $N \unlhd G$. Moreover if A and B are semi-perfect rings, then their direct sum $A \oplus B$ is semi-perfect.

If E is a division ring the characteristic of E will be denoted $\operatorname{char}(E)$.
2. Reduction to the case : A is local. A ring A is called local if A has a unique maximal left ideal M. In this case $M=J A$ and \bar{A} is a division ring. If A is any ring, a local idempotent in A is an idempotent e such that $e A e$ is a local ring.

Theorem (Mueller [4]). The following are equivalent for a ring A :
(1) A is semi-perfect.

[^0](2) The unit $1 \in A$ is a sum of orthogonal local idempotents.
(3) Every primitive idempotent is local, and there is no infinite set of orthogonal idempotents in A.

Lemma 2.1. Let A be a ring and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a set of orthogonal idempotents in A whose sum is 1 . Then A is semi-perfect if and only if $e_{i} A e_{i}$ is semiperfect for each i.

Proof. Let $A^{\prime}=\sum_{i=1}^{n} e_{i} A e_{i}$. Then A^{\prime} is a subring of A, and is the direct sum of the rings $e_{i} A e_{i}$. Thus each e_{i} is central in A^{\prime}, and, it is sufficient to show that A is semi-perfect if and only if A^{\prime} is semi-perfect.

Suppose A is semi-perfect. Then clearly A^{\prime} has no infinite set of orthogonal idempotents. Let f be a primitive idempotent in A^{\prime} and suppose $f=f_{1}+f_{2}$ in A, where f_{1}, f_{2} are orthogonal idempotents. Since $f=\sum_{i=1}^{n} f e_{i}$ and the $f e_{i}$ are orthogonal idempotents, $f=f e_{i}$ for some i. But then $f_{1}=f f_{1} f=e_{i} f f_{1} f e_{i} \in A^{\prime}$. Similarly $f_{2} \in A^{\prime}$. Thus, $f_{1}=f$ or $f_{2}=f$ and f is primitive in A. Since A is semi-perfect, $f A f$ is a local ring. But $f A^{\prime} f=f e_{i} A^{\prime} e_{i} f=f e_{i} A e_{i} f=f A f$. Thus A^{\prime} is semi-perfect.

Conversely suppose A^{\prime} is semi-perfect. Then $1 \in A^{\prime}$ can be written $1=f_{1}+$ $\ldots+f_{m}$ where the f_{i} are orthogonal local, and hence primitive, idempotents in A^{\prime}. As above, $f_{i}=f_{i} e_{j}$ for some j, and $f_{i} A f_{i}=f_{i} A^{\prime} f_{i}$ is a local ring. Thus A is semi-perfect.

Proposition 2.2. Let A be semi-perfect and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a set of orthogonal local idempotents in A whose sum is 1 . Let G be any group. Then $A G$ is semi-perfect if and only if $\left(e_{i} A e_{i}\right) G$ is semi-perfect for each i.

Proof. $\left(e_{i} A e_{i}\right) G \cong e_{i} A G e_{i}$ and the result follows from Lemma 2.1.
3. Necessary conditions on G. Here we show that if $A G$ is semi-perfect then G is a torsion group and there are no infinite chains of finite subgroups of G whose orders are units in A. In view of the reduction in $\S 2$ and the fact that $\bar{A} G$ is semi-perfect whenever $A G$ is, we may assume that A is a division ring.

If p is a prime, a p^{\prime}-group is a group which has no element of order p, and a p^{\prime}-element of a group is an element whose order is not divisible by p. If $p=0$, every group is a p^{\prime}-group and every element of a group is a p^{\prime}-element.

If $p=0$, by a p-subgroup or Sylow p-subgroup of G we mean the trivial subgroup.

Lemma 3.1. Let R be any ring such that $\bar{R}=R / J R$ is artinian, and let $x \in R$. Let $\left\{x_{n}\right\}$ be the sequence: $x_{0}=x, x_{i+1}=x_{i}-x_{i}{ }^{2}$ for $i \geqq 0$. Then for some n, $1-x_{n}$ has a right inverse in R.

Proof. The chain $x_{1} R \supseteq x_{2} R \supseteq \ldots$ of right ideals in R gives rise to a chain

$$
\left(x_{1} R+J R\right) / J R \supseteq\left(x_{2} R+J R\right) / J R \supseteq \ldots
$$

of right ideals in \bar{R}. Thus for some $n \geqq 1,\left(x_{n} R+J R\right) / J R=\left(x_{n+1} R+J R\right) / J R$,
and $x_{n} \in x_{n+1} R+J R$. For some $r \in R$ and $y \in J R, x_{n}=\left(x_{n}-x_{n}{ }^{2}\right) r+y$. Now $1-y=\left(1-x_{n}\right)\left(1+x_{n} r\right)$ has a right inverse in R and so $1-x_{n}$ has a right inverse in R.

Theorem 3.2. Let A be a division ring of characteristic $p \geqq 0$ and let G be a group. If $A G$ is semi-perfect then G is a torsion group and there is a positive integer n such that no chain of finite p^{\prime}-subgroups of G has length greater than n.

Proof. Suppose $x \in G$ has infinite order. Construct a sequence $\left\{x_{m}\right\}$ in $A G$ as in Lemma 3.1, starting with $x_{0}=x$. Then for some $m, 1-x_{m}$ has a right inverse in $A G$. Since $1-x_{m} \in K H$ where K is the prime subfield of A and H is the subgroup of G generated by x, and since $K H$ is a direct summand of $A G$ as left $K H$-modules, $1-x_{m}$ has a right inverse in $K H$.

Multiplying by a high enough power of x we obtain the factorization $x^{r}=$ $\left(1-x_{m}\right) g(x)$ in the polynomial ring $K[x]$. This is impossible since $1-x_{m}$ has 2 distinct terms: 1 and $\pm x^{2 m}$. Thus G must be a torsion group.

If $H=\left\{h_{1}, \ldots, h_{r}\right\}$ is a finite p^{\prime}-subgroup of G then $r=r \cdot 1$ is a unit in A and $e_{H}=(1 / r)\left(h_{1}+\ldots+h_{r}\right)$ is an idempotent in $A G$. Moreover if $K \leqq H$ then $e_{H} e_{K}=e_{K} e_{H}=e_{H}$. Let n be the length of a composition series for the right $\overline{A G}$-module $\overline{A G}$ and suppose

$$
\{1\} \subsetneq H_{1} \subsetneq \ldots \subsetneq H_{n+1}
$$

is a chain of $n+1$ finite p^{\prime}-subgroups of G. Let $e_{i}=e_{H_{i}}, i=1, \ldots, n+1$. Then $A G \supseteq e_{1} A G \supseteq \ldots \supseteq e_{n+1} A G$. Reducing modulo $J(A G)$ we obtain $\overline{A G} \supseteq \bar{e}_{1} \overline{A G} \supseteq \ldots \supseteq \bar{e}_{n+1} \overline{A G}$. Thus for some $i, \bar{e}_{i} \overline{A G}=\bar{e}_{i+1} \overline{A G}$. Then $e_{i}-e_{i+1}$ is an idempotent in $J(A G)$ and so $e_{i}=e_{i+1}$. This implies $H_{i}=H_{i+1}$, a contradiction.

Corollary 3.3. Let A be a division ring of characteristic $p \geqq 0$ and let G be a locally finite group. If $A G$ is semi-perfect then every p^{\prime}-subgroup of G is finite.

Remark. It is not known whether $A G$ semi-perfect implies that G is locally finite. If K is a field of characteristic $p>0$ and G is a non-locally-finite p-group, then $K G$ will be semi-perfect (even local) if $J(K G)=\Delta$. However the problem of determining $J(K G)$ appears to be very difficult. (See [5, p. 121].)

From now on we consider only locally finite groups.
4. Some sufficient conditions. Here we see that if G is locally finite we may consider a suitable subgroup of G rather than all of G.

Lemma 4.1. Let A be a ring, G a group and N a normal subgroup of G such that G / N is locally finite. Then $J(A N) \subseteq J(A G)$.

Proof. Let $x \in J(A N), r \in A G$. We show that $1-x r$ has a right inverse in $A G$. Let G^{\prime} be the subgroup of G generated by N and $\operatorname{Supp}(r)$. Then G^{\prime} / N is finitely generated, hence finite. Let

$$
G^{\prime} / N=\left\{g_{1} N, g_{2} N, \ldots, g_{n} N\right\}
$$

where $g_{1}=1$. Then $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is a basis for the free right $A N$-module $A G^{\prime}$. Thus the endomorphism ring of $A G^{\prime}$ as a module is the matrix ring $A N_{(n)}$. For each $y \in A G^{\prime}$ let λ_{y} be the matrix corresponding to left multiplication by y. Then $\lambda: A G^{\prime} \rightarrow A N_{(n)}$ is a ring homomorphism. In particular λ_{x} is the diagonal matrix with entries $x, g_{2}{ }^{-1} x g_{2}, \ldots, g_{n}{ }^{-1} x g_{n}$, each of which is in $J(A N)$ since $J(A N)$ is invariant under automorphisms of $A N$. Thus $\lambda_{x} \in(J A N)_{(n)}=J\left(A N_{(n)}\right)$ and for some $f \in A N_{(n)},\left(1-\lambda_{x} \lambda_{r}\right) f=1$. Regarding these as endomorphisms and applying them to $1 \in A G^{\prime}$ yields $(1-x r) \cdot f(1)=1$. Then $f(1) \in A G^{\prime} \subseteq A G$ is the required inverse of $1-x r$.

Proposition 4.2. Let A be a local ring with $\operatorname{char}(\bar{A})=p>0$ and let G be a locally finite group. Let N be a normal p-subgroup of G and let H be any subgroup of G such that $N H=G$. If $A H$ is semi-perfect, then so is $A G$.

Proof. Let $\pi: A G \rightarrow \overline{A G}$ be the canonical epimorphism. If $g \in G$ then for some $n \in N, h \in H$ we have $g=n h=(n-1) h+h \in \omega N+A H$. Thus $A G=\omega N+A H$. Since $(J A) G \subseteq J(A G), \pi$ may be factored into

$$
A G \xrightarrow{\pi_{1}} \bar{A} G \xrightarrow{\pi_{2}} \overline{A G}
$$

where Ker $\pi_{2}=J(\bar{A} G)$. Now $\Delta_{A_{N}}$ is a nil ideal, hence $\Delta_{\bar{A}_{N}} \subseteq J(\bar{A} N) \subseteq J(\bar{A} G)$. Thus

$$
\Delta_{A N} \subseteq \pi_{1}^{-1}\left(\Delta_{\overline{A N}}\right) \subseteq \pi_{1}^{-1}(J(\bar{A} G))=J(A G)
$$

and $\omega N=\underline{\Delta_{A}} A G \subseteq J(A G)$. It follows that $A G=J(A G)+A H$ and $\pi(A H)=\overline{A G}$. By [3, Proposition 9], $A H \cap J A G \subseteq J A H$. But $A H /(A H \cap J A G) \cong \overline{A G}$ is semi-simple. Thus $J A H=A H \cap J A G$ and $\overline{A H} \cong \overline{A G}$.

If $A H$ is semi-perfect then $\overline{A G}$ is artinian. Let $\bar{x}^{2}=\bar{x}$ in $\overline{A G}$. Then $\bar{x}=\pi(e)$ for some $e^{2}=e$ in $A H \subseteq A G$. Thus $A G$ is semi-perfect.

In [5] Passman asks: if K is a field when is $K G$ semi-perfect? The next result provides a partial answer in a somewhat more general setting.

Corollary 4.3. Let A be a local perfect ring with $\operatorname{char}(\bar{A})=p \geqq 0$ and let G be a locally finite group. If G has a p-subgroup of finite index then $A G$ is semiperfect.

Proof. G has a normal p-subgroup N of finite index and a finite subgroup F such that $N F=G$. Then $A F$ is perfect [6], hence semi-perfect and so $A G$ is semi-perfect.
5. Abelian groups. If G is an abelian torsion group and p is a prime then $G \cong G_{p} \times H$ where G_{p} is the Sylow p-subgroup of G and H consists of all p^{\prime}-elements of G. Hence $G / G_{p} \cong H$ is a p^{\prime}-group.

Lemma 5.1. (Burgess [2]). Let A be a local ring with $\operatorname{char}(\bar{A})=p \geqq 0$. Let G be an abelian group and let G_{p} be the Sylow p-subgroup of G. Then $A G$ is semi-perfect if and only if $A\left(G / G_{p}\right)$ is semi-perfect and in this case G / G_{p} is finite.

Proof. This follows easily from Proposition 4.2 and Corollary 3.3.
We now show that if G is a finite abelian group of exponent n and if C_{n} is the cyclic group of order n then $A G$ is semi-perfect if and only if $A C_{n}$ is semiperfect. Then necessary and sufficient conditions for $A C_{n}$ to be semi-perfect are given when A is commutative, in terms of the polynomial ring $A[X]$.

We may assume that A is semi-perfect and n is a unit in A. Thus $J(A G)=$ $(J A) G$ and $\overline{A G}=\bar{A} G$, an artinian ring. To prove that $A G$ is semi-perfect it is sufficient to prove either that idempotents lift from $\bar{A} G$ to $A G$ or that every primitive idempotent in $A G$ is local. If e is any idempotent in $A G$ then $n e$ is a unit in $e A G e$ and $\overline{e A G e}=\bar{e} \bar{A} G \bar{e}$.

Let g be an element of order n in an abelian group G, let F be an algebraically closed field whose characteristic does not divide n and let z be a primitive nth root of unity in F. For $i=0, \ldots, n-1$ let

$$
\epsilon_{i}=\frac{1}{n} \sum_{j=0}^{n-1} z^{i j} g^{j}
$$

We show that the ϵ_{i} are orthogonal idempotents whose sum is 1 , and that if z^{i} is a primitive m th root of 1 then $g \epsilon_{i}$ is a primitive m th root of ϵ_{i}.

Since $z^{i}{ }^{i} \epsilon_{i}=\epsilon_{i}, \epsilon_{i}{ }^{2}=\epsilon_{i}$. If $i \neq j$ let $\epsilon_{i} \epsilon_{j}=\left(1 / n^{2}\right) \sum_{t=0}^{n-1} a_{t} g^{t}$. Then

$$
z^{i-j} a_{t}=z^{i-j} \sum_{k=0}^{n-1} z^{i k} z^{j(t-k)}=z^{j t} z^{i-j} \sum_{k=0}^{n-1} z^{(i-j) k}=a_{t} .
$$

Since $z^{i-j} \neq 1, a_{t}=0$ and hence $\epsilon_{i} \epsilon_{j}=0$. Let $\sum_{i=0}^{n-1} \epsilon_{i}=(1 / n) \sum_{t=0}^{n-1} b_{t} g^{t}$. Then $z^{t} b_{t}=z^{t} \sum_{i=1}^{n-1} z^{i t}=b_{t}$. If $0<t<n, z^{t} \neq 1$ and hence $b_{t}=0$. Thus

$$
\sum_{i=0}^{n-1} \epsilon_{i}=\frac{1}{n} \cdot n \cdot 1=1
$$

If z^{i} is a primitive m th root of 1 then $g^{m} \epsilon_{i}=g^{m} z^{i m} \epsilon_{i}=\epsilon_{i}$, but if $0<r<m$ then $\epsilon_{i}=g^{\tau} z^{i r} \epsilon_{i} \neq g^{r} \epsilon_{i}$ since $z^{i r} \neq 1$ and $\epsilon_{i} \neq 0$.

For each $m \mid n$ let $e_{m}=\sum \epsilon_{i}$ where the sum is taken over all i such that z^{i} is a primitive m th root of 1 and let $e_{m}{ }^{\prime}=\sum \epsilon_{i}$ where the sum is taken over all i such that $z^{i m}=1$. Then $\left\{e_{m}: m \mid n\right\}$ is an orthogonal set of idempotents whose sum is 1 . Since $e_{m} \epsilon_{i}=\epsilon_{i}$ whenever z^{i} is a primitive m th root of unity, $g e_{m}$ is a primitive m th root of e_{m}. Clearly $e_{m}{ }^{\prime}=\sum_{d \mid m} e_{d}$. Since $z^{i m}=1$ if and only if $s \mid i$ where $s=n / m, e_{m}{ }^{\prime}=\sum_{j=0}^{m-1} \epsilon_{s j}$. Let

$$
e_{m}^{\prime}=\frac{1}{n} \sum_{i=0}^{n-1} c_{t} g^{t}
$$

Then $c_{t}=\sum_{j=0}^{m-1} z^{s j t}$. If $m \mid t, z^{s j t}=1$ and $c_{t}=m$. If $m \nmid t$, then, since $z^{s t} c_{t}=c_{t}$ and $z^{s t} \neq 1, c_{t}=0$. Thus

$$
e_{m}^{\prime}=\frac{m}{n}\left[1+g^{m}+g^{2 m}+\ldots+g^{n-m}\right] .
$$

If $F=\mathbf{C}$, the complex numbers, then for each $m \mid n, n e_{m}{ }^{\prime} \in \mathbf{Z} G$ where \mathbf{Z} denotes the integers. Since $e_{m}=e_{m}{ }^{\prime}-\sum e_{d}$ where the sum is taken over all $d \mid m, d<m$, we see by induction that $n e_{m} \in \mathbf{Z} G$.

Let A be any ring in which n is a unit and let A^{\prime} be the subring $\{t \cdot 1: t \in \mathbf{Z}\}$. Then $A^{\prime} \cong \mathbf{Z}$ or $A^{\prime} \cong \mathbf{Z} /(r)$ for some r relatively prime to n. In either case, for some $p \nmid n$ there are homomorphisms

$$
\mathbf{Z} \rightarrow A^{\prime} \rightarrow \mathbf{Z} /(p) \rightarrow F
$$

where F is the algebraic closure of $\mathbf{Z} /(p)$, which extend to homomorphisms $\mathbf{Z} G \rightarrow A^{\prime} G \rightarrow F G$. In $A G$, we may define inductively for each $m \mid n, e_{m}{ }^{\prime}=$ $(m / n)\left[1+g^{m}+g^{2 m}+\ldots+g^{n-m}\right]$ and $e_{m}=e_{m}{ }^{\prime}-\sum e_{d}$ where the sum is taken over all $d \mid m, d<m$. Then $n e_{m} \in A^{\prime} G$ for each $m \mid n$. Using the homomorphisms defined above, $\left(n e_{m}\right)^{2}=n\left(n e_{m}\right),\left(n e_{m}\right)\left(n e_{d}\right)=0$ if $m \neq d$, $\sum_{m \mid n} n e_{m}=n$, and $g^{m}\left(n e_{m}\right)=n e_{m}$. Hence in $A G, e_{m}{ }^{2}=e_{m}, e_{m} e_{d}=0$ if $m \neq d$, $\sum_{m \mid n} e_{m}=1$ and $g^{m} e_{m}=e_{m}$. If $g^{r} e_{m}=e_{m}$ in $A G$ for some $r, 0<r<m$ then $g^{r}\left(n e_{m}\right)=n e_{m}$ in $A^{\prime} G$, hence in $F G$. Thus $g^{\tau} e_{m}=e_{m}$ in $F G$, a contradiction. It follows that $g e_{m}$ is a primitive m th root of unity in $A G e_{m}$.

Lemma 5.2. Let $e \neq 0$ be a primitive idempotent in $A G$ and let $m \mid n$. Then ge is a primitive m th root of unity in eAGe if and only if $e=e_{m} e$. In this case $\overline{g e}$ is a primitive m th root of unity in $\overline{e A G}$.

Proof. Since $(g e)^{n}=g^{n} e=e, g e$ is a primitive d th root of unity in $e A G e$ for a unique $d \mid n$. Since e is primitive and $e=\sum_{m \mid n} e_{m} e, e=e_{m} e$ for a unique $m \mid n$. We show that $d=m$.

Since $\left(g e_{m}\right)^{m}=e_{m},(g e)^{m}=\left(g e_{m} e\right)^{m}=e_{m} e=e$. Thus $d \mid m$. Since $g^{d} e=e$, $e_{d}{ }^{\prime} e=e$. If $d<m$ then $e=e_{d}{ }^{\prime} e_{m} e=0$, a contradiction. Thus $d=m$.

In this case $\overline{e A G e}=\bar{e} \bar{A} G \bar{e}$ and $\overline{g e}=g \bar{e}$ in $\bar{A} G$. Then $\bar{e}=\bar{e}_{m} \bar{e}$ and the above argument applied in $\bar{A} G$ shows that $g \bar{e}$ is a primitive m th root of unity in $\bar{e} \bar{A} G \bar{e}$.

Lemma 5.3. Let A be a local ring, G a group and e an idempotent in $A G$ such that $e A G e \subseteq e A \cap A e$ and $e(1)$ is central and not a zero-divisor in A. Let $A^{\prime}=$ $\{a \in A: e a=a e\}$. Then $e A G e \cong A^{\prime}$ as rings and A^{\prime} is local.

Proof. If $x \in e A G e$ then $x=e a$ for a unique $a \in A$. Define $f: e A G e \rightarrow A$ by $f(e a)=a$. Clearly f preserves sums and $\operatorname{ker} f=0$. If $e a \in e A G e$ then $e a e=$ $e a$. Thus $f(e a \cdot e b)=f(e a b)=a b$ and f preserves products. This proves that $e A G e \cong \operatorname{Im} f$.

Clearly $A^{\prime} \subseteq \operatorname{Im} f$. Let $a \in \operatorname{Im} f$. Then $e a \in e A G e \subseteq e A \cap A e$ and so $e a=a^{\prime} e$ for some $a^{\prime} \in A$. Thus $e(1) a=a^{\prime} e(1)=e(1) a^{\prime}$ and $a=a^{\prime} \in A^{\prime}$. This completes the proof that $e A G e \cong A^{\prime}$.

Finally if $a^{\prime} \in A^{\prime}$ is a unit in A, then a^{\prime} is a unit in A^{\prime}. Thus the set of non-units in A^{\prime} is precisely $A^{\prime} \cap J A$, an ideal of A^{\prime}. It follows that A^{\prime} is local.

Lemma 5.4. Let A be a local ring with $\operatorname{char}(\bar{A})=p \geqq 0$. Let $G=\langle g\rangle$ be a cyclic group of order $n, p \nmid n$. Let $m \mid n$ and suppose A has a primitive m th root of
unity a such that \bar{a} is a primitive m th root of unity in \bar{A}. Then $A G e_{m}$ is semiperfect.

Proof. Since $A G e_{m}{ }^{\prime}=A G e_{m} \oplus A G\left(e_{m}{ }^{\prime}-e_{m}\right)$ it is sufficient to show that $A G e_{m}{ }^{\prime}$ is semi-perfect.

For $i=1, \ldots, m$ let

$$
f_{i}=\left(\frac{1}{m}\right) \sum_{j=0}^{m-1} a^{i j} g^{j} e_{m}^{\prime}
$$

Since $a^{i} g f_{i}=f_{i}, f_{i}{ }^{2}=f_{i}$. If $i \neq k$ then $0<|i-k|<m$. Thus $\bar{a}^{i-k} \neq \overline{1}$ in \bar{A} and $a^{i-k}-1$ is a unit in A. Now

$$
f_{j} f_{k}=\left(\frac{1}{m^{2}}\right) \sum_{j=0}^{m-1} \sum_{t=0}^{m-1} a^{i j} a^{k(t-j)} g^{j} g^{t-j} e_{m}^{\prime}=\left(\frac{1}{m^{2}}\right) \sum_{t=0}^{m-1} a^{k t} x g^{t} e_{m}^{\prime}
$$

where

$$
x=\sum_{j=0}^{m-1} a^{(i-k) j}
$$

But $a^{i-k} x=x$ and so $x=0$. Thus $f_{i} f_{k}=0$. Moreover

$$
\sum_{i=1}^{m} f_{i}=\left(\frac{1}{m}\right) \sum_{j=0}^{m-1}\left(\sum_{i=1}^{m} a^{i j}\right) g^{j} e_{m}^{\prime}=1 e_{m}^{\prime}
$$

the unit element of $A G e_{m}{ }^{\prime}$.
Finally, $f_{i} A G e_{m} f_{i}=f_{i} A G f_{i}$. Since $a^{i} g f_{i}=f_{i}, g f_{i}=a^{-i} f_{i} \in A f_{i}$. Thus $A G f_{i}=A f_{i}$. Similarly $f_{i} A G=f_{i} A$, and so $f_{i} A G f_{i} \subseteq f_{i} A \cap A f_{i}$. Moreover $f_{i}(1)=(1 / m)(m / n) a^{0}=1 / n$, a central unit in A. By Lemma 5.3, $f_{i} A G f_{i}$ is local. Thus $A G e_{m}{ }^{\prime}$ is semi-perfect.

Lemma 5.5. Let g and h be commuting elements in a group G, of orders s and t respectively, and let $u=$ L.C.M. (s, t). Then for some integer $r, g h^{r}$ has order u.

Proof. The group $\langle g, h\rangle$ is a finite abelian group of exponent u. Hence $\langle g, h\rangle=$ $Y \times Z$ where $Y=\langle y\rangle$ is a cyclic group of order u and $z^{u}=1$ for all $z \in Z$. Let $g=\left(y^{a}, z_{1}\right)$ and $h=\left(y^{b}, z_{2}\right)$. Since g and h generate $Y \times Z, y^{a}$ and y^{b} generate Y. Thus G.C.D. $(a, b, u)=1$. If $u \mid a$ let $r=1$. Otherwise let r be the product of all primes which divide u but not a. A check of possible prime factors reveals that G.C.D. $(a+b r, u)=1$. Thus $g h^{r}=\left(y^{a+b r}, z_{1} z_{2}{ }^{\tau}\right)$ has order u.

Lemma 5.6. Let A be a ring and let $G=C_{n}$. If $A G$ is semi-perfect then so is $A(G \times G)$.

Proof. Without loss of generality we may assume that A is local and n is a unit in A. Let g generate G and let $H=\langle h\rangle$ denote the second copy of G. For each $m \mid n$ define $e_{m} \in A G$ as at the beginning of this section and define $f_{m} \in A H$ in a corresponding way using h in place of g.

Let e be a primitive idempotent in $A(G \times H)$. We show that e is local. Now $e=e e_{s} f_{t}$ for a unique $s, t \mid n$. Thus, by Lemma 5.2, in the multiplicative group $\langle g e, h e\rangle, g e$ has order s and he has order t. Let $u=$ L.C.M. (s, t) and let r be
an integer such that $g h^{r} e$ has order u. The automorphism of $G \times H$ which sends $g h^{r}$ to g and h to h extends to an automorphism θ of $A(G \times H)$. Since $\theta(e) A(G \times H) \theta(e) \cong e A(G \times H) e$ it is sufficient to show that $\theta(e)$ is a local idempotent.

Since e is a primitive idempotent, so is $\theta(e)$. In $\langle g \theta(e), h \theta(e)\rangle, g \theta(e)=\theta\left(g h^{\top} e\right)$ has order u and $h \theta(e)=\theta(h e)$ has order t. By Lemma 5.2, $\theta(e)=\theta(e) e_{u} f_{t}$. Now $A(G \times H) e_{u} f_{t} \cong\left(A G e_{u}\right) H f_{t}$ in a natural way. Since $A G e_{u}$ is semi-perfect the unit element e_{u} is a sum of orthogonal local idempotents. If f is a local idempotent in $A G e_{u}$ then $f\left(A G e_{u}\right) H f_{t} f \cong\left(f A G e_{u} f\right) H f_{t}$ is semi-perfect by Lemmas 5.2 and 5.4. Thus $\left(A G e_{u}\right) H f_{t}$ is semi-perfect by Lemma 2.1. It follows that

$$
\theta(e) A(G \times H) \theta(e)=\theta(e) A(G \times H) e_{u} f_{t} \theta(e)
$$

is a local ring and $A(G \times H)$ is semi-perfect.
Proposition 5.7. Let A be a ring and let G be a finite abelian group of exponent n. Then $A G$ is semi-perfect if and only if $A C_{n}$ is semi-perfect.

Proof. Since $A C_{n}$ is a homomorphic image of $A G$, if $A G$ is semi-perfect then so is $A C_{n}$.

Conversely suppose $A C_{n}$ is semi-perfect. If $r \geqq 2$ then $A C_{n}{ }^{r} \cong\left(A C_{n}{ }^{r-2}\right)$ $\left(C_{n} \times C_{n}\right)$ and $A C_{n}{ }^{r-1} \cong\left(A C_{n}{ }^{r-2}\right) C_{n}$. By Lemma 5.6 and induction $A C_{n}{ }^{r}$ is semi-perfect for all $r>0$. But $A G$ is a homomorphic image of $A C_{n}{ }^{r}$ for some r. Thus $A G$ is semi-perfect.

Theorem 5.8. Let A be a commutative local ring with $\operatorname{char}(\bar{A})=p \geqq 0$ and let G be an abelian group with Sylow p-subgroup G_{p}. Then $A G$ is semi-perfect if and only if G / G_{p} is a finite group of exponent n and every monic factor of $X^{n}-1$ in $\bar{A}[X]$ can be lifted to a monic factor of $X^{n}-1$ in $A[X]$.

Proof. By Lemma 5.1 and Proposition 5.7 we may assume $G=C_{n}$ and n is a unit in A. Then $A G \cong A[X] /\left(X^{n}-1\right)$ and $\overline{A G}=\bar{A} G \cong \bar{A}[X] /\left(X^{n}-1\right)$. Since n is a unit in $\bar{A}, X^{n}-1$ has no multiple roots in any extension of \bar{A}. Thus if $X^{n}-1=f(X) g(X)$ in $\bar{A}[X]$ then $f(X)$ and $g(X)$ are relatively prime. By [1, Theorem 19] idempotents in $\bar{A}[X] /\left(X^{n}-1\right)$ lift to idempotents in $A[X] /\left(X^{n}-1\right)$ if and only if every monic factor of $X^{n}-1$ in $\bar{A}[X]$ lifts to a monic factor of $X^{n}-1$ in $A[X]$.
6. Examples. In this section it is shown that for a given ring A, the class of groups G for which $A G$ is semi-perfect is not closed under taking subgroups or direct products.

Let g generate C_{2}, the 2-element group. If A is a local ring and $\operatorname{char}(\bar{A}) \neq 2$ then $(1+g) / 2$ and $(1-g) / 2$ are local idempotents in $A C_{2}$ whose sum is 1 . Thus $A C_{2}$ is semi-perfect. If $\operatorname{char}(\bar{A})=2$ then $A C_{2}$ is semi-perfect by Proposition 4.2.

Lemma 6.1. If A is semi-perfect and S_{3} is the symmetric group of degree 3 then $A S_{3}$ is semi-perfect.

Proof. We may assume A is local. If $\operatorname{char}(\bar{A})=3$ let N be the subgroup of order 3 and let H be a subgroup of order 2 in S_{3}. Then $S_{3}=N H$ and $A S_{3}$ is semi-perfect by Proposition 4.2.

If $\operatorname{char}(\bar{A}) \neq 3$, let g generate N and h generate H, and let $e=$ $\left(1+g+g^{2}\right) / 3$, a central idempotent. Then

$$
A S_{3}=A S_{3} e \oplus A S_{3}(1-e)
$$

Since $A S_{3}(1-e)=\omega N, A S_{3} e \cong A S_{3} / \omega N \cong A\left(S_{3} / N\right)=A C_{2}$. Thus $A S_{3} e$ is semi-perfect.

Let $f_{1}=(1-g)(1+h) / 3$ and let $f_{2}=(1-e)-f_{1}$. Then f_{1} and f_{2} are orthogonal idempotents whose sum is $1-e$. Also for $i=1,2, f_{i} A S_{3}(1-e) f_{i}=$ $f_{i} A S_{3} f_{i} \subseteq f_{i} A \cap A f_{i}$ and $f_{i}(1)=1 / 3$. By Lemma 5.3, $f_{i} A S_{3} f_{i}$ is local. Thus $A S_{3}(1-e)$ is semi-perfect.

Now we exhibit a local ring A such that $A C_{3}$ is not semi-perfect. Let

$$
A=\{a / b: a, b \in \mathbf{Z} \text { and } 7 \nmid b\},
$$

a subring of the rationals. Then \bar{A} is the field with 7 elements. In $\bar{A}[X]$, $X^{3}-\overline{1}=(X-\overline{1})(X-\overline{2})(X-\overline{4})$ but in $A[X], X^{3}-1=(X-1)\left(X^{2}+\right.$ $X+1)$. Since $X^{2}+X+1$ is irreducible over $A, A C_{3}$ is not semi-perfect.

For our second example we let

$$
A=\{x / y: x, y \in \mathbf{Z}[i] \text { and }(2+i) \nmid y \text { in } \mathbf{Z}[i]\}
$$

a subring of the complex numbers. Then \bar{A} is the field with 5 elements. In $\bar{A}[X], X^{3}-1=(X-\overline{1})\left(X^{2}+\overline{1} X+\overline{1}\right)$ and $X^{8}-1=(X-\overline{1})(X+\overline{1})$ $(X-\bar{\imath})(X+\bar{\imath})\left(X^{2}-\bar{\imath}\right)\left(X^{2}+\bar{\imath}\right)$, and the quadratic factors are irreducible. Since these factorizations can be lifted to $A[X], A C_{3}$ and $A C_{8}$ are semi-perfect.

Now $C_{3} \times C_{8}=C_{24}$. In $A[X], X^{24}-1$ has the irreducible factor $X^{4}-$ $i X^{2}-1$ but in $\bar{A}[X], X^{4}-\bar{\imath} X^{2}-\overline{1}=X^{4}+\overline{2} X^{2}+\overline{9}=\left(X^{2}+\overline{2} X+\overline{3}\right)$ ($X^{2}-\overline{2} X+\overline{3}$). Thus $A C_{24}$ is not semi-perfect.

References

1. G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.
2. W. D. Burgess, On semi-perfect group rings, Can. Math. Bull. 12 (1969), 645-652.
3. I. G. Connell, On the group ring, Can. J. Math. 15 (1963), 650-685.
4. B. J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464-467.
5. D. S. Passman, Infinite group rings (Marcel Dekker, New York, 1971).
6. S. M. Woods, On perfect group rings, Proc. Amer. Math. Soc. 27 (1971), 49-52.

University of Manitoba,
Winnipeg, Manitoba

[^0]: Received August 18, 1972 and in revised form, January 8, 1973.

