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THE HEAT EQUATION FOR THE d-NEUMANN 
PROBLEM, II 

RICHARD BEALS AND NANCY K. STANTON 

Let B be a compact complex n + 1-dimensional Hermitian manifold 
with smooth boundary M. In [2] we proved the following. 

THEOREM 1. Suppose Q satisfies condition Z(q) with 0 = q =_/2. Let \3p q 

denote the d-Laplacian on (py q) forms on fi which satisfy the d-Neumann 
boundary conditions. Then as t —» 04-, 

(0.1) t r e x p ( - C ] M ) 

~r"~]{c0+ 2 {Cj + c;iog/y1/2)y}. 

(If q — n + 1, the d-Neumann boundary condition is the Dirichlet 
boundary condition and the corresponding result is classical.) 

Theorem 1 is a version for the d-Neumann problem of results initiated 
by Minakshisundaram and Pleijel [8] for the Laplacian on compact 
manifolds and extended by McKean and Singer [7] to the Laplacian with 
Dirichlet or Neumann boundary conditions and by Greiner [5] and Seeley 
[9] to elliptic boundary value problems on compact manifolds with 
boundary. McKean and Singer go on to show that the coefficients in the 
trace expansion are integrals of local geometric invariants. In this paper 
we prove that under suitable hypotheses on Q, and on the metric the 
coefficients in (0.1) are integrals of local invariants of the Hermitian 
geometry and the complex structure. 

The results needed from [2] are summarized in Section 1. In Section 2 
we discuss the hypotheses we require for Q and the metric. The main 
result, Theorem 3.1, is proved in Section 3. 

1. Background. Let P be the fundamental solution of the heat equation 
for the d-Neumann problem on (/?, g)-forms on 0. Then 

t r e x p ( - d M ) = tr(P\t). 

We proved Theorem 1 by constructing P in an appropriate class of 
operators. In this section, we summarize the results we need from that 
construction. 
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We denote by A" the formal d-Laplacian on (p, q) forms, and extend A" 
as a positive self-adjoint elliptic operator on a bundle on the double fi' of 
fi. Then 

(1.1) P = E - G' - H = G - H 

where E is the fundamental solution of the heat equation for A" on Œ' and 
G = E — G is the Green's operator: the fundamental solution of the heat 
equation for the Dirichlet realization of A" on fi. The operator G and its 
trace are well understood [5], [7], [9], but it involves very little extra work 
to discuss G here. 

In [2, Sections 2, 7, 8] we showed that E, (7, and H can be constructed 
locally, modulo errors which do not affect the asymptotic expansion (0.1). 
Let U be a coordinate neighborhood on 2 with coordinates x and let 
{Zj)j+Î be an orthonormal frame for Th°(U) with 

Xk real. We denote the dual variables t o ( i , / ) e [ / X R b y (£, T) and let ay 

be the symbol of the vector field — iXj. The localization of E to U is a 
pseudodifferential operator with symbol belonging to 

S;p\u x R, c"), N - (n ; f ; ' ) . 
Here Scp denotes the symbol class of [2, Definition 2.7]. Thus the terms in 
the asymptotic expansion of the symbol a(E) are homogeneous of degree 
^ — 2 with respect to parabolic dilations in (£, r) and holomorphic for 
Im T < 0. By (2.27) of [2], they are sums of terms of the form 

(1.2) ( \o\2 + h)-rg{x, | ) 

where g is a homogeneous polynomial in £ whose coefficients are 
polynomials in the derivatives of the coefficients of the vector fields X- and 
in the inverse of the determinant of the coefficients of the {X}. Thus the 
terms of (1.2) are uniform in the sense of Definition 4.12 of [1]: in suitable 
coordinates at x0 G U, the terms evaluated at x0 are universal polynomials 
in the derivatives of the coefficients of the {X.}. The coefficients of these 
polynomials are universal functions of the Fourier transform variables £ 
alone. (For suitable coordinates, we may take any coordinates so that X-
coincides with d/dx^ at JC0.) Let e(x, y, t) denote the kernel of E. Taking 
the inverse Fourier transform of the symbol o(e) and using the 
homogeneity of the terms in (1.2) we see that 

oo 

(1.3) tr e(x9 x, t) — r ( " + ! ) 2 aAx)tJ as t -> 04-, 

where the coefficients aj in suitable coordinates are universal polynomials 
in the derivatives of the coefficients of the {X:}. (Here we have used the 
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fact that (1.2) is homogeneous under (£, T) —» (X£, X2T) for X < 0 as well 
as X > 0 to eliminate half-integer powers of r.) 

Modulo terms vanishing to infinite order as t —> 04-, the traces of 
G and H are the same as the traces of pseudodifferential operators G'0 and 
Hf

0 on the boundary M X R; see [2], Proposition 7.12 and the discus­
sion following Corollary 9.22. To describe the operators G'0 and H0 we 
require some notation. Fix JC0 e M and choose a coordinate neighbor­
hood U of xQ e £2 with coordinates (JC°, . . . , x2n, p) which identify 
U with V X [0, e) c R2"+2, where p is the distance to M and 
(JC°, . . . , x2n, 0) are the coordinates of the point on M closest to the point 
with coordinates (x°, . . . , x2n, p). We choose an orthonormal frame {Z-} 
for Tl°(U) with 

Here ^ is the almost complex structure. Then Zl9 . . . , Zw, and T are 
tangent to {p = c} for 0 â c < €. In particular {Z l 9 . . . , Zn) is an 
orthonormal frame for T],0(V). Let 

(1.5) Xj = Re Z,, X„+y = - I m Z,, l i j ^ n , 

We denote the dual variables to (JC, 0 e F X R by (£, r) and set 

(1.6) Oj-oi-iXj), O^j^ln. 

Let A be the square root 

In 

(1.7) A(x, fc r)2 = a2(x, 0 , 0 4- 2 2 a2(x, 0, © + 2/T 
7 = 1 

with Re A ^ 0. Then G(> has symbol 

a(Ĝ ) G s;p\v x R, c"). 
Each term in the asymptotic expansion of o(G'0) has the form 

(1.8) A(x, £, r ) - > ( x , 0 

where each entry of/? is a homogeneous polynomial in £ whose coefficients 
are polynomials in the derivatives of the coefficients of the {X} and of the 
inverse of the determinant of those coefficients. Thus the terms in (1.8) are 
uniform; for suitable coordinates at x0 e M we choose any coordinates 
(x , . . . , x n, p) as above for which X- coincides with d/dxJ at x0. Let 
go(x, y, t) denote the kernel of G'0. Taking the inverse Fourier transform of 
the symbol o(G'0) we see that 

CO 

(1.9) tr gfcx, x, t) ~ r ( n + 1 / 2 ) 2 Ux)tll/2)J, t-*0 + . 
, = 0 
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Here kj(x0) is a universal polynomial in the derivatives at x0 of the 
coefficients of the {Xj} in suitable coordinates depending on JC0. 

Similarly, o(HQ) has locally an asymptotic expansion whose terms have 
entries of the form 

(1.10) p(x, S, r)q(x, S, r) 

where p is homogeneous of degree 7 = 0 with respect to the parabolic 
dilations and is holomorphic for Im T < 0, while q is homogeneous of 
degree k ^ — 2 with respect to the non-isotropic parabolic dilations 

(1.11) ( ^ T ) - > ( A 2 ^ A ^ , . . . , A ^ , X 2 T ) 

and is also holomorphic for Im T < 0. Thus, o(H0) belongs to the symbol 
class S^°(V X R, C*) of Definition 5.10 of [2]. 

We assume now that the induced metric on M is a Levi metric. Then the 
symbolsp and q of (1.10) are uniform: see [2], Propositions 3.27, 7.18, and 
7.26, Definition 7.23, Remark 6.20, and Corollary 9.22. As suitable 
coordinates we take (x, p) as above and assume in addition that (x) are 
anti-symmetric xQ coordinates on Fin the sense of Section 5 of [1]. Thus in 
suitable local coordinates a(H0) has an asymptotic expansion whose terms 
have entries of the form 

(1.12) f(x)p& r)q& r) 

where/) and q are as in (1.10) and are independent of JC, while f(x0) is a 
universal polynomial in the derivatives of the coefficients of the {Xj} at 
x0. Let h0 denote the kernel of H0. Then tr h0(x, x, t) is asymptotically 
a sum of terms of the form 

(1.13) f(xXpq)\09 t). 

By Theorem 10.17 of [2] it follows that 

(1.14) trh0(x,x, t) ~ r{n+l) 

X Ik&x) + 2 [kj{x) + kj(x) log t]t{l/2)j] as t -> 0-f. 

Here again kj and k" are universal polynomials in derivatives of the 
coefficients of the {^Ç}, pointwise in suitable coordinates. 

2. Metrics. In Section 1 we required that the metric on Q induce a Levi 
metric on M, in order to get a good expression for the coefficients of 
the expansion of tr H or equivalently of tr H0. To obtain a geometric 
interpretation of the coefficients in the trace expansion (0.1) we need a 
canonical connection on M which preserves both the metric and the CR 
structure. We assume that M is strictly pseudoconvex, i.e., that at each 
point of M the manifold £2 is either strictly pseudoconvex or strictly 

https://doi.org/10.4153/CJM-1988-021-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-021-8


506 R. BEALS AND N. K. STANTON 

pseudoconcave. Then the Webster-C. M. Stanton connection [10], [11] has 
the desired properties. In addition we shall have to differentiate 
coefficients of the {Xj} with respect to normal as well as tangential 
variables, so we want a metric on 0 which is Kâhler in a neighborhood of 
the boundary. 

The following result shows that the pseudoconvexity condition is the 
only limitation on an embedded manifold fi. 

PROPOSITION 2.1. Suppose £2 is embedded in a complex n 4 1-dimensional 
manifold Ù without boundary and suppose that at each point of its boundary 
M, Q is either strictly pseudoconvex or strictly pseudoconcave. Then ft admits 
a Hermitian metric which is Kàhler in a neighborhood of M and which 
induces a Levi metric on M. 

Proof Let /Î, be a Hermitian metric on ft. Suppose there is a 
neighborhood U of M in ft and a Kâhler metric h0 on U which induces 
a Levi metric on M. Choose a non-negative cut-off function x e C°°(ft) 
with support in U such that x = 1 in a neighborhood of M in ft. Then 

h = XK + (1 ~ X)hx 

is a Hermitian metric with the desired properties. 
To construct such a metric h0 we use an approximate solution of 

the Monge-Ampère equation. Let r be a smooth defining function for 
ft: ft = {r < 0}, M = {r = 0},_and dr ^ 0 on M. Then iddr is a def­
inite form on TM n J0rM, so (ddr)w * 0 on TM n / 0 r M \ { 0 } . Thus 

dr A dr A (ddr)n ¥= 0 on M. 

On M there is a smooth function <p0 such that 

(2.2) (ddr)" + l - -2(w + l)Vodr A dr A (ddrf on M. 

Extend <p0 to a smooth function <p on a neighborhood of M and let 
u = r + <p/̂ . Then 

(2.3) ddw = ddr + 2<pdr A dr on M, 

so (2.2) implies 

(2.4) (ddu)n + ] = 0 o n M , 

i.e., « solves the homogeneous Monge-Ampère equation on M. With the 
appropriate choice of sign on each component of M, (2.4) implies 
±iddu is nonnegative on TÙ\M. L e t / = e~", with the appropriate sign on 
each component of M. Then 

(2.5) iddf = ±ie±u(ddu ± du A du) 

is positive definite on TÛ\M. Therefore the form (2.5) is positive defi­
nite on a neighborhood U of M and is the Kâhler form for a Kâhler 
metric on U. 
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Remark 2.6. Our proof of (2.4) is the first step in a construction by 
Bedford and Burns, who showed that when M is real analytic there is a 
solution of (2.4) in a neighborhood of M with u = 0 on M and du ^ 0 on 
M; see Proposition 1.5 of [3]. If 0 is a bounded strictly convex domain in 
Cw+1 , Lempert showed that for any z0 e fi there is a defining function u 
for S which satisfies (2.4) on &\{z0}; see Theorem 4 of [6]. 

3. Geometry. Our goal is the following. 

THEOREM 3.1. Let Q> be a compact complex n + \-dimensional manifold 
with smooth boundary M. Suppose that at each point of M, £2 is either strictly 
pseudoconvex or strictly pseudoconcave. Suppose also that 2 is equipped with 
a Hermitian metric which is Kâhler in a neighborhood of the boundary M and 
which induces a Levi metric on M. Then for 1 = q Ŝ n — 1, 

(3.2) t rexp(- /D M ) 

{
CO CO \ 

2 b:tj + c0 + 2 (c, + c'log t)t{l/2)j\ as t~~>0 + . 
IfQ is strictly pseudoconvex (pseudoconcave) then (3.2) also holds for q = n 
(q = 0). The coefficients b: are integrals over 0 of universal polynomials in 
the components of the curvature and torsion of the Hermitian connection and 
their covariant derivatives with respect to this connection. The coefficients c-
and cf: are integrals over M of universal polynomials in the components of the 
second fundamental form of M, the curvature and torsion of the Webster-
C. M. Stanton connection, and their covariant derivatives with respect to this 
connection, as well as the components of the Hermitian curvature of Q and 
its Hermitian covariant derivatives on M. 

Remark 3.3. By the Hermitian connection we mean the unique type 
(1,0) connection which preserves the metric. Because the metric is Kâhler 
in a neighborhood of the boundary, this is the Riemannian connection 
in this neighborhood. 

Proof of Theorem 3.1. By the results of Section 1, the coefficients are 
given by 

CJ = L k'^dv 

where aj9 kj9 kp and k'- are as in (1.3), (1.9), and (1.14). 
As noted in connection with (1.3), given x0 G ÏÏ we may choose an 

orthonormal frame {Z } and coordinates (x) near x0 with X- = d/dxJ at 

https://doi.org/10.4153/CJM-1988-021-8 Published online by Cambridge University Press

file:///-dimensional
https://doi.org/10.4153/CJM-1988-021-8


508 R. BEALS AND N. K. STANTON 

xQ9 and then aj(x0) is obtained by evaluating a universal polynomial in the 
derivatives of the coefficients of the {Xj}. We obtain such a frame and 
such coordinates by choosing Z at x0 and letting (x) be normal 
coordinates at x0 for the corresponding frame {X\x }, with respect to the 
Hermitian connection. Let X- be obtained from X\x by parallel transport 
along the geodesies through x0. By the argument of [1, Section 7] (see 
also [4] ), the derivatives of the coefficients of the {Xj} evaluated at x0 are 
universal polynomials in the curvature and torsion of the Hermitian 
connection and their covariant derivatives. Thus a, is such a polynomial. 

in — 
For x0 e M we choose an orthonormal frame {Zy } for Tx (2) with 

(3.5) Z w + 1 = — (n0 - iJ0n0\ 

where n0 is the unit inward normal to M at x0. As in (1.5) we define a 
frame for Tx (M) by 

(3.6) Xj = Re Zj, Xn+j = - I m Zy, l i j ^ , 

Let (x) = (JC°, . . . , x2n) be normal coordinates for the Webster-Stanton 
connection on M with respect to this frame, on a neighborhood U0 of x0 in 
M. We extend the frame {Xj} to U0 by the parallel transport along the 
geodesies through x0. By Remark 7.29 of [1], the coordinates are 
anti-symmetric .^-coordinates. For small e > 0 we let 

(3.7) U = {expwPn0: w e I/0, 0 ë p < c}. 

Here w0 = «0(w) is the unit inward normal to M at w and exp is the 
Riemannian exponential map. We coordinatize U by letting (x, p) be 
the coordinates of exp^p^Q when (x) are the normal coordinates of 
w e U0. The frame {Xj} is now extended to Uhy parallel transport with 
respect to the Riemannian connection along geodesies perpendicular to M. 
For small enough e, the metric is Kâhler in U. On U0 we have 

Xn+j = J0Xj, 1 S ; S « , 

since the Webster-Stanton connection preserves the CR structure. Because 
the metric is Kâhler, the same relation carries over to U. Moreover, d/ dp 
is the unit tangent to geodesies perpendicular to M and 

X - - J ± 

Both the Webster-Stanton connection and the Riemannian connection 
preserve the metric, so {Z-} is an orthonormal frame for Tl'°(U), where 

(3.8) Zj: = Xj ~ iXn+J, X^j^n^ 
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Thus we have constructed a frame as in (1.5). It follows that the 
coefficients k-, kj, and k" in (1.9) and (1.14) are universal polynomials in 
the derivatives of the coefficients of the {Xj}, pointwise in suitable 
coordinates. The proof of Theorem 3.1 will be complete when we have 
proved the following. 

PROPOSITION 3.9. Let {X} and (x, p) be the frame and the coordinates 
just constructed, corresponding to a point x0 G M. Each Taylor coefficient at 
x0 of each component of the {Xj} with respect to the coordinate frame 
{d/dxk, d/dp} is a universal polynomial in the components of the second 

fundamental form of M, the curvature and torsion of the Webster-C. M. 
Stanton connection, and their Webster-Stanton covariant derivatives, 
together with the components of the Hermitian curvature and their Hermitian 
covariant derivatives. 

Proof We systematically use Greek indices a, /?, y in the range 

0 ^ a, p, y ^ In + 1 

and Roman indices i, j , k in the range 

0 ^ i,j, k ^ In. 

Thus our frame for T(U) is {Xa} while our frame for T(U0) is {Xj}. Let 
{<pa} be the dual coframe for T*(U), and let {^} be the Riemannian 
connection form. Thus 

(3.10) dq? + 4% A / = 0 

(with summation over repeated indices). Let { ^ J be the Riemannian 
curvature form: 

(3.11) *Ê = 4 # + * ? A , # . 

Let (s;) be the matrix of the second fundamental form of M with respect 
to the frame {X}: 

(3.12) tf»+l\M = sjkv
k. 

NowX2„ + 1 = d/dx2n+l = d/dp, so 

(3.13) ^ J / = « U 
dp 

LEMMA 3.14. The restriction to M of any normal derivative of any 
component of the l-forms <pa can be expressed as a universal linear 
combination of restrictions to M of the components of the ya, the components 
of the 4>a+X, and normal derivatives of the curvature forms tyj* . 

Proof Write 

x = (x°,..., xln, p) = (*', p). 
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Given a 1-form a, write 

a = a' + a" where — J a! = 0 - — - J a", O i j ^ 2A2. 
dp ax7 

A Taylor series expansion around p = 0 gives 

oo 

a ~ 2 P ^ £ as p —> 0 -f, 
A: = 0 

with 

ak = a'k + a'£ = \ 2 ÛA {x')dxJ\ + 0*2/i+iC*')rfP-

The A>th normal derivatives of the components of a restricted to M are 
just the components of the form k\ak. 

Let R = pd/dp. Then clearly 

OO 

Ra ~ 2 {p^4 + p*(* + 1)<} 
k = 0 

where we also use R to denote the Lie derivative on forms. Therefore 
normal derivatives of components of a on M can be expressed in terms of 
the components themselves (k = 0), together with normal derivatives 
of components of Ra on M. With this in mind we consider 

(3.15) Rv
j = R J d<pj + </(/* J v

7') 

= # J ( / A ^) + 0 

= P</i, + i = -P*Pjn+l> J<2n + 1-

Here we have used (3.13) and also the fact that the parallel transport in the 
direction d/ dp implies 

(3.16) RJtf = 0. 

Now <p n = dp. To complete the proof, therefore, we need only consider 
normal derivatives of positive order of the components of the \pj" + '. 
But 

(3.17) /ty2*+i = R j ^ 2 * + i + d(R j ^ + i } 

= RJ(*jn + ] - ^ w + 1 A *?) + 0 

« J * ? w + 1 . 

Thus for these higher derivatives we need only normal derivatives of 
the components of ^ • n + 1 
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Remark 3.18. By (3.15) and (3.17) only normal derivatives of order 
^k - 2 of ^ + 1 enter the k-th normal derivative of <pJ. By (3.15) the 
components of \p]n+l\M only enter the first normal derivative of <pJ. 

LEMMA 3.19. Any derivative at x0 of any component of the \-forms {<pa} 
can be expressed as a universal polynomial in the derivatives (with respect to 
the chosen coordinates) of the components of the {^;n }, and tangential 
derivatives of components of the Webster-Stanton curvature and torsion 
tensors, and tangential derivatives of the components of the {s:k}. 

Proof In view of Lemma 3.14 we only need to examine tangential 
derivatives of the components of the {<pa} and the {^jn+l}- For {V}, 
j ^ In, the result is in [1], Section 7, while <p2n+1 = dp. We are left with 
i^2'1+1, and (3.12) gives the desired result. 

Proof of Proposition 3.9, completed. Let us say that a term is "accept­
able" if it can be expressed in the form indicated in the statement of 
Proposition 3.9. Let A = (dp) be the matrix of coefficients of the coframe 
{<pa} with respect to the coordinate coframe: 

<pa = a^dxP. 

Then A~ is the matrix of coefficients of the {Xa} with respect to the 
coordinate frame, and we want to show that the entries of A~ are 
acceptable at x . Now A — I at x , so it is enough to show that the dp are 
acceptable. Components of the (sjk) are polynomials in the dp 
det A" and components of the second fundamental form. Similarly, 
components of \fr?w+ J are polynomials in the dp, det A ~l and the compo­
nents of the Riemannian ( = Hermitian) curvature tensor. Thus, by 
Remark 3.18, Lemma 3.19 remains true if we replace {\I/?W+1} by the 
Riemannian curvature tensor and {s-k} by the second fundamental form. 
Conversion of tangential derivatives of components of the Webster-
Stanton curvature and torsion and of the second fundamental form to 
Webster-Stanton covariant derivatives is carried out in Section 7 of [1], so 
these are acceptable terms. To complete the proof, we induce on the 
order of derivatives; dp(x0) = 8% is acceptable. Suppose derivatives 
of order ^k of the {a%} are acceptable. The metric tensor has components 
G — (go) = A*A, so the components of the Riemannian connection form 
with respect to the {d/dxa}, {dxa}> i.e., the Christoffel symbols, are 
polynomials in the a°p, det A"1 and first-order derivatives of the dp. 
Thus the Christoffel symbols and their derivatives of order â/c — 1 evalu­
ated at x0 are acceptable. Hence, a derivative of order k — 1 of a com­
ponent of the Riemannian curvature tensor is a component of a k — 1 st 
covariant derivative of the tensor, modulo acceptable terms. By Remark 
3.18, derivatives of order k -f 1 of the dp are acceptable. 
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