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FLUCTUATION THEORY FOR THE EHRENFEST URN VIA ELECTRIC
NETWORKS
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Abstract

Using the electric network approach, we give very simple derivations for
the expected first passage from the origin to the opposite vertex in the
d-cube (i.e. the Ehrenfest urn model) and the Platonic graphs.
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1. Introduction

Based on the standard theory of skip-free random walks, Bingham (1991) gave a thorough
account of that aspect of the fluctuation theory having to do with the first passage from the
origin to the opposite vertex in the d-cube (i.e. the Ehrenfest urn) and the Platonic graphs.
Two other earlier treatments of the material in Bingham’s paper are due to Bar6ti (1988) and
Matthews (1989), who give asymptotics of the generating functions—thus providing limit
distributions—of the first passages. Here we give very simple derivations for the expected
values of those first passages (or hitting times) based on the electric approach to random
walks on graphs. Similar examples of hitting-time calculations using this approach were given
by Palacios (1992).

The Ehrenfest model consists of d balls distributed between two urns, I and II; at each time
n=0,1,--- a ball is chosen—each with probability 1/d—and changed to the other urn. A
classical textbook account of this model is given by Kac (1959). If we use a ‘full description’
with 27 states representing the possible configurations by d-tuples i = (i,, - - -, i;), where
i, =1,0if ball k is in urn, I, II, one may identify the states with the vertices of the d-cube,
and the evolution of the Ehrenfest model is that of a simple random walk on the cube.

In general, a simple walk on a finite connected undirected graph, G =(V, E), is the
Markov chain X,, n =0, that from its current vertex v jumps to one of the d(v) neighboring
vertices with uniform probability. The hitting time (or first passage) 7, of the vertex v is the
minimum number of steps the random walk takes to reach that vertex: T, =inf {n 20: X, =
v}. The expected value of T, when the walk starts at the vertex w is denoted by E,T,. The
commute time between vertices i and j is E;T; + E;T..

2. The electric approach

There is a strong connection between random walks on graphs and electric networks,
spelled out beautifully in the monograph of Doyle and Snell (1984). We will use the following
fact of this electric analog involving the commute time between a and b and the effective
resistance R,, between those two vertices when every edge of the graph is considered to be a
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unit resistor:
1) E,T,+ E,T,=2|E|R,,.

If we can ensure further that E, T, = E,T,, for instance under some symmetry assumption,
then (1) simplifies to

(2) E,T, = |E| R.,.

Formulas (1) and (2) enable one to compute the commute time—and hitting time in the
presence of symmetry—not only of a single vertex but also of a set of vertices because one can
short together those vertices (they have ‘zero voltage’, see Doyle (1984), p. 53) into a single
vertex. Moreover one can short together all vertices sharing the same potential, a fact that
simplifies things considerably. Formula (1) can be proved in a number of ways (see Chandra
et al. (1989)) of which we include here the following, for the sake of completeness.

Proof of (1). It is a well-known fact (Proposition 9-58 in Kemeny et al. (1966)) that the
commute time between two states a and b of an irreducible recurrent Markov chain can be
expressed as

1
(3) Ean+EhT‘a=;EaN2)
where 7, is the value of the stationary distribution at @ and N? is the number of visits to a
prior to time T,,.
It is easy to verify that for random walks on graphs the stationary distribution is given by

Q)
=3 @

Also, on p. 50 in Doyle and Snell (1984) it is proved that: (i) E,N2/d(a) equals the voltage at
x when we put a battery from a to b that establishes a voltage E,N%/d(a) at a and a voltage 0
at b, and (ii) the total current flowing into the network at a under these conditions is 1. Since
the effective resistance R,, is the quotient of the voltage at a over the total current at a, we
can conclude that

©®)

Now (3), (4) and (5) together imply (1).

In what follows, we use the above ideas and the fact that the effective resistance of a set of
resistors is: (i) the sum of the individual resistances in case the resistors are in series and (ii)
the inverse of the sum of the inverse individual resistances in case the resistors are in parallel.

E,N!
d(a)

= Rah‘

3. The d-cube

If we start at any vertex that we relabel as the ‘origin’ (0, - - -, 0), the vertex it takes longest
to hit is (1,---,1). Now if we apply a unit voltage between these two vertices so that the
voltage at (0, - - -, 0) is 1 and the voltage at (1, - - -, 1) is 0, then all vertices having the same

number of 1’s share the same voltage and can be shorted. Figure 1 shows the effect of doing
this on the 3-cube.

0

(1,1,1)

(0,0,0)

Figure 1.
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In general what we obtain is a new graph with d + 1 vertices, where the kth new vertex
consists of the shorting of all vertices in the unit cube with k 1’s. Since every vertex in the unit
cube with k 1’s is connected to d — k vertices with kK — 1 1’s, there are

(d - k)(d/k) = d(d . 1)

resistors between vertex k and k + 1 in the new graph, 0=k =d — 1. Then (2) yields

d—1 1
E(().~~-.0)T(1.~-~,1) =EyT;=|E|Roa = d24! 2 0 a
k=0d(d - 1)
©) k

1

()

- 2:1—1 S:l
k=0

Bingham (1991) found that

d
E,T,=d Q

1sj=d,jodd J

(7

It is not entirely obvious at first glance that these two combinatorial expressions for E, T, are
indeed equal! Perhaps in our derivation it is easier to see that E,T, = O(2¢), the order of the
graph. In fact, whenever 2 =n <2**' and 1= = |4{(n — 1)] one has that

vy o2 111 1
<n) nn—1 n—j+1- 282 2 2kv-V
J

so that
Be-nl 1 Ueonl g

lIA

=1 ('l) o2y
J

whenever 2 =n <2**' and 1 =j = |4(n — 1)]. This implies that if we exclude the first and last
terms (both equal to 1) in the summation in formula (6), then half the sum of all the
remaining terms—excluding the central term—is bounded by the tail of a convergent series
and thus, converges to 0 as n goes to «, so that E,T, =2%"'(2 + o(1)).

Comments. Besides (6) and (7), there are other closed-form formulas for the hitting time
E,T, in the d-cube. For instance, Karlin and McGregor (1965) study a slightly different
version of the Ehrenfest urn presented here. In this model (we shall call it model B), every
time we pick a ball at random we also toss a coin, and if it lands heads (with probability p)
then we place the ball in urn I; otherwise we place the ball in urn II. The discrete model is
embedded in a continuous-time model by picking the balls at exponential times, and for this
continuous model it is proved that the Laplace transform of the (continuous) hitting time 7, is
given by

® Eo(exp (=sT)) = —

Ki(-s)’

where K, is the Krawtchouk polynomial
© k=3 (%) %
4 v=0 v P v

If we choose p = 3, model B describes a random walk on the d-cube such that at each vertex
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the walk either stays at that same vertex with probability 3, or moves to one of the adjacent
vertices with probability 1/2d. With this choice of p, (9) becomes

Kx)=1+ é (—1)V<f,)2n

and

d 2v
=0—§| v’

(10) E,T,=-Ki0)= é (—1)”‘2”[()5)];

In (10), the first equality uses the fact that K,(0) = 1. The last equality follows because

[(x)];zo=;l—!coeff. of x =(=1)"" (V_V"Q_'

v

Now the expected hitting time for the discrete B model is equal to the above E, T, multiplied
by a factor of d, to account for the exponential holding time at each state. Finally, we argue
that in the discrete model B, the walk behaves as in our model except that in every vertex
there is a geometric holding time with mean 2, and thus the expected (discrete) hitting time in
model B is twice that of our model, so that we finally get the alternative version of (6) and

():

Other expressions for the Krawtchouk polynomials (see Karlin and McGregor, p. 356, and
references therein) will yield other closed-form formulas for E,T,.
A final comment: formula (8) and (9) allow us to write

Eo(eXP (—%)) =(1+s+0(2%)7",

justifying an exponential limit distribution for the normalized hitting times, in an alternative
way to the one proposed by Bingham (1991).

4. The Platonic graphs

Proceeding similarly to the case of the d-cube, the effective resistance of the Platonic
graphs can be easily found once the vertices with the same potential have been shorted.
Figure 2 shows the effect of doing that. In all cases O represents the initial vertex and d the
opposite vertex.

cy84e

Figure 2.
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It is immediate from the figure that the effective resistance R, equals

1+ 1 =1 for the octahedron
1+ 4 + %=1 for the icosahedron
L+ 1+ i+ 1+ 1=1 for the dodecahedron.
And therefore, by (2), the expected first passage is:
12 X § = 6 for the octahedron
30 x 1 = 15 for the icosahedron
30 x Z =35 for the dodecahedron.

Bingham (1991) reports an incorrect figure of 33 for the dodecahedron, although the
generating function from which is it derived is correct. As he points out, the tetrahedron is
degenerate for this problem (no ‘opposite vertex’); let us remark for completeness that for
any two vertices a and b in the tetrahedron the effective resistance if  and therefore E, T, = 3.
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